

	FCC Test Report				
Report No.:	LDF-ESH-P21071152B-5				
FCC ID:	2AFYH-SCETR1R5				
Product:	REMOTE CONTROL				
Test Model:	SCE-R1 FCC Gunmetal, SCE-R5 FCC Gunmetal, SCT-R1 FCC White, SCT-R1 FCC Black, SCT-R5 FCC White, SCT-R5 FCC Black				
Received Date:	Jul.14, 2021				
Test Date:	Jul.15 to Aug.03,2021				
Issued Date:	Aug.05, 2021				
Applicant:	Zhejiang Lianda Science and Technology Co., Ltd				
Address:	Technological and Industrial District 2# Road, Nanxun, Huzhou, Zhejiang, China 313009				
Manufacturer:	Zhejiang Lianda Science and Technology Co., Ltd				
Address:	Technological and Industrial District 2# Road, Nanxun, Huzhou, Zhejiang, China 313009				
Issued By:	BUREAU VERITAS ADT (Shanghai) Corporation				
Lab Address:	No. 829, Xinzhuan Road, Shanghai, P.R.China (201612)				
	ACCREDITED Test Lab Cert 2343.01				
This report is for your exclusive use. Any only with our prior written permission. Th report are not indicative or representative specifically and expressly noted. Our rep us. You have 60 days from date of issuan notice shall be in writing and shall specifi unqualified acceptance of the complete uncertainty of measurement has been ex	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless ort includes all of the tests requested by you and the results thereof based upon the information that you provided to ce of this report to notify us of any material error or omission caused by our negligence, provided, however, that such cally address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your ness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the plicitly taken into account to declare the compliance or non-compliance to the specification.				

Table of Contents

Release C	Control Record	4
1 Cer	rtificate of Conformity	5
2 Sun	mmary of Test Results	6
2.1 T	Test Instruments	7
2.2 N	Measurement Uncertainty	8
2.3 N	Modification Record	8
3 Ger	neral Information	9
3.1 G	General Description of EUT	9
3.2 D	Description of Test Modes	10
3.2.1 Te	Test Mode Applicability:	11
3.2.2 Te	Test Condition:	12
3.3 D	Description of Support Units	13
3.4 G	General Description of Applied Standards	13
4 Tes	st Procedure and Results	14
4.1 A	AC Power Conducted Emission	14
4.1.1 Li	imits	14
4.1.2 Te	Fest Procedures	14
4.1.3 D	Deviation from Test Standard	14
4.1.4 Te	Fest Setup	15
4.1.5 E	EUT Operating Conditions	15
4.1.6 Te	Fest Results	16
4.2 2	20dB Spectrum Bandwidth Measurement	17
4.2.1 Li	.imit	17
4.2.2 Te	Fest Setup	17
4.2.3 Te	Fest Procedures	17
4.2.4 D	Deviation of Test Standard	17
4.2.5 Te	Fest Results	18
4.3 D	Dwell Time Measurement	19
4.3.1 Li	_imit	19
4.3.2 Te	Fest Setup	19
4.3.3 Te	Fest Procedures	19
4.3.4 D	Deviation of Test Standard	19

4.3.5	5 Test Results	20
4.4	Field Strength of Fundamental Emissions and Mask Measurement	23
4.4.1	1 Test Limit	23
4.4.2	2 Test Setup	23
4.4.3	3 Test Results	24
4.5	Radiated Emissions Measurement	25
4.5.1	1 Test Procedure Reference	26
4.5.2	2 Test Procedures	26
4.5.3	3 Deviation from Test Standard	27
4.5.4	4 Test Setup	27
4.5.5	5 Test Results	29
5 I	Pictures of Test Arrangements	33

Release Control Record			
Issue No.	Description	Date Issued	
LDF-ESH-P21071152B-5	Original release	Aug.05, 2021	

12	VENTIA	5
1 Certificate of Co	onformity	
Product:	REMOTE CONTROL	
Brand:		
	B Ĕ	
Test Model:	SCE-R1 FCC Gunmetal, SCE-R5 Black, SCT-R5 FCC White, SCT-F	FCC Gunmetal, SCT-R1 FCC White, SCT-R1 FCC R5 FCC Black
Applicant:	Zhejiang Lianda Science and Tech	nnology Co., Ltd
Test Date:	Jul.15 to Aug.03,2021	
Standards:	47 CFR FCC Part 15, Subpart C (ANSI C63.10:2013	Section 15.231)
Test (EUT) configurat sample's EMC charac	ons represented herein are true a teristics under the conditions specifi	nd accurate accounts of the measurements of t ied in this report.
Prepared by :	Yan ZHOU	, Date: Aug.05, 2021
	Project Engineer	
Approved by :	H Daniel SUNZ	, Date: Aug.05, 2021
	EMC Lab Manager	

