	之 汉 リ CHNOLOGY				
	TEST REPOR	RT			
FCC ID:	2AFW2G2104				
Test Report No:	TCT220926E022				
Date of issue:	Oct. 21, 2022				
Testing laboratory::	SHENZHEN TONGCE TESTIN	IG LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China				
Applicant's name::	Shenzhen DZH Industrial Co., I	Ltd 🕜			
Address:	3th Floor, YiTuo Mike Industrial zone, ShaJing, Shenzhen, Chir	l A building, Bu Yong Industrial D na			
Manufacturer's name :	Shenzhen DZH Industrial Co., I	Ltd			
Address:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, ShaJing, Shenzhen, China				
Standard(s):	FCC CFR Title 47 Part 15 Subp FCC KDB 558074 D01 15.247 ANSI C63.10:2013				
Product Name::	Bluetooth Keyboard				
Trade Mark:	N/A				
Model/Type reference :	G2104				
Rating(s):	Rechargeable Li-ion Battery DC	C 3.7V			
Date of receipt of test item	Sep. 26, 2022				
Date (s) of performance of test:	Sep. 26, 2022 - Oct. 21, 2022				
Tested by (+signature) :	Onnado YE	Onnado BNGCE			
Check by (+signature) :	Beryl ZHAO	Boy TCT			
Approved by (+signature):	Tomsin	Tomsmits 85			
TONGCE TESTING LAB. TH	his document may be altered or ly, and shall be noted in the revi	ne written approval of SHENZHEN revised by SHENZHEN TONGCE ision section of the document. The			

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	3
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	6
3.2. Description of Support Units	6
4. Facilities and Accreditations	
4.1. Facilities	7
4.2. Location	7
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	8
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Bluetooth Keyboard	
Model/Type reference:	G2104	
Sample Number	TCT220926E022-0101	
Bluetooth Version:	V3.0)
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK	6
Modulation Technology:	FHSS	
Antenna Type:	PCB Antenna	
Antenna Gain:	1.87dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Report No.: TCT220926E022

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
····				·		<u> </u>	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	S		.				S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	~	-
Remark:	Channel 0, 3	89 & 78 ha	ave been te	sted for G	FSK modul	ation mod	le.

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 64

3. General Information

3.1. Test environment and mode

Conducted Emission	Radiated Emission
25.3 °C	24.8 °C
56 % RH	54 % RH
1010 mbar	1010 mbar
FCC test tool	
Default	
·	
•	0,
	25.3 °C 56 % RH 1010 mbar FCC test tool

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735	/	JD
Marta				

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

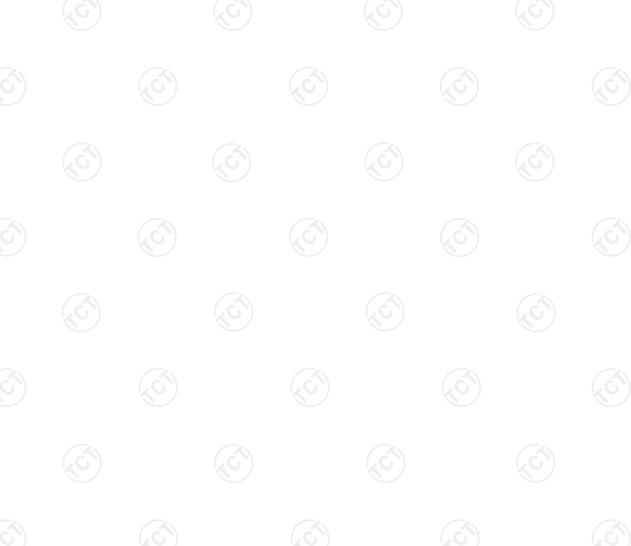
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

