

TEST REPORT

Product Name : Car Multimedia Player

Brand Mark : N/A

Model No. : DV622

DV271BT,XDVD276BT,XDVD256BT,

DV527BT, VX2529, DV271B,

Extension model : XNAV267BT, DVN927BT, AV6118Bi,

AVN6558BT

Report Number : BLA-EMC-202202-A4402

FCC ID : 2AFXA-DV622

Date of Sample Receipt : 2022/3/4

Date of Test : 2022/3/4 to 2022/4/27

Date of Issue : 2022/4/27

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Jose Thong

Prepared for:

FengShun Peiying Electro-Acoustic Co., Ltd No.8, Fengda Road, Tangkeng Town Ind. Area, Fengshun County, Guangdong, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Approved by:

Review by:

Date:

Page 2 of 81

REPORT REVISE RECORD

Version No.	sion No. Date Description	
00	2022/4/27	Original

TABLE OF CONTENTS

1	TI	EST SUMMARY	5
2	G	ENERAL INFORMATION	6
3	G	ENERAL DESCRIPTION OF E.U.T	6
4	TI	EST ENVIRONMENT	7
5		EST MODE	
		IEASUREMENT UNCERTAINTY	
6			
7	D	ESCRIPTION OF SUPPORT UNIT	8
8		ABORATORY LOCATION	
9	TI	EST INSTRUMENTS LIST	9
10	Α	NTENNA REQUIREMENT	13
1	LO.1	Conclusion.	13
11	C	ONDUCTED SPURIOUS EMISSIONS	
_	l1.1		
	l1.2		
1	l1.3		
12	С	ONDUCTED BAND EDGES MEASUREMENT	
1	L2.1		
1	12.2		
1	12.3	TEST DATA	17
13	D	WELL TIME	18
1	l3.1	LIMITS	18
1	13.2	BLOCK DIAGRAM OF TEST SETUP	18
1	13.3	TEST DATA	19
14	Н	OPPING CHANNEL NUMBER	20
1	L4.1	LIMITS	20
1	L4.2	BLOCK DIAGRAM OF TEST SETUP	20
1	L4.3	TEST Data	20
15	C	ARRIER FREQUENCIES SEPARATION	21
1	L5.1	LIMITS	21

Page 4 of 81

1	.5.2	BLOCK DIAGRAM OF TEST SETUP	21
1	.5.3	TEST DATA	22
16	20DI	B BANDWIDTH	22
1	.6.1	BLOCK DIAGRAM OF TEST SETUP	22
1	.6.2	TEST DATA	22
17	CON	IDUCTED PEAK OUTPUT POWER	23
1	.7.1	LIMITS	23
1	.7.2	BLOCK DIAGRAM OF TEST SETUP	
1	.7.3	TEST DATA	
18	RAD	NATED SPURIOUS EMISSIONS	25
1	.8.1	LIMITS	25
1	.8.2	BLOCK DIAGRAM OF TEST SETUP	26
1	.8.3	PROCEDURE	26
1	.8.4	TEST DATA	28
19	RAD	NATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	36
1	.9.1	LIMITS	36
1	.9.2	BLOCK DIAGRAM OF TEST SETUP	37
1	.9.3	PROCEDURE	37
1	.9.4	TEST DATA	39
20	APP	ENDIX	43
API	PENDI	X A: PHOTOGRAPHS OF TEST SETUP	80
۸DI	DENIDI	X B. PHOTOGRAPHS OF FUT	21

Page 5 of 81

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass

Page 6 of 81

2 GENERAL INFORMATION

Applicant	FengShun Peiying Electro-Acoustic Co., Ltd
Address	No.8, Fengda Road, Tangkeng Town Ind. Area,Fengshun County,Guangdong,China
Manufacturer	FengShun Peiying Electro-Acoustic Co., Ltd
Address	No.8, Fengda Road, Tangkeng Town Ind. Area, Fengshun County, Guangdong, China
Factory	FengShun Peiying Electro-Acoustic Co., Ltd
Address	No.8, Fengda Road, Tangkeng Town Ind. Area, Fengshun County, Guangdong, China
Product Name	Car Multimedia Player
Test Model No.	DV622
Extension model	DV712
Note	All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are model name for commercial purpose.

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V01
Software Version	V622H.8201.13R
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK, π/4 DQPSK
Channel Spacing:	1MHz
Number of Channels:	79
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(Provided by the applicant)

Page 7 of 81

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	12Vdc	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION					
Transmitting	Keep the EUT in continuously transmitting mode with modulation. (hopping and non					
mode	hopping mode all have been tested, non hopping mode is worse case for RE)					
Remark: Full battery is used during all test except ac conducted emission, DH1,DH3, DH5 all have been						
tested, during the test, GFSK, Pi/4QPSK modulation were all pre-scanned only GFSK worse case is						
reported.						

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Page 8 of 81

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
N/A	N/A	N/A	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province,

China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of 81

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

Test Equipment Of Conducted Band Edges Measurement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

Test Equipment Of Dwell Time					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Hopping Channel Number					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Page 10 of 81

Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Carrier Frequencies Separation					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of 2	0dB Bandwidth				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022

Page 11 of 81

0: 10 1		E0057D	1 N/4 4000050	0.4.10.10.00.4	00/0/000
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of F	Radiated Emission	s which fall in th	e restricted ba	nds	
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

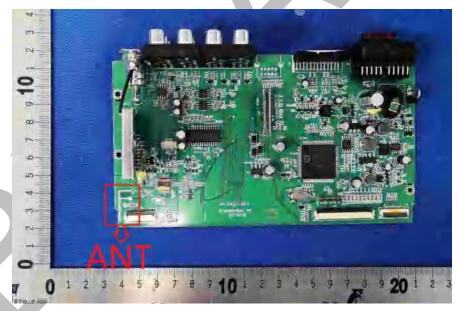
Page 12 of 81

Loop antenna SCHNARZBECK FMZB1519B 00102 26/9/2020 25/9/2022

Page 13 of 81

10 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


10.1 CONCLUSION

Standard Requirement:

