TEST REPORT

CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu,

Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2023-01256 Page (1) / (49) Pages

1. Applicant

- $_{\circ}$ Name : SOLUM CO., LTD
- Address: 4,5,6th F, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Korea (Zip 16914)
- Date of Receipt : 2023-05-03

2. Manufacturer

- Name : SOLUM CO., LTD
- Address : 4,5,6th F, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do,

Korea (Zip 16914)

3. Factory

- Name : SOLUM VINA CO., LTD
- ${}_{\circ}$ Address : Plot B3, Ba Thien 2 Industrial park, Thien Ke Ward, Binh Xuyen District,

Vinh Phuc Province, 281200., Peple's Republic of Vietnam

- 4. Use of Report : For FCC Certification
- 5. Test Sample / Model : BLE/WiFi Combo Module / CM01WTA11M
- 6. Date of Test : 2023-06-01 to 2023-06-08
- 7. Test Standard(method) used : FCC 47 CFR part 15 subpart C 15.247,

ANSI C63.10-2013, RSS-Gen, RSS-247

- **8. Testing Environment :** Temp.: (23 ± 3) °C, Humidity: (48 ± 5) % R.H.
- 9. Test Results : Compliance

10. Location of Test : \square Permanent Testing Lab \square On Site Testing

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This report cannot be reproduced or copied without the written consent of CTK.

	Tested by	Technical Manager
Approval	Bong-seok Kim: (Signature)	Young-taek Lee: (Signature)

2023-06-08

CTK Co., Ltd.

Report No.: CTK-2023-01256 Page (2) / (49)Pages

REPORT REVISION HISTORY

vision Page	No
<-2023-01256) all	
k	K-2023-01256) all

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Report No.: CTK-2023-01256 Page (3) / (49)Pages

CONTENTS

1. General Product Description
1.1 Applicant Information4
1.2 Product Information4
1.3 Peripheral Devices4
2. Accreditations
2.1 Laboratory Accreditations and Listings5
2.2 Calibration Details of Equipment Used for Measurement
3. Test Specifications
3.1 Standards6
3.2 Mode of operation during the test7
3.3 Maximum Measurement Uncertainty7
4.0 Technical Characteristic Test
4.1 6dB Bandwidth & 99% Bandwidth8
4.2 Maximum peak Conducted Output Power13
4.3 Power Spectral Density16
4.4 Band Edge & Conducted Spurious emission19
4.5 Radiated Emissions24
4.6 AC Power Line Conducted Emissions47
APPENDIX A – Test Equipment Used For Tests

Report No.: CTK-2023-01256 Page (4) / (49)Pages

1. General Product Description

1.1 Applicant Information

Company	SOLUM CO.,LTD.	
Contact Point	4,5,6th F, 357, Guseong-ro, Giheung-gu, Gyeonggi-do, Yongin-si, Republic of Korea	
	Name : Ki Dong Lee	
Contact Person	E-mail : kdlee007@solu-m.com	
	Tel:+82-31-8006-7677	

1.2 Product Information

FCC ID	2AFWN-CM01WTA11M	
Product Description	BLE/WiFi Combo Module	
Model name	CM01WTA11M	
Variant Model name	CM01WTA12M (There is no technological difference between the basic model and the variant model, the addition of the model name for marketing purposes.)	
Operating Frequency	2 412 MHz - 2 462 MHz (Bandwidth 20 MHz)	
RF Output Power 802.11b : 11.54 dBm (14.256 mW) 802.11g : 13.06 dBm (20.230 mW) 802.11n-HT20 : 13.05 dBm (20.184 mW)		
Antenna Specification	Antenna type : Dipole Antenna Peak Gain : 3.999 dBi	
Number of channels	11	
Type of Modulation	802.11b : DSSS 802.11g/n : OFDM	
Power Source DC 3.3 V		
Data Rate	802.11b : 11 / 5.5 / 2 / 1 Mbps 802.11g : 54 / 48 / 36 / 24 / 18 / 12 / 9 / 6 Mbps 802.11n: MCS0-7, up to 72.2 Mbps	
RF Power setting in Test SW	AmebaZ2_mptool_1v3	

1.3 Peripheral Devices

-For Conducted Measurement and Radiated Measurement

Device	Manufacturer	Model No.	Serial No.
Notebook	HP Inc.	HP Probook 455 G7	5CD0234DWM
AC Adapter	HP Inc.	PPP012D-S	677777-003

Report No.: CTK-2023-01256 Page (5) / (49)Pages

2. Accreditations

2.1 Laboratory Accreditations and Listings

Country	Agency	Registration Number
USA	FCC	805871
CANADA	ISED	8737A
KOREA	NRRA	KR0025

2.2 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

3. Test Specifications

3.1 Standards

Section in FCC	Requirement(s)	Status (Note 1)	Test Condition	
15.247(a)	6 dB Bandwidth	С		
15.247(e)	Transmitter power spectral density	С	Conducted	
15.247(b)	Maximum peak conducted output power C Condu			
15.247(d)	Unwanted emission	С		
15.209	Transmitter emission	C (Note 5)	Radiated	
15.207(a)	AC Conducted Emission		Line Conducted	
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				
<i>Note 2</i> : The data in this test report are traceable to the national or international standards.				
Note 3: The sample was tested according to the following specification: FCC Part 15.247, ANSI C63.10-2013				
Note 4: The tests were performed according to the method of measurements prescribed in KDB No.558074.				
<u>Note 5</u> : BT and WLAN do not operate simultaneously.				

Report No.: CTK-2023-01256 Page (7) / (49)Pages

3.2 Mode of operation during the test

The UUT is operated in a manner representative of the typical of the equipments. During at testing, system components were manipulated within the confines of typical usage to maximize each emission. The results are only attached worst cases.

Test mode & Worst case

Mode	Worst case(Data rate)	
802.11b	1 Mbps	
802.11g	6 Mbps	
802.11n-HT20	MCS 0	

Test Frequency & Bandwidth

Bandwidth	Lowest channel	Middle channel	Highest channel
20 MHz 2 412 MHz		2 437 MHz	2 462 MHz

Duty cycle

Mode	Duty cycle (%)	
802.11b	99.16	
802.11g	93.64	
802.11n-HT20	93.20	

Duty cycle Factor

Mode	Duty Cycle Factor(dB)
802.11b	0.04
802.11g	0.29
802.11n-HT20	0.31

* Duty cycle factor = $10\log(1/x)$

3.3 Maximum Measurement Uncertainty

The value of the measurement uncertainty for the measurement of each parameter. Coverage factor k = 2, Confidence levels of 95 %

Description	Uncertainty
Conducted RF Output Power	± 1.5 dB (C.L. : Approx. 95%, k=2)
Power Spectral Density	± 1.5 dB (C.L. : Approx. 95%, k=2)
Occupied Bandwidth	± 0.1 MHz (C.L. : Approx. 95%, <i>k</i> =2)
Unwanted Emission(conducted)	± 3.0 dB (C.L. : Approx. 95%, k=2)
Radiated Emissions (f \leq 1 GHz)	± 5.0 dB (C.L. : Approx. 95%, k=2)
Radiated Emissions (f > 1 GHz)	± 5.0 dB (C.L. : Approx. 95%, <i>k</i> =2)

Report No.: CTK-2023-01256 Page (8) / (49)Pages

4.0 Technical Characteristic Test

4.1 6dB Bandwidth & 99% Bandwidth Test Procedures (ANSI C63.10-2013 6.9.2)

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Procedures (ANSI C63.10-2013 6.9.3)

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

Test Settings :

Center frequency = the highest, middle and the lowest channels

a) RBW = 100 kHz (6dB Bandwidth)

b) RBW = 1% to 5% of the OBW

(99 % Bandwidth)

c) VBW \geq 3 x RBW

e) Trace mode = Max hold

d) Detector = peakf) Sweep = auto couple

- g) Allow trace to fully stabilize
- h) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Limit : 6dB Bandwidth

6 dB Bandwidth > 500kHz

Limit : 99 % Bandwidth

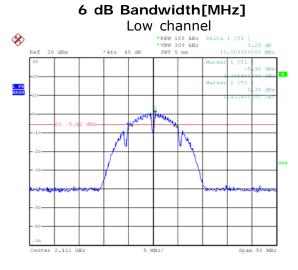
N/A

Report No.: CTK-2023-01256 Page (9) / (49)Pages

Test Data:

Mode	Channel	Frequency [MHz]	6 dB Bandwidth [MHz]	99 % Bandwidth [MHz]	Result
	Low	2 412	10.00	14.10	
802.11b	Middle	2 437	10.10	14.20	
	High	2 462	10.10	14.10	
	Low	2 412	16.70	17.00	
802.11g	Middle	2 437	16.70	17.10	Complies
	High	2 462	16.70	17.00	
	Low	2 412	17.90	18.10	
802.11n -HT20	Middle	2 437	18.00	18.10	
	High	2 462	17.90	18.10	

See next pages for actual measured spectrum plots.