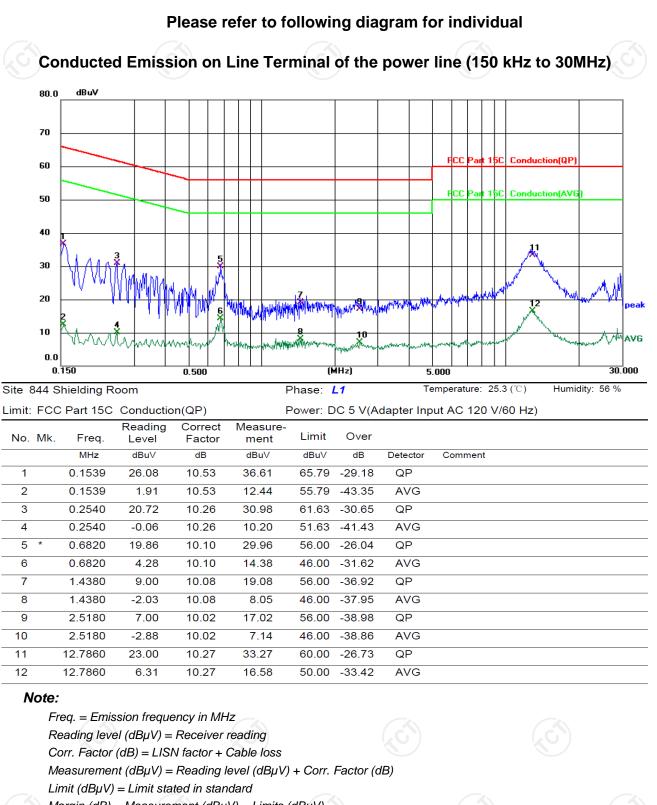
Standard requirement:	FCC Part15 C Section 15.203 /247(c)	
furnished by the responsible p permanently attached antenna ntentional radiator, the manuf can be replaced by the user, b connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 24 Point-to-point operations may greater than 6dBi provided the	e designed to ensure that no antenna other than to barty shall be used with the device. The use of a a or of an antenna that uses a unique coupling to facturer may design the unit so that a broken anten but the use of a standard antenna jack or electrical 400-2483.5 MHz band that is used exclusively for employ transmitting antennas with directional ga e maximum conducted output power of the intention r every 3 dB that the directional gain of the antennal	the enna al fixed. in onal
E.U.T Antenna:		
The Bluetooth antenna is PCE case gain of the antenna is 1.	3 antenna which permanently attached, and the b 87dBi	est
Antenna 10 20 30 40 50		

5.2. Conducted Emission


5.2.1. Test Specification

			(
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto			
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Áverage			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference	e Plane				
Test Setup:	Test table/Insulation plane	Test table/Insulation plane EMI Receiver Remark: E.U T: Equipment Under Test LISN: Line Impedence Stabilization Network.				
Test Mode:	Charging + Transmittin	ng Mode				
	1 The FILT is conne					
Test Procedure:	 impedance stabilizion provides a 500hm/sion measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C conducted interfere emission, the relative the interface cables 	50uH coupling iment. ces are also conner ISN that provides with 50ohm terr diagram of the . line are checked nce. In order to five positions of equipment be changed	(L.I.S.N.). This pedance for the ected to the main s a 50ohm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all c l according to			
Test Procedure:	 impedance stabilizion provides a 500hm/s measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C conducted interfere emission, the relative 	zation network 50uH coupling in ent. ces are also conne ISN that provides e with 50ohm terr diagram of the . line are checke nce. In order to fi re positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the mains a 50ohm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all o l according to			

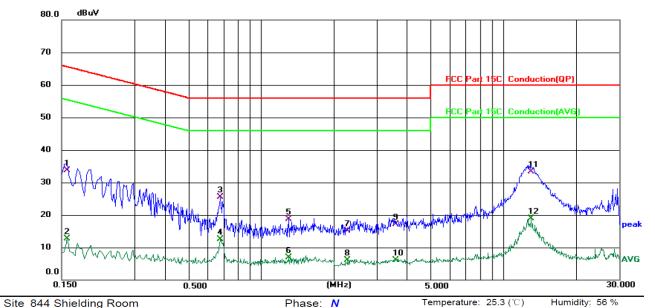
Page 9 of 64


5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)									
(Equipment	Manufacturer	Model	Serial Number	Calibration Due					
0	EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023					
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023					
	Line-5	ТСТ	CE-05	/	Jul. 03, 2023					
6	EMI Test Software	Shurple Technology	EZ-EMC	1	1					

Page 10 of 64

5.2.3. Test data


 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 64

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Limit: FCC Part 15C Conduction(QP)