Report No.: LDF-ESH-P21071152B-5

Report Format Version: 6.1.1

2 Summary of Test Results

The EUT has been tested according to the following specifications:

47 CFR FCC Part 15, Subpart C					
FCC Clause	Test Item	Result	Remarks		
15.203	Antenna Requirement	PASS	No antenna connector is used.		
15.207	AC Power Conducted Emission	NA	The EUT is powered by battery.		
15.231(c)	20dB Spectrum Bandwidth	PASS	Meet the requirement of limit.		
15.231(a)	Dwell Time	PASS	Meet the requirement of limit.		
15.231(e)	5.231(e) Field Strength of Fundamental Emissions		Meet the requirement of limit.		
15.225 / 15.209 /	Radiated Emissions Measurement	PASS	Meet the requirement of limit.		

2.1 Test Instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Hybrid Antenna(25MHz-1.5GHz)	Schwarzbeck	VULB9168	E1A1012	Jul.29, 20	Jul.28, 22
Horn Antenna(1GHz -18GHz)	Schwarzbeck	BBHA9120D	E1A1017	Aug.25, 20	Aug.24, 22
Double Ridge Horn Antenna(18G-40G)	COM-POWER	AH-840	E1A1040	Jul.15, 20	Jul.14, 22
Pre-Amplifier(100kHz-1.3GHz)	Agilent	8447D	E1A2001	Apr.19, 21	Apr.18, 22
Pre-Amplifier(0.5GHz-18GHz)	EMCI	EMC184045SE	E1A2009	Jul.05, 20	Jul.04, 22
Pre-Amplifier(18GHz-40GHz)	EMCI	EMC051845SE	E1A2008	Jul.05, 20	Jul.04, 22
EMI test recerver	R&S	ESR7	E1R1005	Apr.19, 21	Apr.18, 22
Spectrum Analyzer	Keysight	N9030B	E1S1003	Jul.22, 21	Jul.21, 22
Spectrum Analyzer	Keysight	N9020A	E1S1004	Mar.02, 21	Mar.01, 22
EMI test recerver	R&S	ESCS30	E1R1001	May.11, 21	May.10, 22
LISN	R&S	ENV216	E1L1011	May.11, 21	May.10, 22
Humidity&Temp Tester	Baolima	WS508	E1H1011	Apr. 02, 21	Apr. 01, 22
RF Control Unit	Toscend	JS0806-2	E1C5003	N/A	N/A
Test Software	ADT	ADT_COND_V7 .3.1	N/A	N/A	N/A
Test Software	Toscend	JS32-RE	N/A	N/A	N/A
Test Software	Toscend	JS1120	N/A	N/A	N/A
Test Software	Toscend	JS1120-3	N/A	N/A	N/A

2.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.83 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.36 dB
	1GHz ~ 6GHz	3.47 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.75 dB
	18GHz ~ 40GHz	3.30 dB

2.3 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	REMOTE CONTROL
Brand	
Test Model	SCE-R1 FCC Gunmetal, SCE-R5 FCC Gunmetal, SCT-R1 FCC White, SCT-R1 FCC Black, SCT-R5 FCC White, SCT-R5 FCC Black
Power Rating	3Vdc, Powered by battery
Modulation Type	ASK
Operating Frequency	433.92MHz
Number of Channel	1
Antenna Type	PCB Antenna
Antenna Connector	

Note:

1. For more details, please refer to the User's manual of the EUT.

3.2 Description of Test Modes

CHANNEL	FREQUENCY	MODULATION TYPE	
1	433.92 MHz	ASK	

3.2.1 Test Mode Applicability:

EUT						
Configur e Mode	RE (9 kHz~30MHz)	RE (30MHz~1GHz)	PLC	BW	DW	Description
-	\checkmark	\checkmark	-	\checkmark	\checkmark	-

Where **RE≥1G:** Radiated Emission above 1GHz

RE< 1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission BW: 20dB Spectrum Bandwidth

DW: Dwell Time

NOTE:

Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

Radiated Emission Test RE (9 kHz~30MHz):

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE AVAILAB CHANNE		TESTED CHANNEL	MODULATION TYPE
-	тх	433. 92MHz	433. 92MHz	ASK

Radiated Emission Test RE (30MHz~1GHz):

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
-	ТΧ	433. 92MHz	433. 92MHz	ASK

Power Line Conducted Emission Test:

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
-	ТХ	433. 92MHz	433. 92MHz	ASK

20dB Spectrum Bandwidth

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
-	ТХ	433. 92MHz	433. 92MHz	ASK

Dwell Time

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
-	ТХ	433. 92MHz	433. 92MHz	ASK

3.2.2 Test Condition:

Applicable to	Normal Environmental Conditions	Normal Input Power
RE (9 kHz~30MHz)	23deg. C, 58%RH	Battery
RE (30MHz~1GHz)	23deg. C, 58%RH	Battery
PLC		Battery
BW	25deg. C, 60%RH	Battery
DW	25deg. C, 60%RH	Battery

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standard:

FCC Part 15, Subpart C (15.231)

ANSI C63.10:2013

All relaxed test items have been performed and recorded as per the above standard.