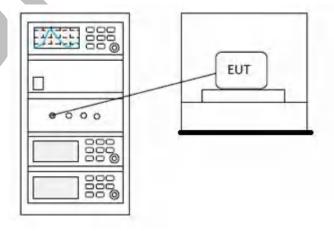
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 14 of 81

11 CONDUCTED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

11.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST DATA

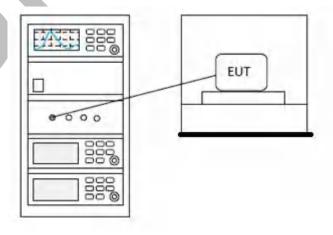
Page 16 of 81

12 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

12.1 LIMITS

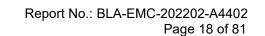
Limit:


spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the

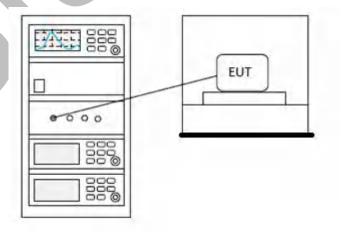
restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread


12.2 BLOCK DIAGRAM OF TEST SETUP

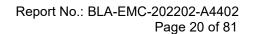
12.3 TEST DATA


13 DWELL TIME

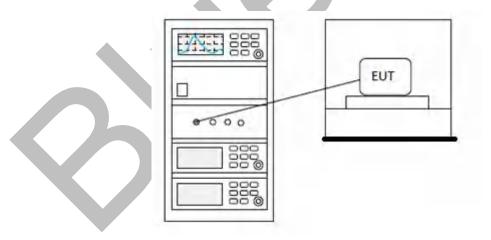
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	NSI C63.10 (2013) Section 7.8.4				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

13.1 LIMITS

Frequency(MHz)	Limit				
	0.4S within a 20S period(20dB				
002.028	bandwidth<250kHz)				
902-928	0.4S within a 10S period(20dB				
	bandwidth≥250kHz)				
	0.4S within a period of 0.4S multiplied by the				
2400-2483.5	number				
	of hopping channels				
5725-5850	0.4S within a 30S period				


13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA


14 HOPPING CHANNEL NUMBER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.3
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

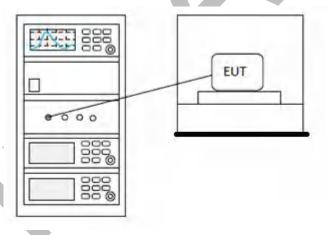
14.1 LIMITS

Frequency range(MHz)	Number of hopping channels (minimum)
002.020	50 for 20dB bandwidth <250kHz
902-928	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

Page 21 of 81


15 CARRIER FREQUENCIES SEPARATION

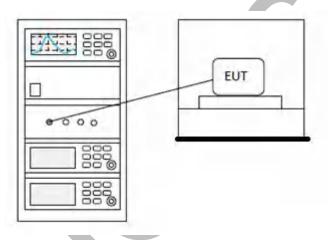
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

15.1 LIMITS

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA



Page 22 of 81

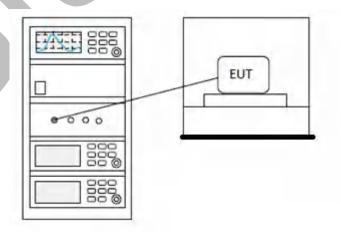
16 20DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	NSI C63.10 (2013) Section 7.8.7				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

16.1 BLOCK DIAGRAM OF TEST SETUP

16.2 TEST DATA

Page 23 of 81


17 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

17.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
	1 for frequency hopping systems and digital				
5725-5850	modulation				

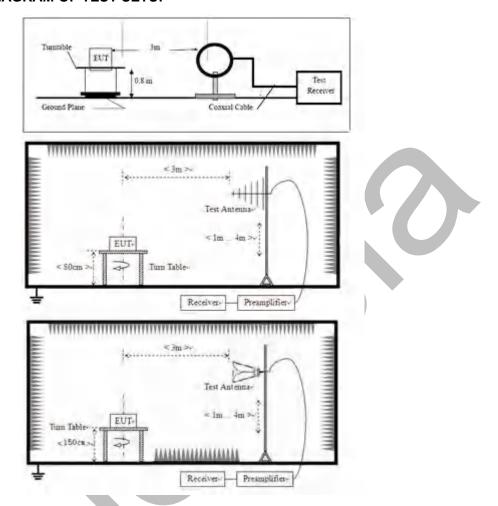
17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

Page 25 of 81

18 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				


18.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 27 of 81

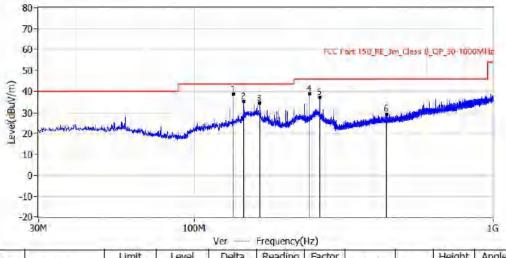
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

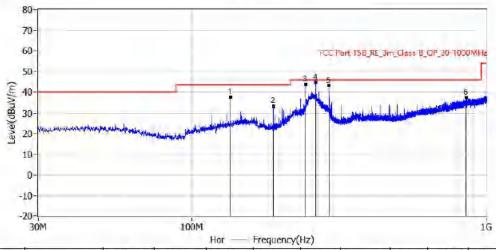
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



18.4 TEST DATA

[TestMode: TX below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: 202202-A44			
EUT: Car Multimedia Player	Test Engineer: Charlie			
M/N: DV622	Temperature:			
S/N:	Humidity:			
Test Mode: TX mode	Test Voltage:			
Note:	Test Data: 2022-04-25 09:42:03			