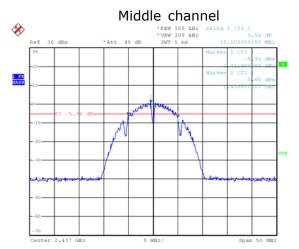

Report No.: CTK-2023-01256 Page (10) / (49)Pages

• Att 40

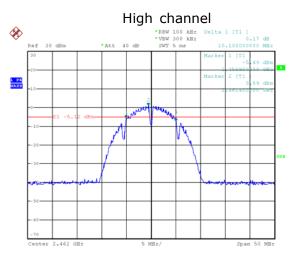
Test Mode : 802.11b 99% Bandwidth[MHz]

X

Ref 30 dB

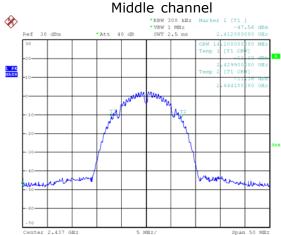

 10
 Temp 2 [11 cm]

 10
 Temp 2 [11 cm]<

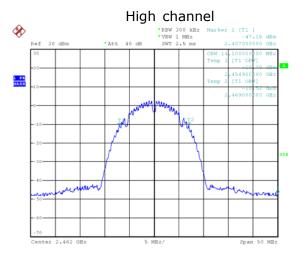

Low channel

•RBW 300 kHz •VBW 1 MHz SWT 2.5 ms

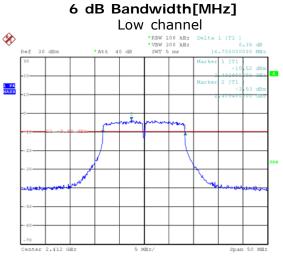
Date: 7.JUN.2023 18:31:58

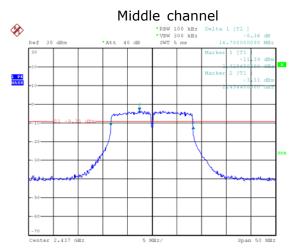


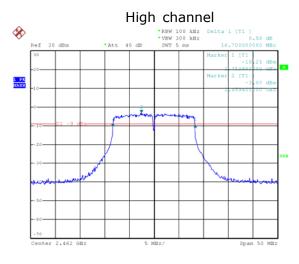
Date: 7.JUN.2023 18:35:15

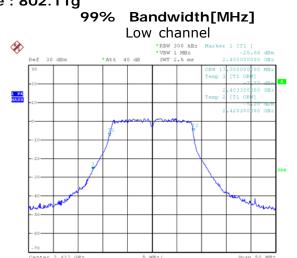


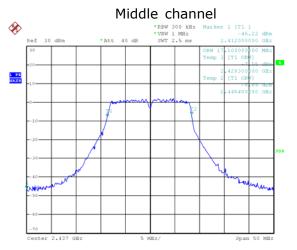
Date: 7.JUN.2023 18:38:01

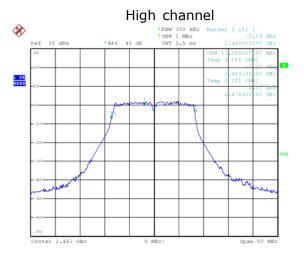

Date: 7.JUN.2023 18:35:31


Date: 7.JUN.2023 18:38:16


Report No.: CTK-2023-01256 Page (11) / (49)Pages


Date: 7.JUN.2023 18:43:05

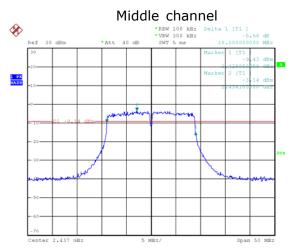

Date: 7.JUN.2023 18:46:12

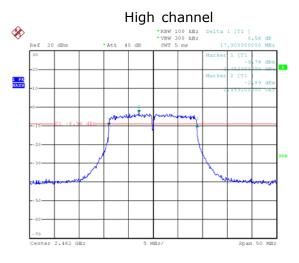

Date: 7.JUN.2023 18:48:56

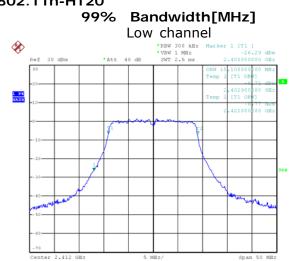
Date: 7.JUN.2023 18:43:21

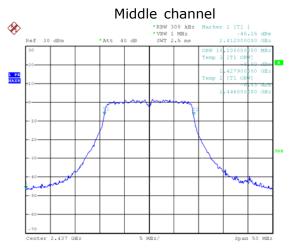
Date: 7.JUN.2023 18:46:28

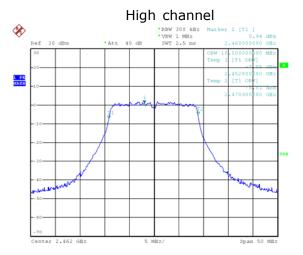
Date: 7.JUN.2023 18:49:12


Test Mode : 802.11g


Report No.: CTK-2023-01256 Page (12) / (49)Pages


Date: 7.JUN.2023 18:57:12


Date: 7.JUN.2023 19:00:42

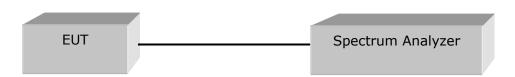

Date: 7.JUN.2023 19:03:21

Date: 7.JUN.2023 18:57:27

Date: 7.JUN.2023 19:00:57

Date: 7.JUN.2023 19:03:36

Test Mode : 802.11n-HT20


Report No.: CTK-2023-01256 Page (13) / (49)Pages

b) RBW = 1% to 5% of the OBW, not to exceed 1 MHz

4.2 Maximum peak Conducted Output Power

Test Procedures (ANSI C63.10-2013 11.9.2.2.2)

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Test Settings:

Center frequency = the highest, middle and the lowest channels

- a) span \geq 1.5 x OBW
- c) VBW \geq 3 x RBW e) Detector = RMS
- f) Sweep time = auto

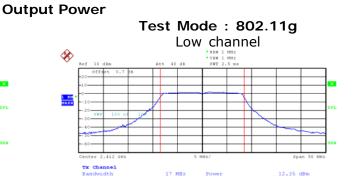
d) Sweep point \geq (2 x SPAN / RBW)

g) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.

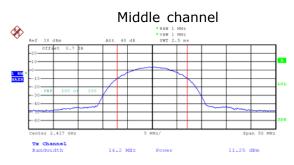
Limit

Maximum Output Power < 1 W (30 dBm)

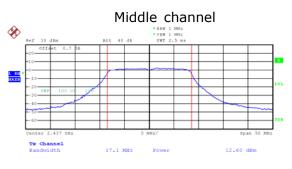
Test Data


Mode	Frequency [MHz]	Measuremen t data [dBm]	Duty Cycle Factor [dBm]	Result Output Power [dBm]	Limit [dBm]	Result
	2 412	11.01		11.05		
802.11b	2 437	11.25	0.04	11.29		
	2 462	11.50		11.54	30	Complies
	2 412	12.35		12.64		
802.11g	2 437	12.60	0.29	12.89		
	2 462	12.77		13.06		
	2 412	12.40		12.71		
802.11n -HT20	2 437	12.56	0.31	12.87		
	2 462	12.74		13.05		

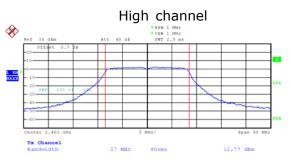
See next pages for actual measured spectrum plots.