4 Test Procedure and Results

4.1 AC Power Conducted Emission

4.1.1 Limits

	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.1.2 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.1.3 Deviation from Test Standard

No deviation.

4.1.4 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.5 EUT Operating Conditions

Same as 4.1.6.

4.1.6 Test Results

Not applicable. The EUT is powered by battery.

4.2 20dB Spectrum Bandwidth Measurement

4.2.1 Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

4.2.2 Test Setup

4.2.3 Test Procedures

- 1. The resolution bandwidth of 10 kHz and the video bandwidth of 30 kHz were used.
- 2. EUT in peak Max hold mode.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

4.2.4 Deviation of Test Standard

No deviation.

4.2.5 Test Results

20dB bandwidth (kHz)	F∟ (MHz)	Fн (MHz)	Limit(MHz)	Result
53.0	433.958	434.011	1.0849	Pass

4.3 Dwell Time Measurement

4.3.1 Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

4.3.2 Test Setup

4.3.3 Test Procedures

- 1. The resolution bandwidth of 10 kHz and the video bandwidth of 30 kHz were used.
- 2. EUT in peak Max hold mode.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

4.3.4 Deviation of Test Standard

No deviation.

4.3.5 Test Results

Frequency(MHz)	Transmission Time(s)	Limit(s)	Results
433.92	0.122	≤5	Pass

	ept SA					
tL RF 50 Ω rker 2 Δ 121.800	AC	SENSE:	INT SOURCE OFF	ALIGN AUTO ype: Log-Pwr	01:49:38 AM Sep 10, 2021 TRACE 1 2 3 4 5 (Marker
	PNO: Close IFGain:Low	Atten: 30 dE	un 3		DET NNNN	Select Marker
dB/div Ref 20.00	dBm			Δ	Mkr2 121.8 ms 0.03 dB	2
ο 12Δ1						Norm
						Del
	na kong barana <mark>kéla sit</mark>	handi ji tatan ti funi su	a laine barretan di sa	to a busic the state of the second	specie barre testile di esti e litelere et	Fixed
nter 433.448000 M s BW 10 kHz	Hz #V	BW 30 kHz		Sweep	Span 0 Hz 10.00 s (1001 pts)	c
MODELTEC SCI	X 4 220 a	Y 2.66 dDm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
	1.322 S	-3.00 dBm				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					E	Properties
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					E	Propertie Mo 1 o

Type of Pulse	Width of Pulse (ms)	Quantity of Pulse	Transmission Time (ms)	Total Time (Ton) (ms)		
Pulse 1	2.4	7	16.8			
Pulse 2	0.6	30	18	55 60		
Pulse 3	1.24	13	16.12	55.0Z		
Pulse 4	4.7	1	4.7			
Transmission Time(m	Transmission Time(ms) Total Time(ms) Duty		v Cycle(%)	Duty Cycle Factor		
55.62	100		55.62	-5.095		

Duty Cycle Factor=20*log(Duty Cycle)

Note:

The measured pulse width (PW) is 0.6 ms. 2/PW=2/0.6 ms=3.33 KHz RBW used for duty cycle testing=1MHz=1000KHz > 3.33 KHz(2/PW) Therefore PDCF (pulse desensitization correction factor) is not required.

4.4 Field Strength of Fundamental Emissions and Mask Measurement

4.4.1 Test Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225				
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.				
Freq. of Emission (MHz)	Field Strength (µV/m) at 30m	Field Strength (dBµV/m) at 30m	Field Strength (dBµV/m) at 10m	Field Strength (dBµV/m) at 3m	
1.705~13.110	30	29.5	48.58	69.5	
13.110~13.410	106	40.5	59.58	80.5	
13.410~13.553	334	50.5	69.58	90.5	
13.553~13.567	15848	84.0	103.08	124.0	
13.567~13.710	334	50.5	69.58	90.5	
13.710~14.010	106	40.5	59.58	80.5	
14.010~30.000	30	29.5	48.58	69.5	

4.4.2 Test Setup

4.5 Radiated Emissions Measurement

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
1 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209						
Frequency	Field Strength	Measured Distance				
[MHz]	[uV/m]	[Meters]				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

4.5.1 Test Procedure Reference

ANSI C63.10 Section 6.3 (General Requirements)

4.5.2 Test Procedures

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

Receiver Parameter	Setting			
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP			
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP			
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak			

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degree to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotate table was turned from 0 degree to 360 degree to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

4.5.3 Deviation from Test Standard

No deviation.