TCT通测检测 TCT通测检测

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1580	23.29	10.45	33.74	65.57	-31.83	QP	
2		0.1580	2.22	10.45	12.67	55.57	-42.90	AVG	
3		0.6820	15.39	10.10	25.49	56.00	-30.51	QP	
4		0.6820	2.38	10.10	12.48	46.00	-33.52	AVG	
5		1.3020	8.56	10.12	18.68	56.00	-37.32	QP	
6		1.3020	-3.25	10.12	6.87	46.00	-39.13	AVG	
7		2.2820	4.91	10.13	15.04	56.00	-40.96	QP	
8		2.2820	-4.08	10.13	6.05	46.00	-39.95	AVG	
9		3.6019	6.98	10.15	17.13	56.00	-38.87	QP	
10		3.6019	-3.99	10.15	6.16	46.00	-39.84	AVG	
11	*	13.0540	23.00	10.37	33.37	60.00	-26.63	QP	
12		13.0540	8.60	10.37	18.97	50.00	-31.03	AVG	

Note1:

- Freq. = Emission frequency in MHz
- Reading level $(dB\mu V) = Receiver reading$
- Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and the worst case Mode (Lowest channel) was submitted only.

Page 12 of 64

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the		
	peak of the emission.		

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	\bigcirc 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	<u> </u>	

5.6. Hopping Channel Number

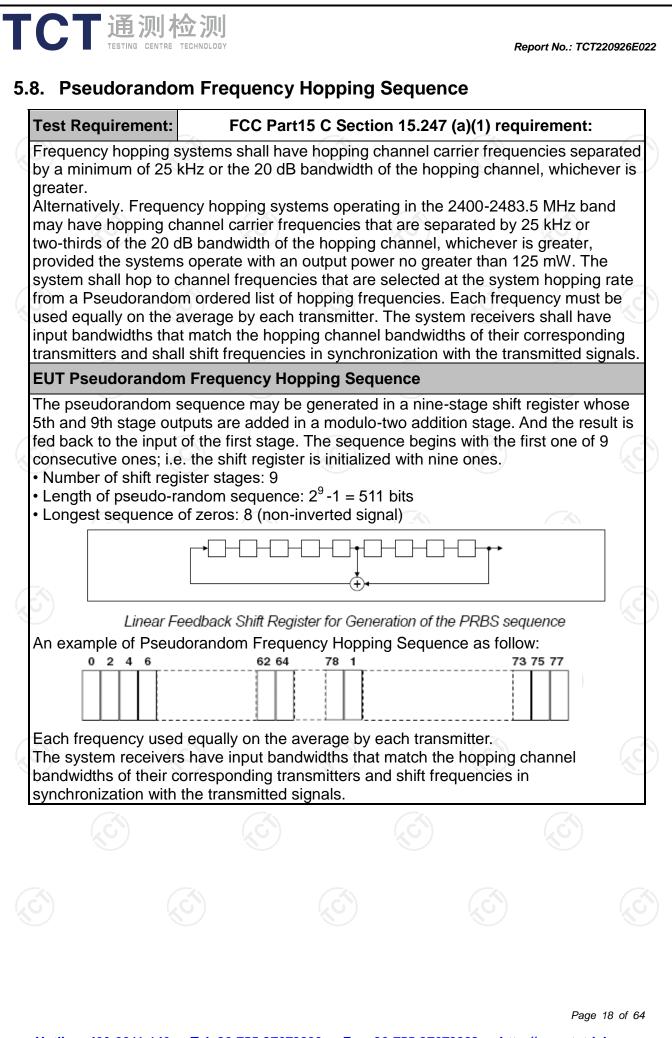
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS
5.6.2 Tost Instruments	

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	/
	(.G)			(\mathbf{G})