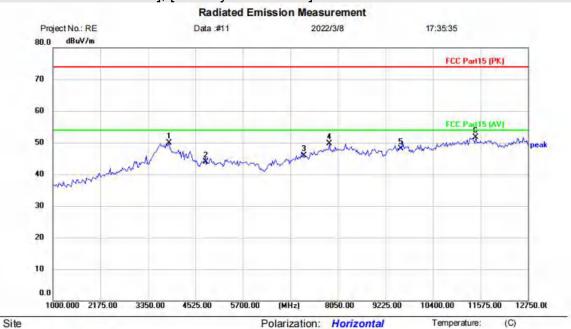


No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	135,003MHz	43.5	38.4	-5.1	14.9	23.5	QP	Ver	100,0	320.0
2*	146,158MHz	43.5	35.2	-8,3	11,6	23.6	- QP	Ver	100,0	0.0
3*	165.558MHz	43.5	34.2	-9.3	11.4	22.8	QP	Ver	100.0	257.0
4*	242.915MHz	46.0	38.8	-7.2	16.0	22.8	QP	Ver	100.0	320.0
5*	263.164MHz	46.0	36.8	-9.2	14.0	22.8	QP	Ver	100.0	110.0
6*	439,704MHz	46.0	29.3	-16.7	1.6	27.7	QP	Ver	100.0	0.0

[TestMode: TX below 1G]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: 202202-A44				
EUT: Car Multimedia Player	Test Engineer: Charlie				
M/N; DV622	Temperature:				
S/N:	Humidity:				
Test Mode: TX mode	Test Voltage:				
Note:	Test Data: 2022-04-25 09:44:21				

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	135.003MHz	43,5	37.4	-6.1	13.9	23.5	QP	Hor	100,0	324.0
2*	188.959MHz	43,5	33.1	-10.4	12.0	21.1	QP	Hor	100,0	0.0
3*	243.036MHz	46.0	43.8	-2.2	21.0	22.8	QP	Hor	100.0	38.0
4*	263.164MHz	46.0	44.7	-1.3	21.9	22.8	QP	Hor	100.0	277.0
5*	292.506MHz	46.0	43.0	-3.0	19.1	23.9	QP	Hor	100.0	324.0
6*	855.713MHz	46.0	37.3	-8.7	2.7	34.6	QP	Hor	100.0	243.0


Humidity:

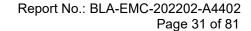
%RH

Page 30 of 81

Above 1GHz:

[TestMode: TX low channel]; [Polarity: Horizontal]

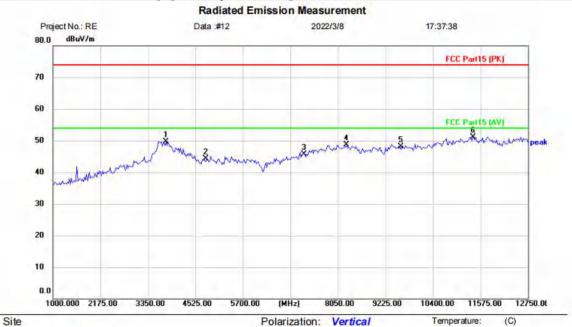
Limit: FCC Part15 (PK)


EUT: Car Multimedia Player

M/N: DV622 Mode: TX-L Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3867.000	42.99	6.82	49.81	74.00	-24.19	peak		
2		4804.000	40.23	3.71	43.94	74.00	-30.06	peak		
3		7206.000	39.93	5.96	45.89	74.00	-28.11	peak		
4		7838.500	42.04	7.75	49.79	74.00	-24.21	peak		
5		9608.000	38.88	9.29	48.17	74.00	-25.83	peak		
6	*	11457 500	39.80	11 84	51 64	74.00	-22 36	neak		

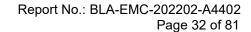
Power:


*:Maximum data x:Over limit !:over margin (Reference Only

%RH

[TestMode: TX low channel]; [Polarity: Vertical]

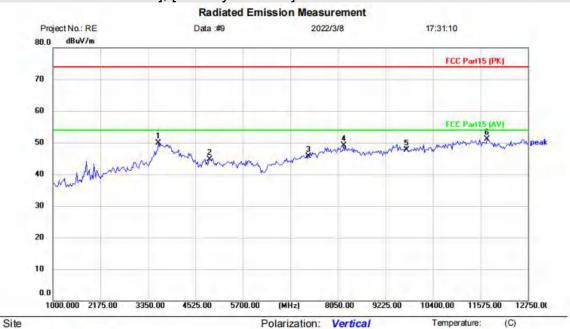
Limit: FCC Part15 (PK)


EUT: Car Multimedia Player

M/N: DV622 Mode: TX-L Note:

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3796.500	42.00	7.65	49.65	74.00	-24.35	peak	
2		4804.000	40.60	3.71	44.31	74.00	-29.69	peak	
3		7206.000	39.67	5.96	45.63	74.00	-28.37	peak	
4		8261.500	40.46	8.23	48.69	74.00	-25.31	peak	
5		9608.000	38.78	9.29	48.07	74.00	-25.93	peak	
6	*	11387.000	39.39	11.78	51.17	74.00	-22.83	peak	

Power:


*:Maximum data x:Over limit !:over margin (Reference Only

%RH

[TestMode: TX mid channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Car Multimedia Player

11739.500

39.39

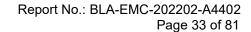
11.70

51.09

6

M/N: DV622 Mode: TX-M Note:

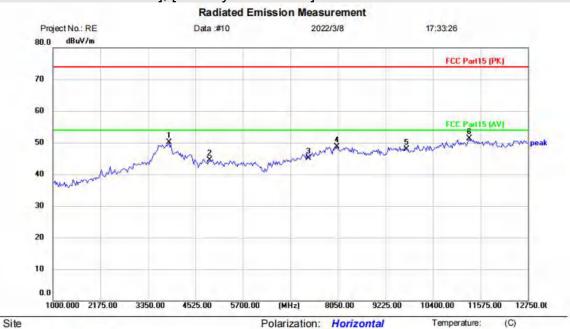
Reading Correct Measure-No. Mk. Limit Over Freq. Factor Level ment MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment 1 3608.500 42.09 7.80 49.89 74.00 -24.11 peak 4882.000 41.31 3.36 44.67 74.00 -29.332 peak 7323.000 39.34 6.43 45.77 3 74.00 -28.23peak 8191.000 8.20 40.82 49.02 74.00 -24.984 peak 5 9764.000 38.07 9.63 47.70 74.00 -26.30 peak


74.00

-22.91

peak

Power:

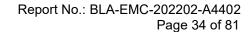

*:Maximum data x:Over limit !:over margin (Reference Only

%RH

[TestMode: TX mid channel]; [Polarity: Horizontal]

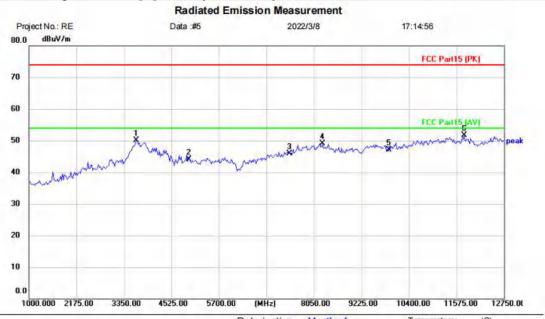
Limit: FCC Part15 (PK)

EUT: Car Multimedia Player


M/N: DV622 Mode: TX-M

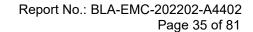
ıv	۰	•	u	u	•

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3867.000	43.24	6.82	50.06	74.00	-23.94	peak	
2		4882.000	41.08	3.36	44.44	74.00	-29.56	peak	
3		7323.000	38.71	6.43	45.14	74.00	-28.86	peak	
4		8026.500	40.73	7.98	48.71	74.00	-25.29	peak	
5		9764.000	38.32	9.63	47.95	74.00	-26.05	peak	
6	*	11293.000	39.34	11.91	51.25	74.00	-22.75	peak	


Power:

*:Maximum data x:Over limit !:over margin (Reference Only

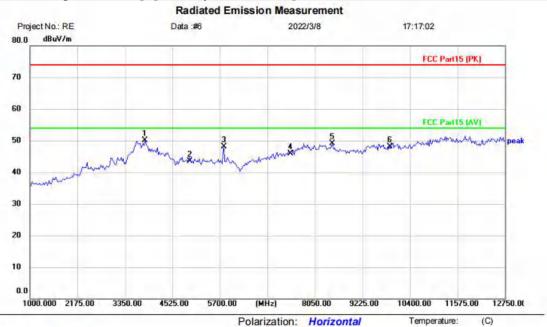
[TestMode: TX high channel]; [Polarity: Vertical]


Site Limit: FCC Part15 (PK)

EUT: Car Multimedia Player

M/N: DV622 Mode: TX-H Note: Polarization: Vertical Temperature: (C)
Power: Humidity: %RH

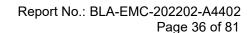
k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
3655.500	42.39	7.76	50.15	74.00	-23.85	peak		
4960.000	40.45	3.75	44.20	74.00	-29.80	peak		
7440.000	39.03	6.86	45.89	74.00	-28.11	peak		
8261.500	40.81	8.23	49.04	74.00	-24.96	peak		
9920.000	36.85	10.16	47.01	74.00	-26.99	peak		
11763.000	40.15	11.63	51.78	74.00	-22.22	peak		
	MHz 3655.500 4960.000 7440.000 8261.500 9920.000	MHz dBuV 3655.500 42.39 4960.000 40.45 7440.000 39.03 8261.500 40.81 9920.000 36.85	k. Freq. Level Factor MHz dBuV dB/m 3655.500 42.39 7.76 4960.000 40.45 3.75 7440.000 39.03 6.86 8261.500 40.81 8.23 9920.000 36.85 10.16	k. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 3655.500 42.39 7.76 50.15 4960.000 40.45 3.75 44.20 7440.000 39.03 6.86 45.89 8261.500 40.81 8.23 49.04 9920.000 36.85 10.16 47.01	k. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV	k. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB 3655.500 42.39 7.76 50.15 74.00 -23.85 4960.000 40.45 3.75 44.20 74.00 -29.80 7440.000 39.03 6.86 45.89 74.00 -28.11 8261.500 40.81 8.23 49.04 74.00 -24.96 9920.000 36.85 10.16 47.01 74.00 -26.99	k. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector 3655.500 42.39 7.76 50.15 74.00 -23.85 peak 4960.000 40.45 3.75 44.20 74.00 -29.80 peak 7440.000 39.03 6.86 45.89 74.00 -28.11 peak 8261.500 40.81 8.23 49.04 74.00 -24.96 peak 9920.000 36.85 10.16 47.01 74.00 -26.99 peak	K. Freq. Level Factor ment Limit Over


*:Maximum data x:Over limit !:over margin (Reference Only

%RH

[TestMode: TX high channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)


EUT: Car Multimedia Player

M/N: DV622 Mode: TX-H Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	3843.500	42.91	7.12	50.03	74.00	-23.97	peak	
2		4960.000	39.74	3.75	43.49	74.00	-30.51	peak	
3		5794.000	44.22	3.88	48.10	74.00	-25.90	peak	
4		7440.000	38.96	6.86	45.82	74.00	-28.18	peak	
5		8473.000	40.84	8.17	49.01	74.00	-24.99	peak	
6		9920.000	37.89	10.16	48.05	74.00	-25.95	peak	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