Report No.: CTK-2023-01256 Page (14) / (49)Pages

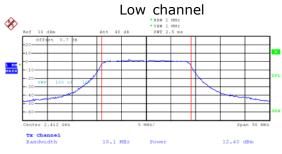

Free book of the second second

Date: 7.JUN.2023 18:32:31

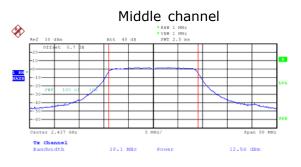

Date: 7.JUN.2023 18:43:38

Date: 7.JUN.2023 18:35:48

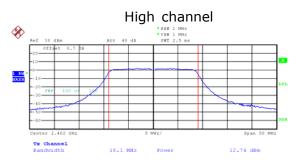
Date: 7.JUN.2023 18:46:45


Date: 7.JUN.2023 18:38:33

Date: 7.JUN.2023 18:49:29



Report No.: CTK-2023-01256 Page (15) / (49)Pages


Test Mode : 802.11n-HT20

Date: 7.JUN.2023 18:57:44

Date: 7.JUN.2023 19:01:15

Date: 7.JUN.2023 19:03:54

Report No.: CTK-2023-01256 Page (16) / (49)Pages

4.3 Power Spectral Density

Test Procedures (ANSI C63.10-2013 11.10.2)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance.

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW : 3 kHz \leq RBW \leq 100 kHz

b) VBW \geq 3 x RBW

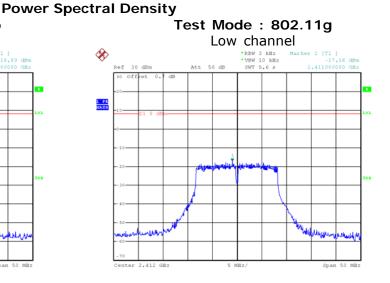
c) span \geq 1.5 x DTS bandwidth

d) Sweep time = auto couplef) Trace mode= max hold

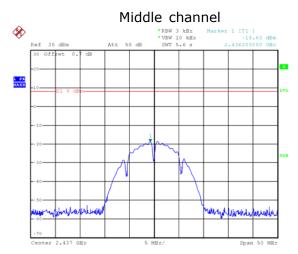
- e) Detector = peak
- g) Allow trace to fully stabilize
- h) Use the peak marker function to determine the maximum amplitude level within the RBW.

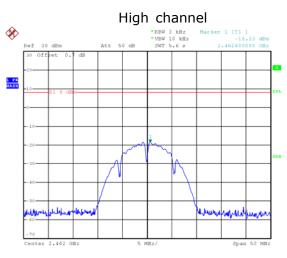
Limit :

Power Spectral Density < 8 dBm @ 3 kHz BW

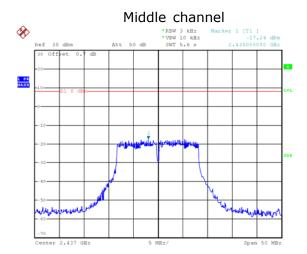

Test Data

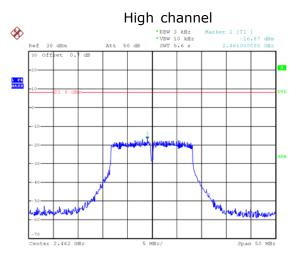
Mode	Channel	Frequency [MHz]	Measurement data [dBm]	Limit [dBm]	Result
	Low	2 412	-18.89		
802.11b	Middle	2 437	-18.63		
	High	2 462	-18.33		Complies
	Low	2 412	-17.16		
802.11g	Middle	2 437	-17.24	8	
	High	2 462	-16.87		
	Low	2 412	-17.40		
802.11n -HT20	Middle	2 437	-16.86		
	High	2 462	-16.94		


See next pages for actual measured spectrum plots.


Report No.: CTK-2023-01256 Page (17) / (49)Pages

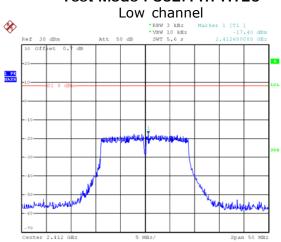
Date: 7.JUN.2023 18:30:50


Date: 7.JUN.2023 18:34:20

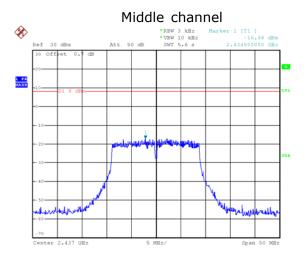

Date: 7.JUN.2023 18:37:07

[QF-QP15-07] Ver.01

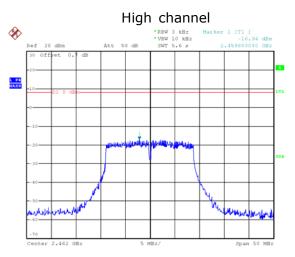
Date: 7.JUN.2023 18:42:22


Date: 7.JUN.2023 18:45:13

Date: 7.JUN.2023 18:48:00



Report No.: CTK-2023-01256 Page (18) / (49)Pages



Test Mode : 802.11n-HT20

Date: 7.JUN.2023 18:56:23

Date: 7.JUN.2023 18:59:32

Date: 7.JUN.2023 19:02:36

Report No.: CTK-2023-01256 Page (19) / (49)Pages

4.4 Band Edge & Conducted Spurious emission

Test Procedures(ANSI C63.10-2013 11.11.3)

The Unwanted emission from the EUT were measured according to the dictates PKPSD measurement procedure in section 11.11 of ANSI C63.10-2013.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB.

Test Settings:

Center frequency = the highest, middle and the lowest channels

- a) RBW = 100 kHz b) VE
- c) Detector = peak

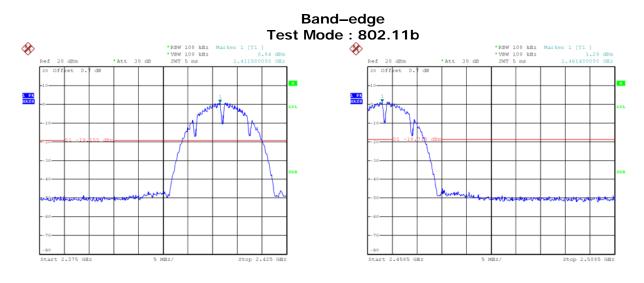
b) VBW \geq 3 x RBW

d) Sweep time = auto couple

- e) Trace mode= max hold
- f) Allow trace to fully stabilize
- g) Use the peak marker function to determine the maximum amplitude level.

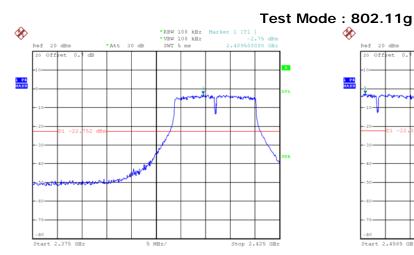
Limit :

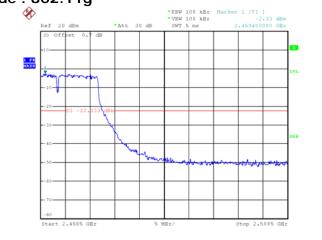
Emission level $< 30 \, dBc$

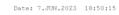

Test Data: Complies

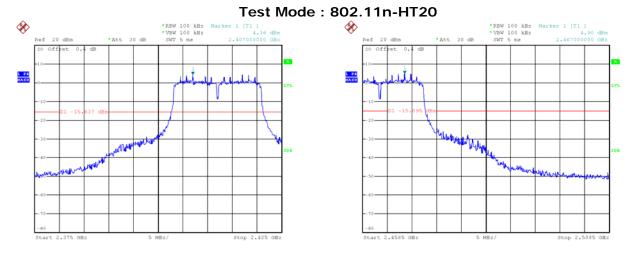
- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 30dB lower than the highest in-band spectral density. Therefore the applying equipment meets the requirement.

See next pages for actual measured spectrum plots.