4.5.4 Test Setup

For Radiated emission below 30MHz

4.5.5 Test Results

Radiated Emissions Range 9kHz~30MHz

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Radiated Emissions Range 30MHz~1GHz

Below is the worst test data

Channel	433.92MHz	Detector Function	Quasi-Peak (QP)	
Frequency Range	30MHz ~ 1GHz	Antenna Polarity	Horizontal	

Test Plot:

REMARKS:

1. Emission Level(dBuV/m) = Spectrum reading (dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission Level

Channel 433.92MH			.92MHz Detector Function				Quasi	Quasi-Peak (QP)			
Frequency Range			30MH	30MHz ~ 1GHz			Polarity	Vertic	Vertical		
Test Plot:											
	100			FC	C Part15B_CL	ASSB_3m_Belov	w 1GHz(Vertical)				
	90										
	80										
	70										
[m//	60						FCC	Part15B CLASS	3 3m Below 1	GHz-QP Limit	
[dBu]	50										
Leve	40										
	30									5	
	20	mmm	monteman	Meennah	id water ballent	All and the state of the state	مدين المراجع والمراجع والمراجع				
	10										
30M 100M 1G Frequency[Hz] • QP Detector											
Sus	pec	ted L	ist								
NO	F	'req.	Reading	Factor	Level	Limit	Margin	Height	Angle	Polarity	
NO.	[[MHz]	[dB µ V/m]	[dB]	[dB µ V/m]	[dBµ V/m] [dB]	[cm]	[°]	rorarroy		
1	54	.8320	26.49	-9.98	16.51	40.00	23.49	100	220	Vertical	
2	158	8.8160	28.98	-9.79	19.19	43.50	24.31	100	292	Vertical	
3	433	3.9080	31.46	-5.51	25.95	46.00	20.05	200	236	Vertical	
4	570	0.0960	26.57	-3.18	23.39	46.00	22.61	100	149	Vertical	
5	70′	7.8360	28.16	-1.40	26.76	46.00	19.24	200	282	Vertical	
6	868	8.0800	43.68	0.48	44.16	80.82	36.66	100	310	Vertical	

REMARKS:

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission Level

Radiated Emission Range 2th ~10th Harmonic

Below is the worst test data

Channel	433.92MHz	Dotostor Function	Peak (PK)	
Frequency Range	0.8GHz ~ 6GHz		Average (AV)	

No.	Frequency (MHz)	Reading [dBuV/m]	Factor (dB)	Duty Cycle Factor [dB]	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polarity	Detector
1	868.0800	48.00	0.48	-	48.48	80.82	32.34	Н	PK
2	868.0800	-	-	-5.095	43.39	60.82	17.43	Н	AV
3	1301.8750	78.39	-19.51	-	58.88	74.00	15.12	Н	PK
4	1301.8750	-	-	-5.095	53.79	54.00	0.21	Н	AV
5	1736.2500	72.56	-18.07	-	54.49	74.00	19.51	Н	PK
6	1736.2500	-	-	-5.095	49.40	54.00	4.6	Н	AV
7	2170.0000	70.51	-16.63	-	53.88	74.00	20.12	Н	PK
8	2170.0000	-	-	-5.095	48.79	54.00	5.21	Н	AV
9	2604.3750	71.02	-15.09	-	55.93	74.00	18.07	Н	PK
10	2604.3750	-	-	-5.095	50.84	54.00	3.16	Н	AV
11	868.0800	43.68	0.48	-	44.16	80.82	36.66	V	PK
12	868.0800	-	-	-5.095	39.07	60.82	21.75	V	AV
13	1301.8750	74.80	-19.51	-	55.29	74.00	18.71	V	PK
14	1301.8750	-	-	-5.095	50.20	54.00	3.8	V	AV
15	1736.2500	73.32	-18.07	-	55.25	74.00	18.75	V	PK
16	1736.2500	-	-	-5.095	50.16	54.00	3.84	V	AV
17	2170.0000	74.75	-16.63	-	58.12	74.00	15.88	V	PK
18	2170.0000	-	-	-5.095	53.03	54.00	0.97	V	AV
19	2604.3750	65.72	-15.09	-	50.63	74.00	23.37	V	PK
20	2604.3750	-	-	-5.095	45.54	54.00	8.46	V	AV

REMARKS:

1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission Level

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

--- END ---