19 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%


19.1 LIMITS

Frequency(MHz)	Field	Measurement
Frequency(Wiriz)	strength(microvolts/meter)	distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

19.2 BLOCK DIAGRAM OF TEST SETUP

19.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: BLA-EMC-202202-A4402

Page 38 of 81

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

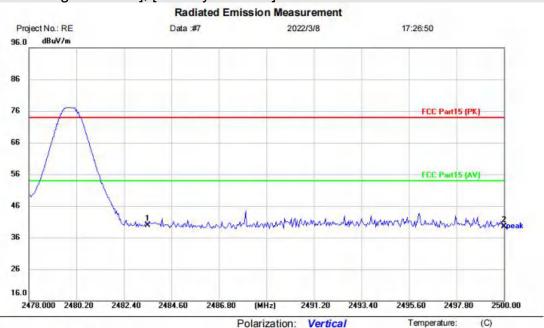
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: BLA-EMC-202202-A4402


Humidity:

%RH

Page 39 of 81

19.4 TEST DATA

[TestMode: TX high channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Car Multimedia Player M/N: DV622

2500.000 42.49

-3.08

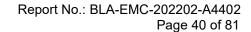
39.41

M/N: DV622 Mode: TX-H Note:

Site

2

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	43.13	-3.14	39.99	74.00	-34.01	peak	


-34.59

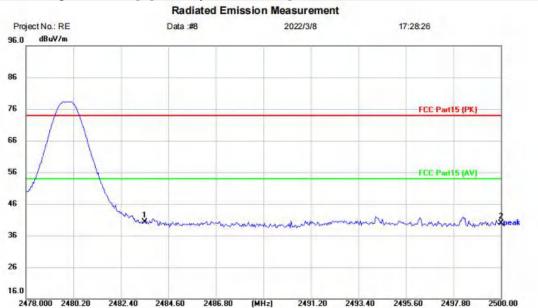
peak

74.00

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:


Humidity:

(C)

%RH

[TestMode: TX high channel]; [Polarity: Horizontal]

Polarization: Horizontal

Limit: FCC Part15 (PK)

EUT: Car Multimedia Player

M/N: DV622 Mode: TX-H Note:

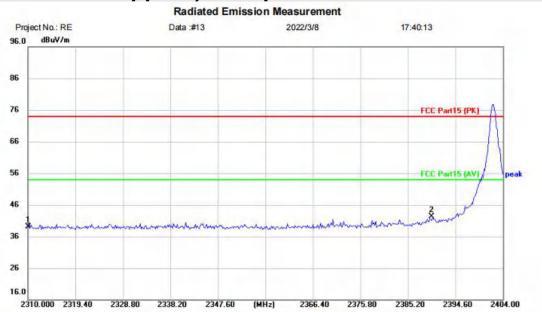
Site

No. Mi	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	43.39	-3.14	40.25	74.00	-33.75	peak		
2		2500.000	43.02	-3.08	39.94	74.00	-34.06	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:


Humidity:

(C)

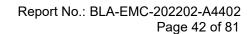
%RH

[TestMode: TX low channel]; [Polarity: Vertical]

Polarization: Vertical

Limit: FCC Part15 (PK)

EUT: Car Multimedia Player


M/N: DV622 Mode: TX-L Note:

Site

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment		Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	42.94	-3.93	39.01	74.00	-34.99	peak	
2	*	2390.000	45.81	-3.58	42.23	74.00	-31.77	peak	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:

Humidity:

(C)

%RH

[TestMode: TX low channel]; [Polarity: Horizontal]

Radiated Emission Measurement Project No.: RE Data :#14 2022/3/8 17:42:51 dBuV/m 96.0 86 76 FCC Part15 (PK) 66 56 FEE-Part 15 (AV) 46 36 26 16.0 2310.000 2319.40 2328.80 2338.20 2347.60 (MHz) 2366.40 2375.80 2394.60 2404.00

Polarization: Horizontal

Limit: FCC Part15 (PK)

EUT: Car Multimedia Player

M/N: DV622 Mode: TX-L Note:

Site

Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment 1 2310.000 42.55 -3.9338.62 74.00 -35.38 peak 2 2390.000 42.46 -3.5838.88 74.00 -35.12 peak

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

20 APPENDIX

Maximum Conducted Output Power

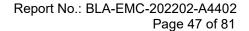
Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	1-DH1	2402	Ant1	-3.122	21	Pass
NVNT	1-DH1	2441	Ant1	-3.252	21	Pass
NVNT	1-DH1	2480	Ant1	-4.124	21	Pass
NVNT	2-DH1	2402	Ant1	-2.204	21	Pass
NVNT	2-DH1	2441	Ant1	-2.24	21	Pass
NVNT	2-DH1	2480	Ant1	-3.088	21	Pass

Power NVNT 1-DH1 2402MHz Ant1

Power NVNT 1-DH1 2441MHz Ant1

Power NVNT 1-DH1 2480MHz Ant1

Power NVNT 2-DH1 2402MHz Ant1


Power NVNT 2-DH1 2441MHz Ant1

Power NVNT 2-DH1 2480MHz Ant1

-20dB Bandwidth

Condition	Mode	Frequency	Antenna	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	1-DH1	2402	Ant1	0.836	0	Pass
NVNT	1-DH1	2441	Ant1	0.79	0	Pass
NVNT	1-DH1	2480	Ant1	0.834	0	Pass
NVNT	2-DH1	2402	Ant1	1.192	0	Pass
NVNT	2-DH1	2441	Ant1	1.186	0	Pass
NVNT	2-DH1	2480	Ant1	1.2	0	Pass