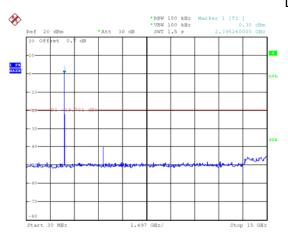


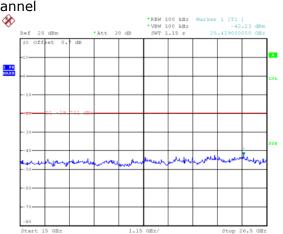

Report No.: CTK-2023-01256 Page (20) / (49)Pages


Date: 7.JUN.2023 18:33:17

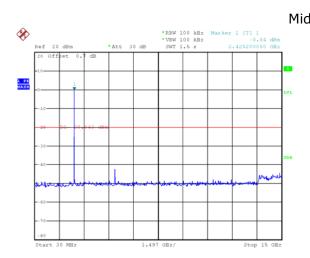

Date: 7.JUN.2023 18:39:20

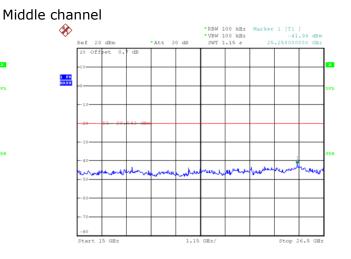
Date: 7.JUN.2023 18:44:24

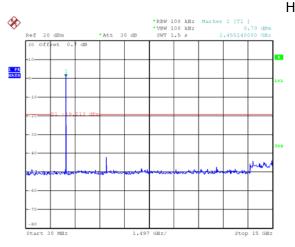

Date: 23.JUN.2022 17:43:13


Date: 23.JUN.2022 17:49:35

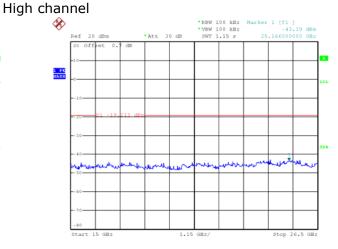
Report No.: CTK-2023-01256 Page (21) / (49)Pages


Spurious Test Mode : 802.11b Low channel




Date: 7.JUN.2023 18:32:47

Date: 7.JUN.2023 18:33:01



Date: 7.JUN.2023 18:36:04

Date: 7.JUN.2023 18:36:18

Date: 7.JUN.2023 18:38:49

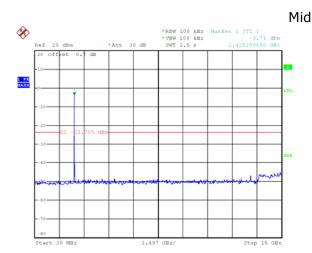
Date: 7.JUN.2023 18:39:03

8

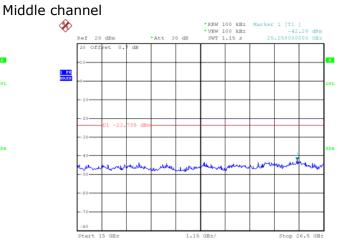
1 PK MAXH Ref 20 dB

CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501

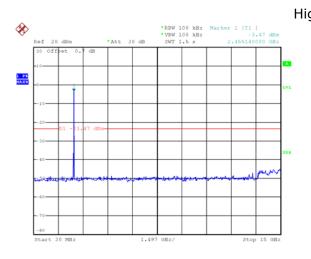
Report No.: CTK-2023-01256 Page (22) / (49)Pages



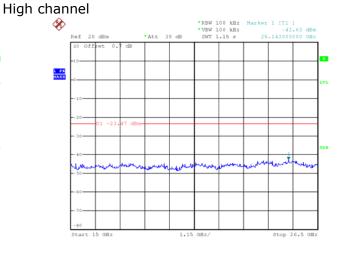
Test Mode : 802.11g



Start 30 MHz


Date: 7.JUN.2023 18:44:08




1.497 GHz/

Date: 7.JUN.2023 18:47:01

Date: 7.JUN.2023 18:49:45

Date: 7.JUN.2023 18:49:59

Ref 20 dBr

X

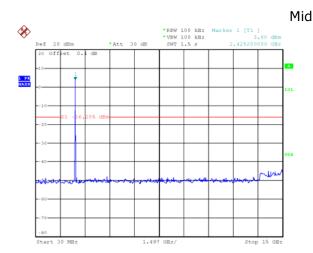
1 PK MAXH

CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501

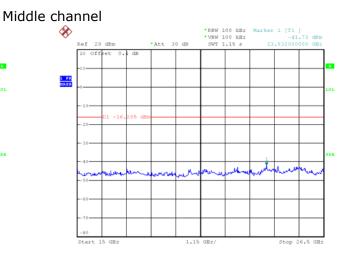
man

•RBW 100 kHz Marker 1 [T1] •VBW 100 kHz 3.10 dB SWT 1.5 s 2.395260000 GH

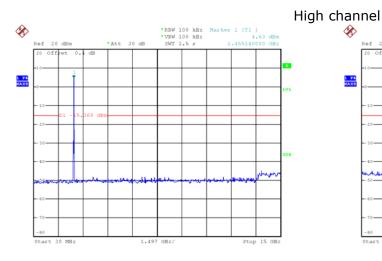
Report No.: CTK-2023-01256 Page (23) / (49)Pages

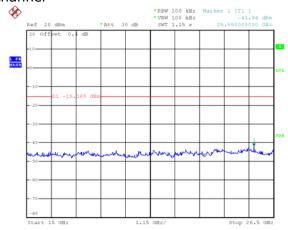

Low channel *RBW 100 kHz Marker 1 [T1] *VBW 100 kHz -42.94 dBm SWT 1.15 s 24.10800000 dHz 8 20 dBm •Att 30 dB of 1 P.K. 165.218 N Stop 15 GHz 1.15 15

Test Mode : 802.11n-HT20


Date: 23.JUN.2022 17:42:43

Start 30 MHz


Date: 23.JUN.2022 17:42:57


1.497 GHz/

Date: 23.JUN.2022 17:46:01

Date: 23.JUN.2022 17:46:15

Date: 23.JUN.2022 17:49:05

Date: 23.JUN.2022 17:49:19

Report No.: CTK-2023-01256 Page (24) / (49)Pages

4.5 Radiated Emissions

Test Location

 \boxtimes 10 m SAC (test distance : \square 10 m, \boxtimes 3 m)

 \boxtimes 3 m SAC (test distance : 3 m)

Test Procedures

- 1) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Antenna. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency rage above 30 MHz, Bi-Log Test Antenna(30 MHz to 1 GHz) and Horn Test Antenna(above 1 GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

Instrument Settings

Frequency Range = 9 kHz \sim 26.5 GHz (2.4 GHz 10th harmonic)

- a) RBW = 1 MHz for f \geq 1 GHz, 100 kHz for f < 1 GHz, 9 kHz for f < 30 MHz
- b) VBW \geq RBW
- c) Sweep time = auto couple

Limit :

FCC Part 15 § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz
0.09-0.11	8.37626-8.38675	73-74.6	399.9-410	2690-2900	10.6-12.7
¹ 0.495-0.505	8.41425-8.41475	74.8-75.2	608-614	3260-3267	13.25-13.4
2.1735-2.1905	12.29-12.293	108-121.94	960-1240	3332-3339	14.47-14.5
4.125-4.128	12.51975-12.52025	123-138	1300-1427	3345.8-3358	15.35-16.2
4.17725-4.17775	12.57675-12.57725	149.9-150.05	1435-1626.5	3600-4400	17.7-21.4
4.20725-4.20775	13.36-13.41	156.52475- 156.52525	1645.5-1646.5	4500-5150	22.01-23.12
6.215-6.218	16.42-16.423	156.7-156.9	1660-1710	5350-5460	23.6-24
6.26775-6.26825	16.69475-16.69525	162.0125-167.17	1718.8-1722.2	7250-7750	31.2-31.8
6.31175-6.31225	16.80425-16.80475	167.72-173.2	2200-2300	8025-8500	36.43-36.5
8.291-8.294	25.5-25.67	240-285	2310-2390	9000-9200	² Above 38.6
8.362-8.366	37.5-38.25	322-335.4	2483.5-2500	9300-9500	

Table 1. Restricted Frequency Bands*

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

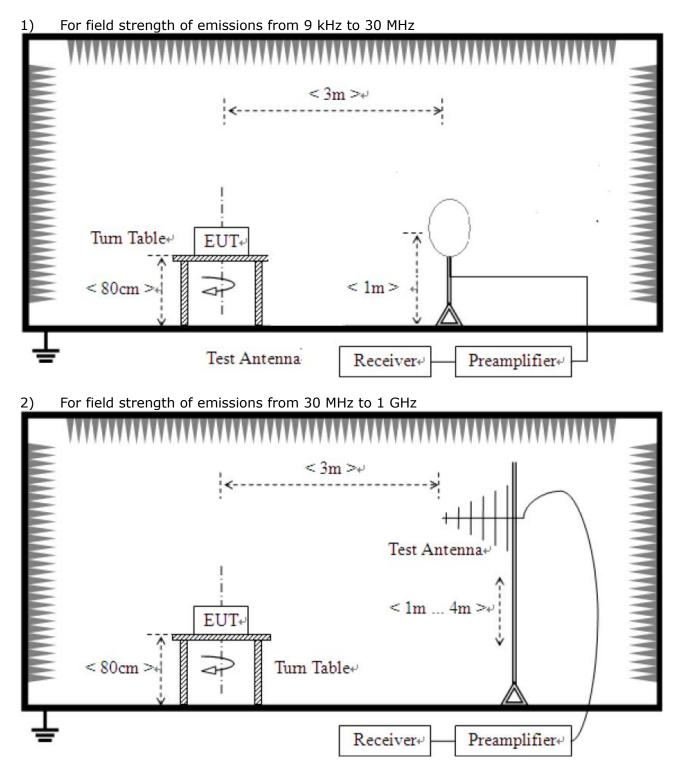
§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

*Certain frequency bands listed in Table 6 and in band above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in the 200- and 300-series of RSSs, such as RSS-210 and RSS-310, which contain the requirements that apply to licence-exempt radio apparatus.

FCC Part 15 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

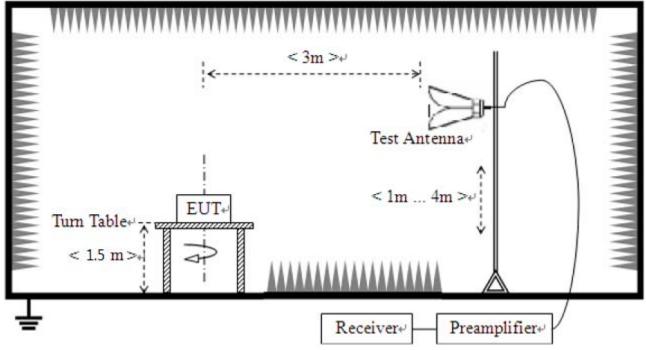
Frequency(MHz)	Field Strength uV/m	Field Strength dBuV/m	Deasurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705-30	30	49.5	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46	3
Above 960	500	54	3

** Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

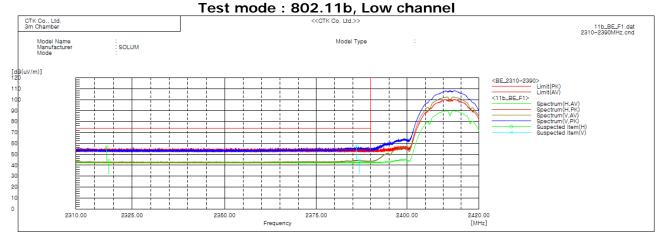

Note :

- 1) For above 1 GHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
- For above 1 GHz, limit field strength of harmonics : 54 dBuV/m@3m (AV) and 74 dBuV/m@3m (PK)
- 3) For measurement above 1GHz, the resolution bandwidth is set to 1 MHz and video bandwidth is set to 3 MHz for peak measurement.

Report No.: CTK-2023-01256 Page (27) / (49)Pages

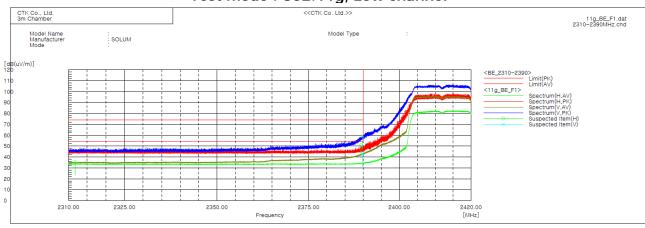

Test Setup:

Report No.: CTK-2023-01256 Page (28) / (49)Pages


3) For field strength of emissions above 1 GHz

Report No.: CTK-2023-01256 Page (29) / (49)Pages

Test results 1) Restricted Frequency Bands 1. 2 310 MHz to 2 390 MHz

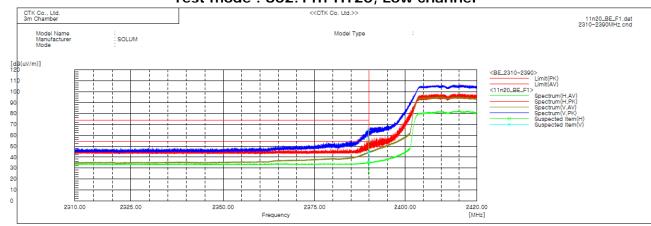

	Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
	2318.198	Н	62.1	-5.9	56.2	74	17.8	
	2318.792	Н	49.7	-5.9	43.8	54	10.2	
ĺ	2386.009	V	63.1	-5.9	57.3	74	16.7	
Ĩ	2386.766	V	50.4	-5.9	44.5	54	9.5	

Remarks

1. The Unwanted emission was measured in the following position:

- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

Test mode : 802.11g, Low channel


Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
2311.765	Н	41.3	-5.9	35.4	54	18.6	
2389.371	Н	56.8	-5.9	51.0	74	23.0	
2389.885	V	65.2	-5.8	59.4	74	14.6	
2389.969	V	49.1	-5.8	43.3	54	10.7	

Remarks

1. The Unwanted emission was measured in the following position:

- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

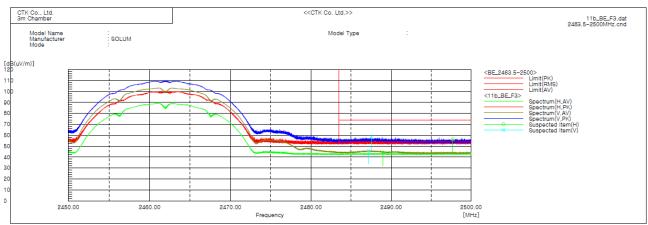
Test mode : 802.11n-HT20, Low channel

Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
2389.775	Н	61.2	-5.8	55.4	74	18.6	
2389.863	V	71.5	-5.8	65.7	74	8.3	
2389.872	V	50.6	-5.8	44.8	54	9.2	
2389.894	Н	41.2	-5.8	35.4	54	18.6	

Remarks

1. The Unwanted emission was measured in the following position:

- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain



2. 2 483.5 MHz – 2 500 MHz

Test mode : 802.11b, High Channel

The requirements are: \square Complies

Test Data

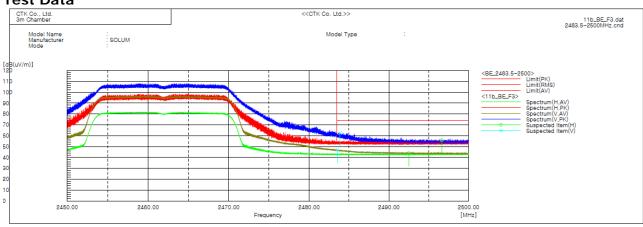
Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
2487.139	V	51.2	-5.2	46.0	54	8.0	
2487.511	V	63.5	-5.2	58.3	74	15.7	
2488.993	Н	49.3	-5.2	44.1	54	9.9	
2497.700	Н	61.5	-5.1	56.4	74	17.6	

Remarks

1. The Unwanted emission was measured in the following position:

EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.

- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain



Report No.: CTK-2023-01256 Page (33) / (49)Pages

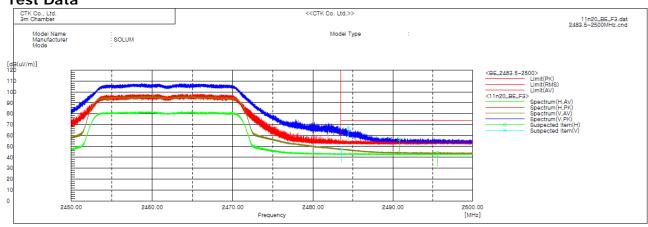
Test mode : 802.11g, High Channel

The requirements are: \square Complies

Test Data

Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
2483.531	V	52.3	-5.3	47.0	54	7.0	
2483.855	V	68.0	-5.3	62.70	74	11.3	
2492.482	Н	49.2	-5.2	44.0	54	10.0	
2496.614	Н	61.1	-5.1	56.00	74	18.00	

Remarks


- 1. The Unwanted emission was measured in the following position:
- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