-20dB Bandwidth NVNT 1-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2480MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH1	2402	Ant1	0.8045412696
NVNT	1-DH1	2441	Ant1	0.8149541639
NVNT	1-DH1	2480	Ant1	0.8115539118
NVNT	2-DH1	2402	Ant1	1.14286836
NVNT	2-DH1	2441	Ant1	1.155999227
NVNT	2-DH1	2480	Ant1	1.160626591

OBW NVNT 1-DH1 2402MHz Ant1

OBW NVNT 1-DH1 2441MHz Ant1

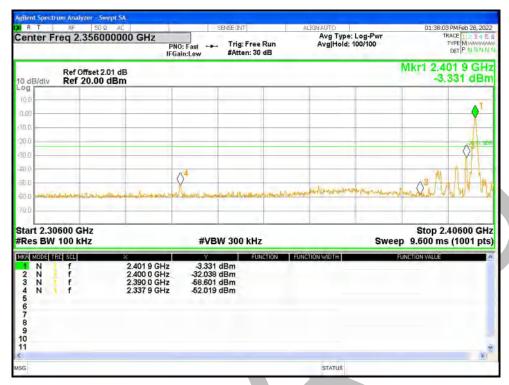
OBW NVNT 1-DH1 2480MHz Ant1

OBW NVNT 2-DH1 2402MHz Ant1

OBW NVNT 2-DH1 2441MHz Ant1

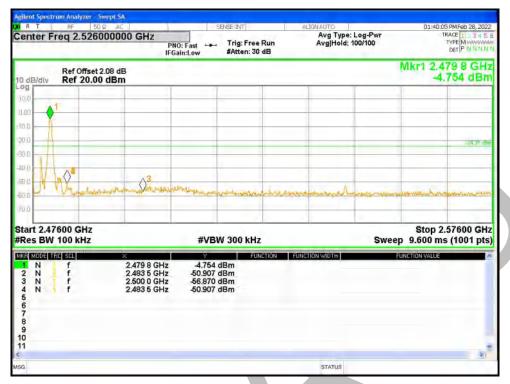
OBW NVNT 2-DH1 2480MHz Ant1

Band Edge


Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	Ant1	No-Hopping	-48.2	-20	Pass
NVNT	1-DH1	2480	Ant1	No-Hopping	-46.6	-20	Pass
NVNT	2-DH1	2402	Ant1	No-Hopping	-49.65	-20	Pass
NVNT	2-DH1	2480	Ant1	No-Hopping	-47.8	-20	Pass

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Ref

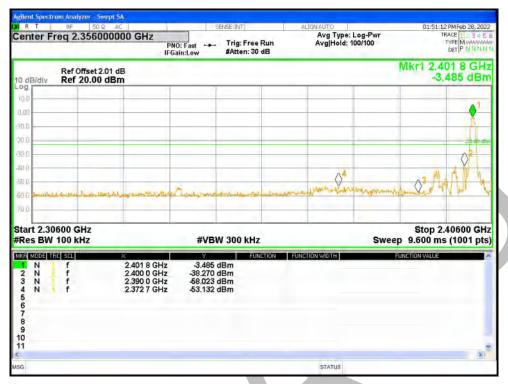
Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Emission



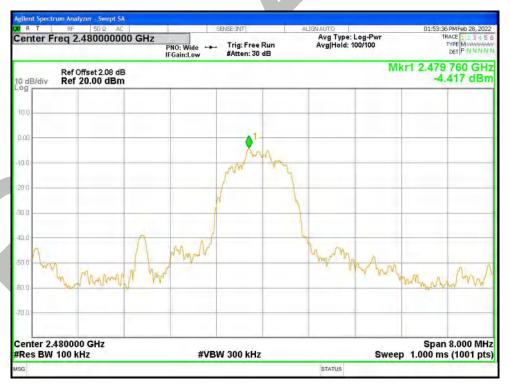
Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Ref



Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission



Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Ref

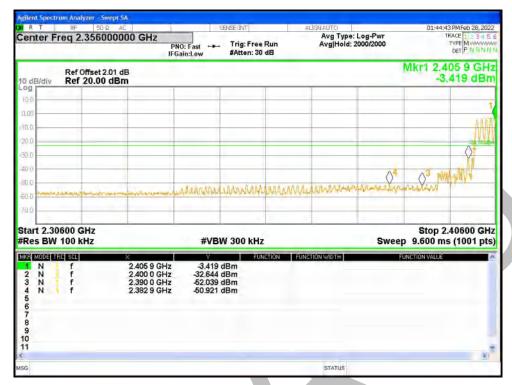


Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Emission

Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Ref

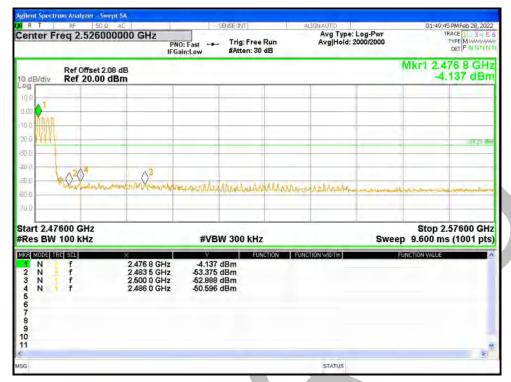
Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Emission

Band Edge(Hopping)


Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	Ant1	Hopping	-47.54	-20	Pass
NVNT	1-DH1	2480	Ant1	Hopping	-46.36	-20	Pass
NVNT	2-DH1	2402	Ant1	Hopping	-46.7	-20	Pass
NVNT	2-DH1	2480	Ant1	Hopping	-46.74	-20	Pass

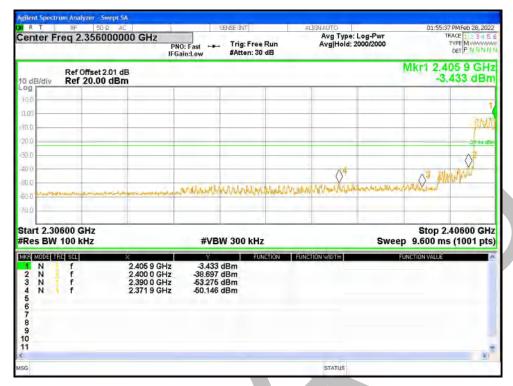
Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Emission