Test mode : 802.11n-HT20, High channel

The requirements are: \Box Complies

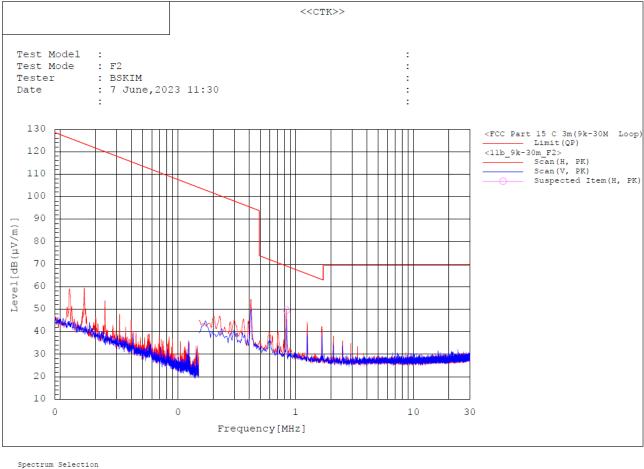
Test Data

Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
2483.559	V	53.1	-5.3	47.8	54	6.2	
2484.409	V	72.8	-5.2	67.6	74	6.4	
2490.773	Н	62.0	-5.2	56.8	74	17.2	
2495.578	Н	49.3	-5.1	44.2	54	9.8	

Remarks

- 1. The Unwanted emission was measured in the following position:
- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

Report No.: CTK-2023-01256 Page (35) / (49)Pages


2) Spurious

1. 9 kHz to 30 MHz

Test mode : 802.11b, Middle channel (Worst case)

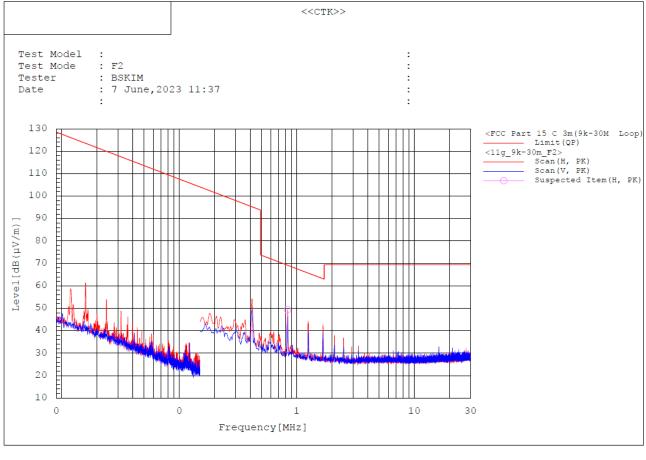
The requirements are: \square Complies

Test Data

No. Frequency Pol Reading c.f Result Limit Margin Height Angle Remark PK PK QP QP-PK [MHz] [dB(uV)] [dB(1/m)] [dB(uV/m)] [dB(uV/m)] [dB] [cm] [deg] 1 0.834 H 24.6 25.0 49.6 69.2 19.6 100.8 94.4

Remark :

- 1. The Unwanted emission was measured in the following position:
- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 5. This data is the Peak(PK) value.



Report No.: CTK-2023-01256 Page (36) / (49)Pages

Test mode : 802.11g, Middle channel (Worst case)

The requirements are: Complies

Test Data

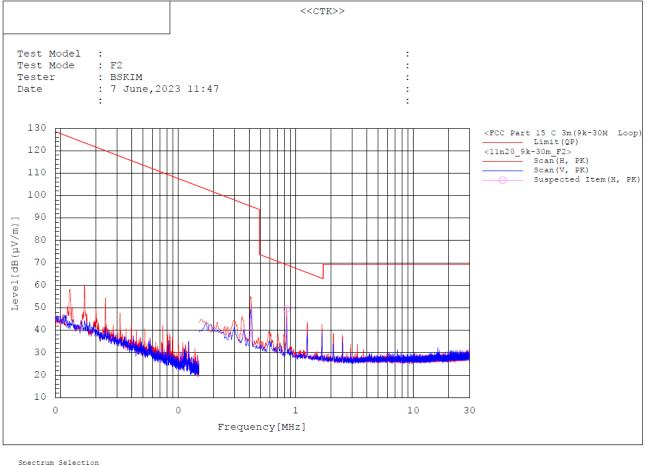
 Spectrum Selection

 No. Frequency Pol Reading
 c.f
 Result
 Limit
 Margin
 Height
 Angle
 Remark

 PK
 PK
 QP
 QP-PK
 [MHz]
 [dB(µV)]
 [dB(1/m)]
 [dB(µV/m)]
 [dB]
 [db(1/m)]
 [db(1/m)]

Remark :

- 1. The Unwanted emission was measured in the following position:
- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 5. This data is the Peak(PK) value.



Report No.: CTK-2023-01256 Page (37) / (49)Pages

Test mode : 802.11n-HT20, Middle channel (Worst case)

The requirements are: Complies

Test Data

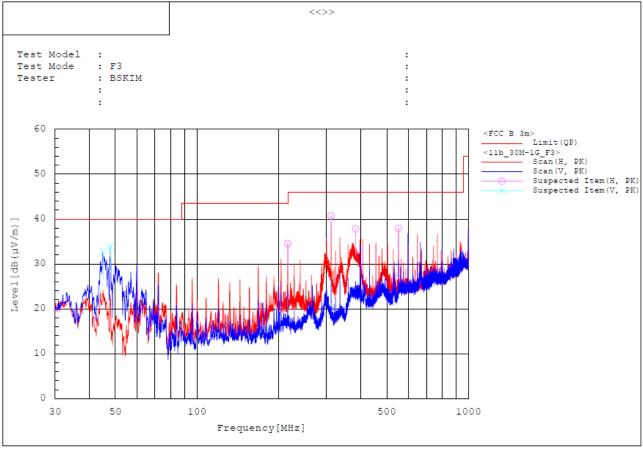
 No.
 Frequency Pol
 Reading
 c.f
 Result
 Limit
 Margin
 Height
 Angle
 Remark

 PK
 PK
 QP
 QP-PK
 [MHz]
 [dB(µV)]
 [dB(1/m)]
 [dB(µV/m)]
 [dB(µV/m)]
 [dB]
 [cm]
 [deg]

 1
 0.834
 H
 24.6
 25.0
 49.6
 69.2
 19.6
 100.8
 130.7

Remark :⊼

- 1. The Unwanted emission was measured in the following position:
- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 5. This data is the Peak(PK) value.


Report No.: CTK-2023-01256 Page (38) / (49)Pages

2. 30 MHz to 1 GHz

Test mode : 802.11b, High channel(Worst case)

The requirements are: \square Complies

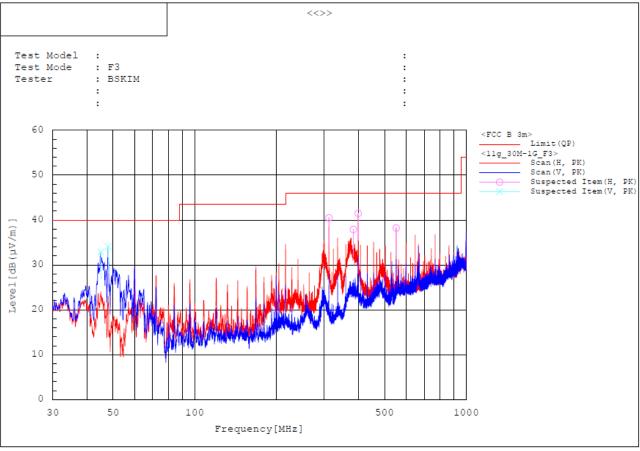
Test Data

No.	Frequency	Pol	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
			PK		PK	QP	QP-PK			
	[MHs]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm] [d	leg]	
1	45.035	v	47.4	-14.6	32.8	40.0	7.2	100.1	0.9	
2	47.945	v	50.0	-16.0	34.0	40.0	6.0	100.1	0.9	
3	215.852	н	49.2	-14.6	34.6	43.5	8.9	100.1	359.9	
4	311.882	н	50.4	-9.7	40.7	46.0	5.3	100.1	353.0	
5	383.759	н	45.3	-7.5	37.8	46.0	8.2	100.1	172.7	
6	551.763	н	40.5	-2.6	37.9	46.0	8.1	200.0	185.0	

Result : There are more than 20 dB of margin compared to the limit.

Remark :

- 1. The Unwanted emission was measured in the following position:
- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain
- 4. This data is the Peak(PK) value.



Report No.: CTK-2023-01256 Page (39) / (49)Pages

Test mode : 802.11g, High channel (Worst case)

The requirements are: \Box Complies

Test Data

Spectrum Selection

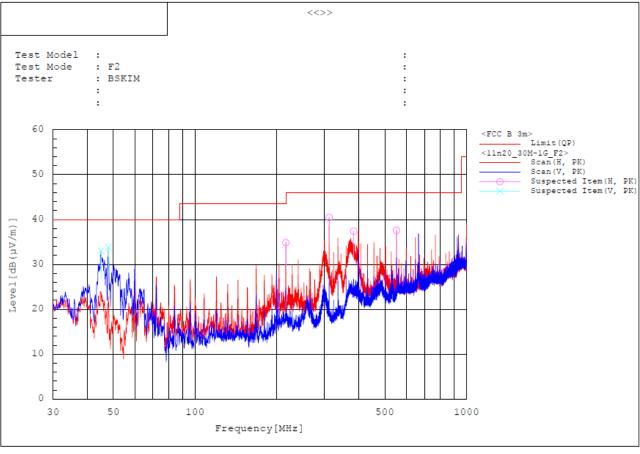
No.	Frequency	Pol	Reading PK	c.f	Result PK	Limit QP	Margin QP-PK	Height	Angle	Remark
	[MHs]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm] [o	deg]	
1	45.035	v	47.5	-14.6	32.9	40.0	7.1	100.0	359.6	
2	47.945	v	50.1	-16.0	34.1	40.0	5.9	100.0	359.6	
3	311.882	н	50.2	-9.7	40.5	46.0	5.5	100.0	358.9	
4	383.856	н	45.4	-7.5	37.9	46.0	8.1	100.0	179.1	
5	399.861	н	48.5	-7.0	41.5	46.0	4.5	199.9	2.8	
6	551.763	н	40.8	-2.6	38.2	46.0	7.8	199.9	0.8	

Remark :

1. The Unwanted emission was measured in the following position:

EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.

- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain
- 4. This data is the Peak(PK) value.



Report No.: CTK-2023-01256 Page (40) / (49)Pages

Test mode : 802.11n-HT20, Middle channel (Worst case)

The requirements are: \Box Complies

Test Data

Spectrum Selection

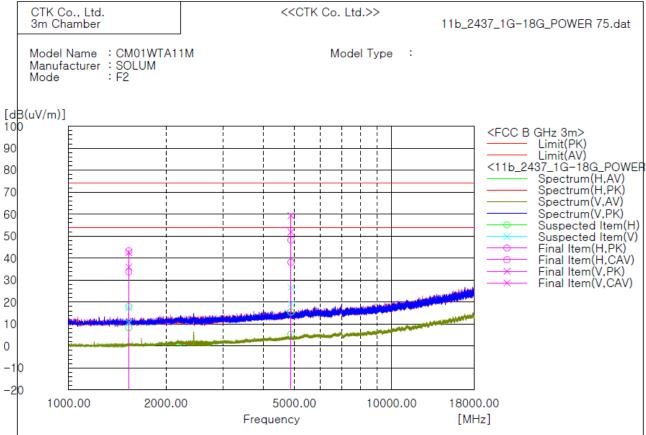
No.	Frequency	Pol	PK	c.f	Result PK	Limit QP	QP-PK		Angle	Remark
	[MHz]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm] [(deg]	
1	45.035	v	47.6	-14.6	33.0	40.0	7.0	100.0	46.7	
2	47.945	v	49.8	-16.0	33.8	40.0	6.2	100.0	2.7	
3	215.852	н	49.5	-14.6	34.9	43.5	8.6	100.0	359.3	
4	311.882	н	50.2	-9.7	40.5	46.0	5.5	100.0	359.3	
5	383.856	н	44.9	-7.5	37.4	46.0	8.6	100.0	173.2	
6	551.763	H	40.2	-2.6	37.6	46.0	8.4	200.1	7.7	

Remark :

1. The Unwanted emission was measured in the following position:

EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.

- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain
- 4. This data is the Peak(PK) value.


Report No.: CTK-2023-01256 Page (41) / (49)Pages

3. 1 GHz to 18 GHz

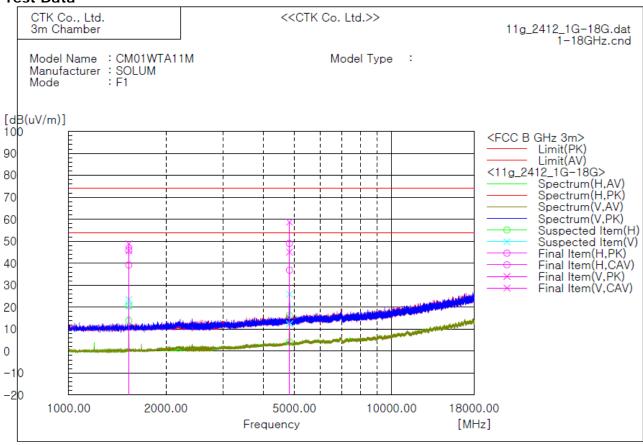
Test mode : 802.11b, Middle Channel (Worst case)

The requirements are: \square Complies

Test Data

Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
1535.181	Н	52.5	-9.2	43.3	74	30.7	
1535.181	Н	42.9	-9.2	33.7	54	20.3	
1535.181	V	51.8	-9.2	42.6	74	31.4	
1535.181	V	45.2	-9.2	36.0	54	18.0	
4873.435	V	57.1	2.2	59.3	74	14.7	
4874.114	Н	46.0	2.2	48.2	74	25.8	

Remarks


- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

Test mode : 802.11g, Low channel (Worst case)

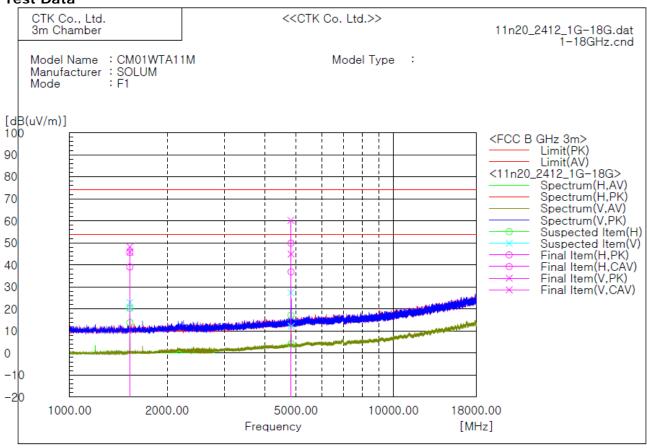
The requirements are: \square Complies

Test Data

Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
1535.181	Н	55.1	-9.2	45.9	74	28.1	
1535.181	Н	48.4	-9.2	39.2	54	14.8	
1535.181	V	58.1	-9.2	48.9	74	25.1	
1535.181	V	55.0	-9.2	45.8	54	8.2	
4819.033	Н	46.9	2.1	49.0	74	25.0	
4823.792	Н	34.8	2.1	36.9	54	17.1	

Remarks

- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain



Report No.: CTK-2023-01256 Page (43) / (49)Pages

Test mode : 802.11n-HT20, Low channel (Worst case)

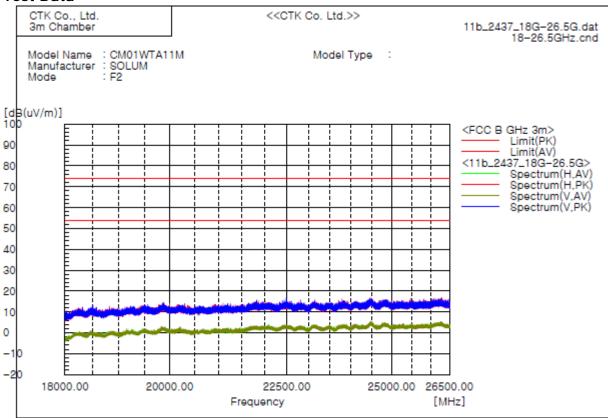
The requirements are: \square Complies

Test Data

Frequency [MHz]	Pol.	Reading [dBuV]	c.f [dB]	Result [dBuV]	Limit [dBuV]	Margin[dB]	Remark
1535.181	Н	54.9	-9.2	45.7	74	28.3	
1535.181	Н	48.3	-9.2	39.1	54	14.9	
1535.181	V	55.0	-9.2	45.8	54	8.2	
1535.181	V	57.5	-9.2	48.3	74	25.7	
4817.672	V	58.1	2.1	60.2	74	13.8	
4820.393	Н	47.8	2.1	49.9	74	24.1	

Remarks

- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain


Report No.: CTK-2023-01256 Page (44) / (49)Pages

4. 18.0 GHz to 26.5 GHz

Test mode : 802.11b, Middle Channel (Worst case)

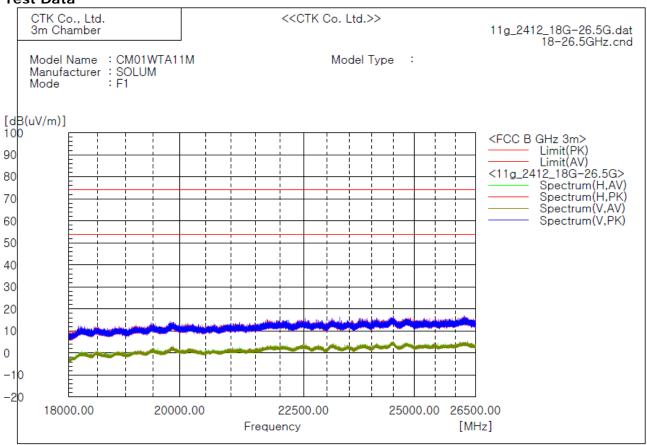
The requirements are: \square Complies

Test Data

Remarks

- 1. The Unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found
- in lie-down position(Z axis) and the worst case was recorded. 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

* No emissions are detected.