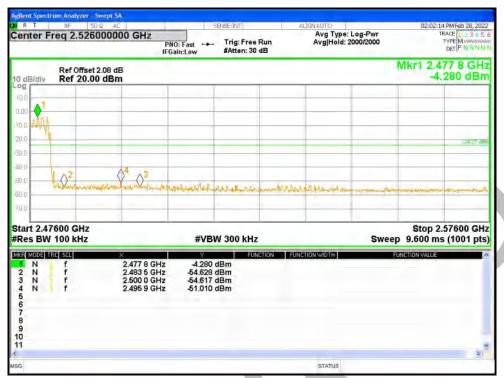
Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Emission



Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Emission

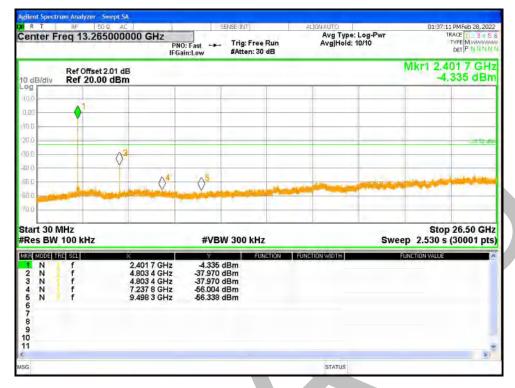


Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Emission

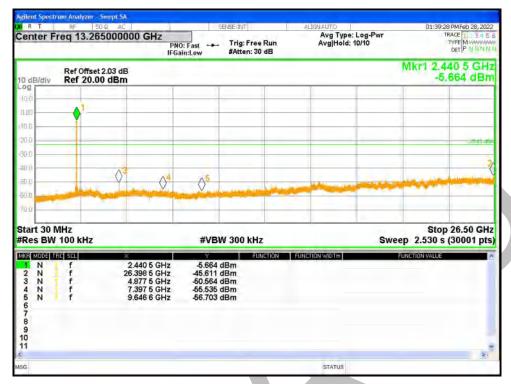


Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant1	-34.64	-20	Pass
NVNT	1-DH1	2441	Ant1	-42.18	-20	Pass
NVNT	1-DH1	2480	Ant1	-41.18	-20	Pass
NVNT	2-DH1	2402	Ant1	-40.73	-20	Pass
NVNT	2-DH1	2441	Ant1	-36.67	-20	Pass
NVNT	2-DH1	2480	Ant1	-39.5	-20	Pass

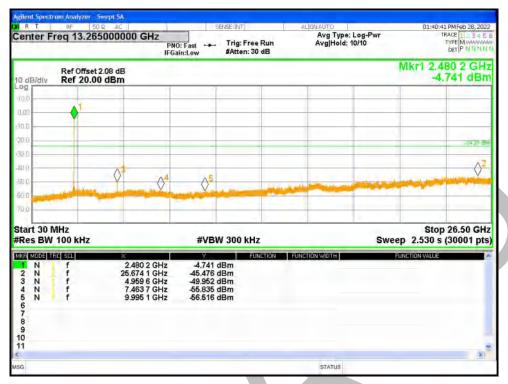
Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Ref

Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Emission



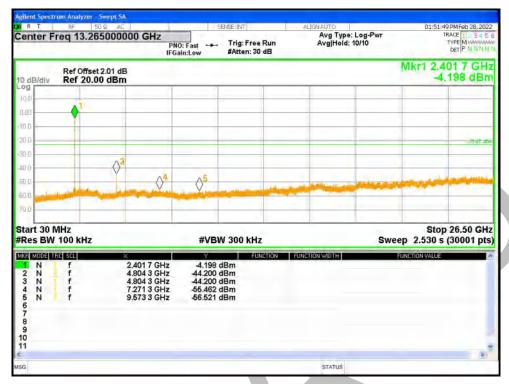
Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Ref

Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Emission



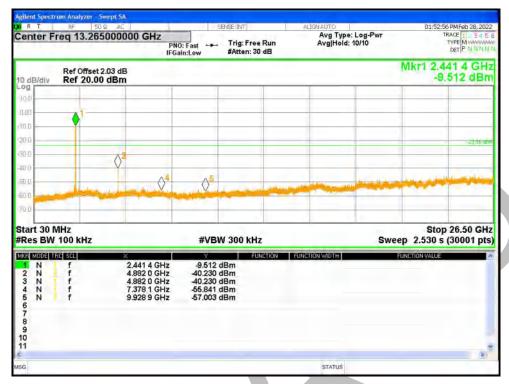
Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Ref

Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Emission



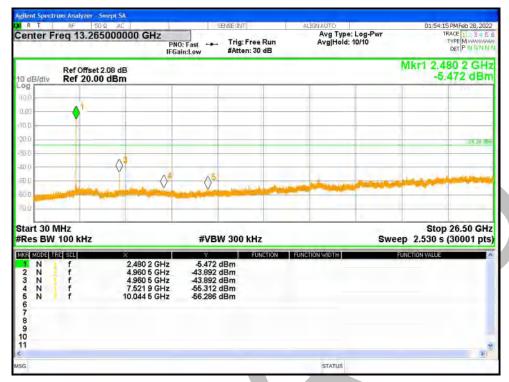
Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Ref

Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Emission



Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Ref

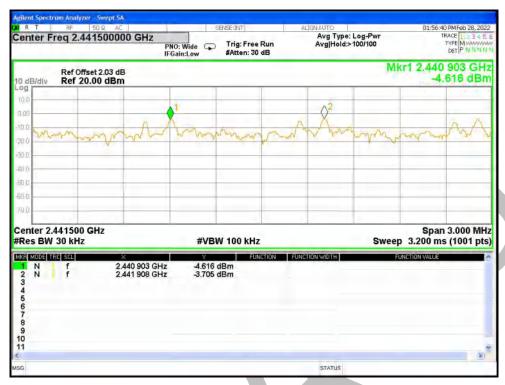
Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Emission



Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Ref

Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Emission

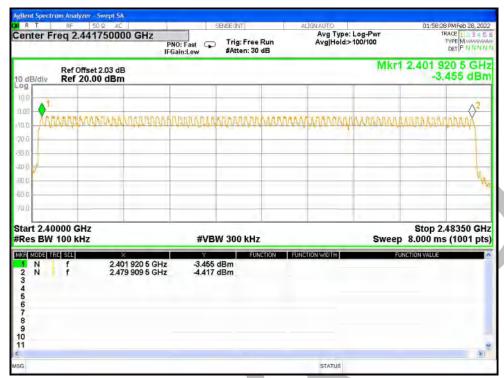
Carrier Frequencies Separation


Condition	Mode	Antenna	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
			(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH1	Ant1	2440.8985	2441.92	1.0215	0.025	Pass
NVNT	2-DH1	Ant1	2440.903	2441.908	1.005	0.791	Pass

CFS NVNT 1-DH1 2441MHz Ant1

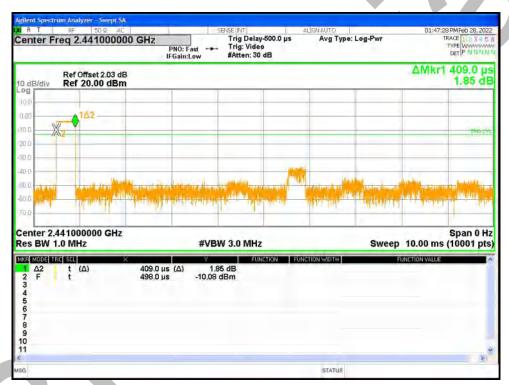
CFS NVNT 2-DH1 2441MHz Ant1

Number of Hopping Channel

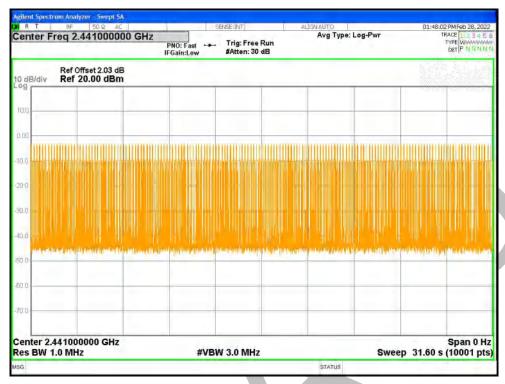

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH1	Ant1	79	15	Pass
NVNT	2-DH1	Ant1	79	15	Pass

Hopping No. NVNT 1-DH1 2441MHz Ant1

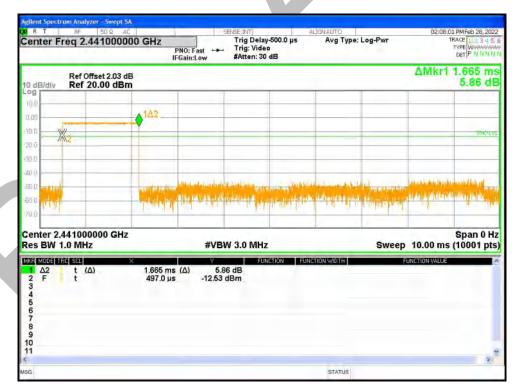
Hopping No. NVNT 2-DH1 2441MHz Ant1



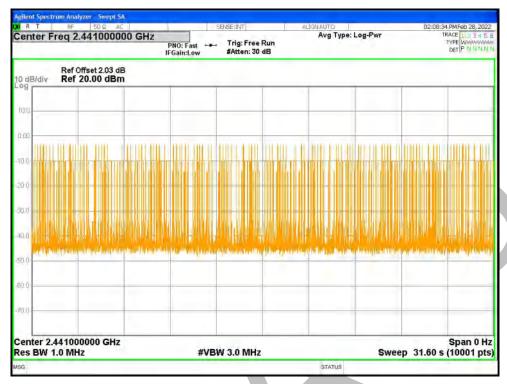
Dwell Time


Condition	Mode	Frequency	Antenna	Pulse	Total	Burst	Period	Limit	Verdict
		(MHz)		Time	Dwell	Count	Time	(ms)	
				(ms)	Time		(ms)		
					(ms)				
NVNT	1-DH1	2441	Ant1	0.409	130.471	319	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.665	259.74	156	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.912	305.76	105	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz Ant1 One Burst

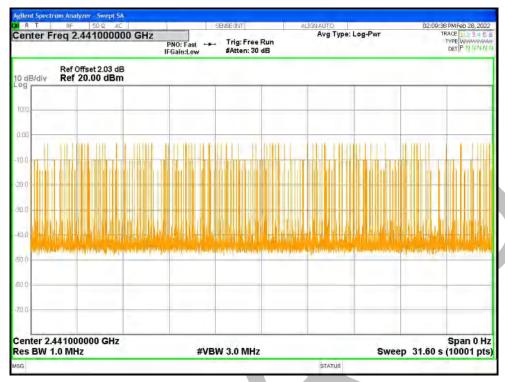


Dwell NVNT 1-DH1 2441MHz Ant1 Accumulated



Dwell NVNT 1-DH3 2441MHz Ant1 One Burst

Dwell NVNT 1-DH3 2441MHz Ant1 Accumulated



Dwell NVNT 1-DH5 2441MHz Ant1 One Burst

Dwell NVNT 1-DH5 2441MHz Ant1 Accumulated

Page 80 of 81

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202202-A4402

Page 81 of 81

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202202-A4401

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.