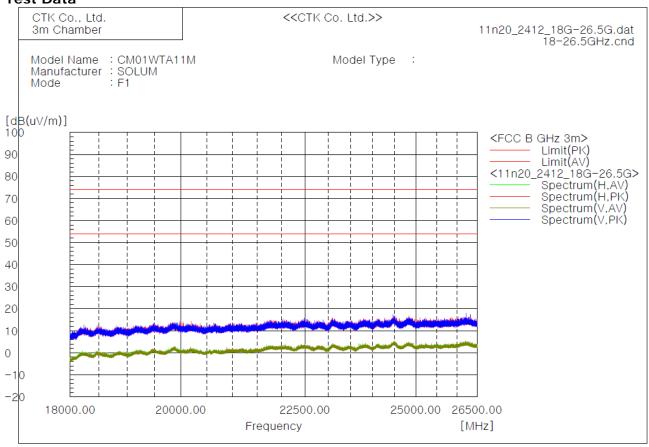
Report No.: CTK-2023-01256 Page (45) / (49)Pages

Test mode : 802.11g, Low channel (Worst case)

The requirements are: \Box Complies

Test Data

Remarks


- 1. The Unwanted emission was measured in the following position:
- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain
- * No emissions are detected.

Test mode : 802.11n-HT20, Low channel (Worst case)

The requirements are: \square Complies

Test Data

Remarks

- EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain
- * No emissions are detected.

Report No.: CTK-2023-01256 Page (47) / (49)Pages

4.6 AC Power Line Conducted Emissions

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits.

Instrument Settings

IF Band Width: 9 kHz

Test Procedures

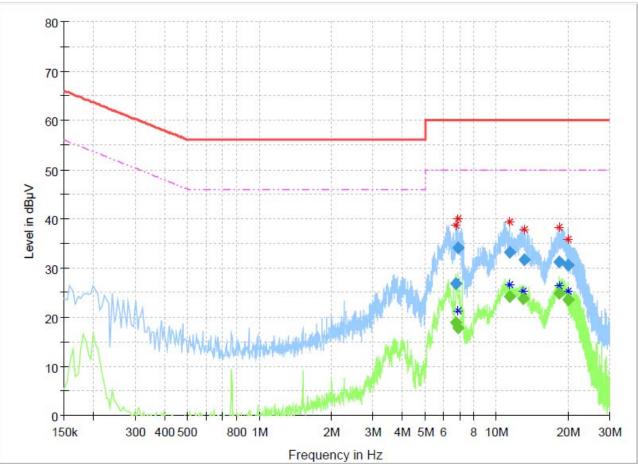
The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

Frequency	Conducted Limit (dBuV)					
(MHz)	Quasi-peak	Average**				
0.15 ~ 0.5	66 to 56*	56 to 46*				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

* The level decreases linearly with the logarithm of the frequency.


** A linear average detector is required.

Report No.: CTK-2023-01256 Page (48) / (49)Pages

Test Results :

The requirements are: \square Complies

Test mode : 802.11n20(Worst case) [L1, N]

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
6.711000	26.80		60.00	33.20	15000.0	9.000	N	ON	9.9
6.711000		18.96	50.00	31.04	15000.0	9.000	L1	ON	9.8
6.886500	34.03		60.00	25.97	15000.0	9.000	L1	ON	9.8
6.886500		17.76	50.00	32.24	15000.0	9.000	L1	ON	9.8
11.364000		24.10	50.00	25.90	15000.0	9.000	L1	ON	9.8
11.364000	33.19		60.00	26.81	15000.0	9.000	L1	ON	9.8
13.024500		23.70	50.00	26.30	15000.0	9.000	L1	ON	9.8
13.078500	31.58		60.00	28.42	15000.0	9.000	L1	ON	9.8
18.289500		24.75	50.00	25.25	15000.0	9.000	L1	ON	9.9
18.294000	31.12		60.00	28.88	15000.0	9.000	L1	ON	9.9
20.022000		23.45	50.00	26.55	15000.0	9.000	L1	ON	9.9
20.022000	30.50		60.00	29.50	15000.0	9.000	L1	ON	9.9

Report No.: CTK-2023-01256 Page (49) / (49)Pages

APPENDIX A – Test Equipment Used For Tests

No.	Name of Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	SPECTRUM ANALYZER	R&S	FSP-30	100994	2022-10-13	2023-10-13
2	Signal Generator	Rohde & Schwarz	SMB100A	175528	2023-03-22	2024-03-22
3	EMI TEST RECEIVER	Rohde & Schwarz	ESW44	102039	2023-05-03	2024-05-03
4	Active Loop Antenna	SCHWARZBECK	FMZB 1513	1513-125	2022-04-15	2024-04-15
5	Bilog Antenna	TESEQ	CBL6111D	60654	2021-09-03	2023-09-03
6	AMPLIFIER	SONOMA INSTRUMENT	310N	411011	2022-08-10	2023-08-10
7	ATTENUATOR	PASTERNACK	PE7AP006-06	L2021050400002 3	2022-08-10	2023-08-10
8	Preamplifier	Agilent	8449B	3008A00620	2023-04-21	2024-04-21
9	Double Ridged Guide Antenna	ETS-Lindgren	3115	00078895	2023-04-13	2024-04-13
10	Horn Antenna	SCHWARZBECK	BBHA9170	01153	2022-10-31	2023-10-31
11	Low Noise Amplifier	TESTEK	TK-PA1840H	210124-L	2022-11-09	2023-11-09
12	Band Reject Filter	Micro Tronics	BRM50702	G233	2023-01-03	2024-01-03
13	Spectrum Analyzer	Rohde & Schwarz	FSV40	101574	2023-01-11	2024-01-11
14	Dual-Tracking DC Power Supply	Topward Electric Instruments Co.,Ltd.	6303D	711196	2023-03-22	2024-03-22
15	DC Power Supply	Agilent	E3632A	MY40008023	2023-03-27	2024-03-27
16	EMI TEST RECEIVER	Rohde & Schwarz	ESR3	102826	2023-05-03	2024-05-03
17	LISN	Rohde & Schwarz	ENV216	102698	2023-05-03	2024-05-03

No.	Cable	Manufacturer	Model No.	Serial No.	Check Date
1	RF Cable(conducted)	Junkosha Inc.	MWX221	20085240	2023-05-02
2	RF Cable (9kHz-1GHz Radiated)	Canare Corporation	L-5D2W	N/A	2022-09-21
3	RF Cable (9kHz-1GHz Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27558/4	2022-09-21
4	RF Cable (1GHz-18GHz Radiated)	Junkosha Inc.	MWX221	2008S246	2023-04-14
5	RF Cable (1GHz-18GHz Radiated)	Rosenberger	NONE	1520.9927.00	2023-04-14
6	RF Cable (1GHz-18GHz Radiated)	Sensorview Co., LTD	9S18	TPC2204060007	2023-04-14
7	RF Cable (18GHz-26.5GHz Radiated)	HUBER+SUHNER	SUCOFLEX 102	MY2372/2	2023-04-14
8	RF Cable (18GHz-26.5GHz Radiated)	HUBER+SUHNER	SUCOFLEX 102	MY073/2	2023-04-14
9	RF Cable (18GHz-26.5GHz Radiated)	Sensorview Co., LTD	9S40	TP210713-001	2023-04-14
10	AC conducted	Canare Corporation	-	102698	2022-09-21

-END-