5.7. Dwell Time


5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	۲ (

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

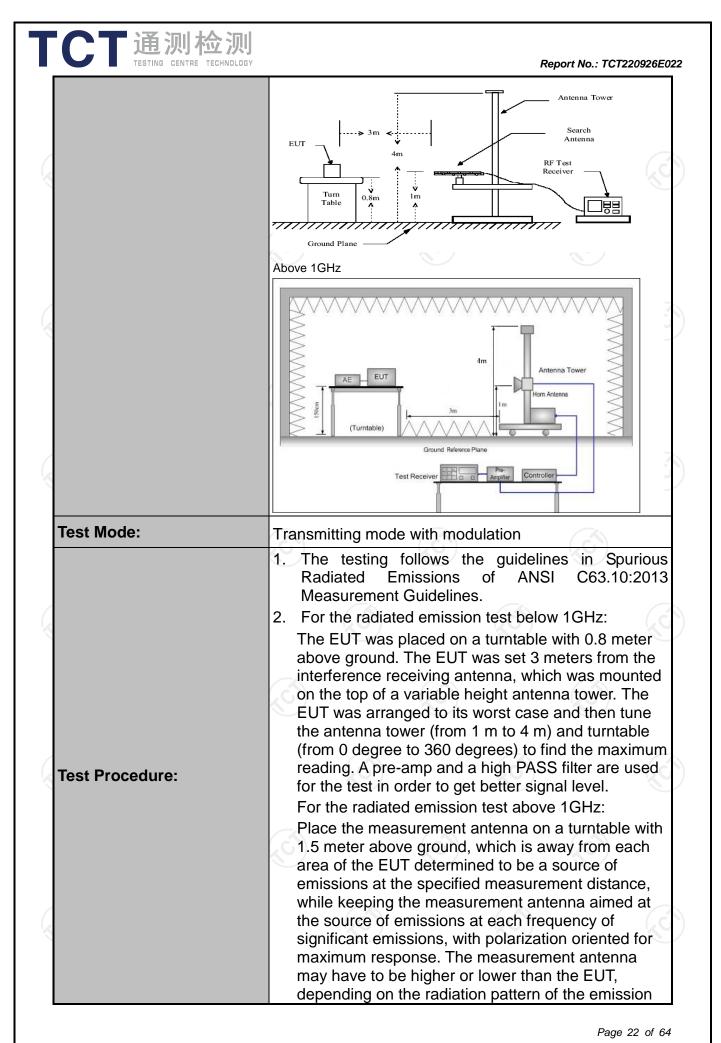
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1
(\mathcal{A}^{*})	() ()		\mathcal{S}	$(\mathcal{A}\mathcal{G})$

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments


Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	۲ (S	

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

	FCC Part15	C Section	15.209			K		
Test Method:	ANSI C63.10):2013						
Frequency Range:	9 kHz to 25 0	GHz				6		
Measurement Distance:	3 m	X	9		R.			
Antenna Polarization:	Horizontal &	Vertical						
	Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW 200Hz	VBW 1kHz	Quasi-peak Va			
Receiver Setup:	150kHz- 30MHz	Quasi-peal		30kHz				
	30MHz-1GHz Above 1GHz	Quasi-peal Peak Peak	x <u>120KHz</u> 1MHz 1MHz	300KHz 3MHz 10Hz	Pe	eak Value		
	Frequen	су	Field Stro (microvolts	•	Меа	asurement		
	0.009-0.4		2400/F(I	KHz)		Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30		
	0.490-1.7		24000/F((KHz)	Measurement Distance (meters) 300 30 30 30 3 3 3 3 3 3			
	<u>1.705-3</u> 30-88		<u> </u>)	30 30			
	88-216		150		300 30 30 3 3 3 3 3 3 ment			
Limit:	216-96		200		No.			
	Above 9	60	500	1		3		
	Frequency		d Strength ovolts/meter)	Measure Distan (meter	се	Detector		
	Above 1GH	<u></u>	500 5000	3				
Test setup:	For radiated emis	stance = 3m		Pre -/	Comput			

	 and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Set to the maximum power setting and enable th EUT transmit continuously. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 millisecond On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*L Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle) 							
	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Res	L1+N2*L2++Nn-1*LN number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor +	es, L1 is iission ⊦ Cable					
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Res	*L1+N2*L2++Nn-1*LN s number of type 1 pulse e 1 pulses, etc. hission Level = Peak Em og(Duty cycle)	es, L1 is iission ⊦ Cable					
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea Loss + Read	L1+N2*L2++Nn-1*LN number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor +	es, L1 is iission ⊦ Cable					
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea Loss + Read	L1+N2*L2++Nn-1*LN number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor +	es, L1 is iission ⊦ Cable					
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea Loss + Read	L1+N2*L2++Nn-1*LN number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor +	es, L1 is iission ⊦ Cable					

5.11.1. Test Instruments

Report No.: TCT220926E022

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	/	1
Coaxial cable	SKET	RC-18G-N-M) /	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC	R	1

Page 24 of 64

5.11.2. Test Data

Please refer to following diagram for individual

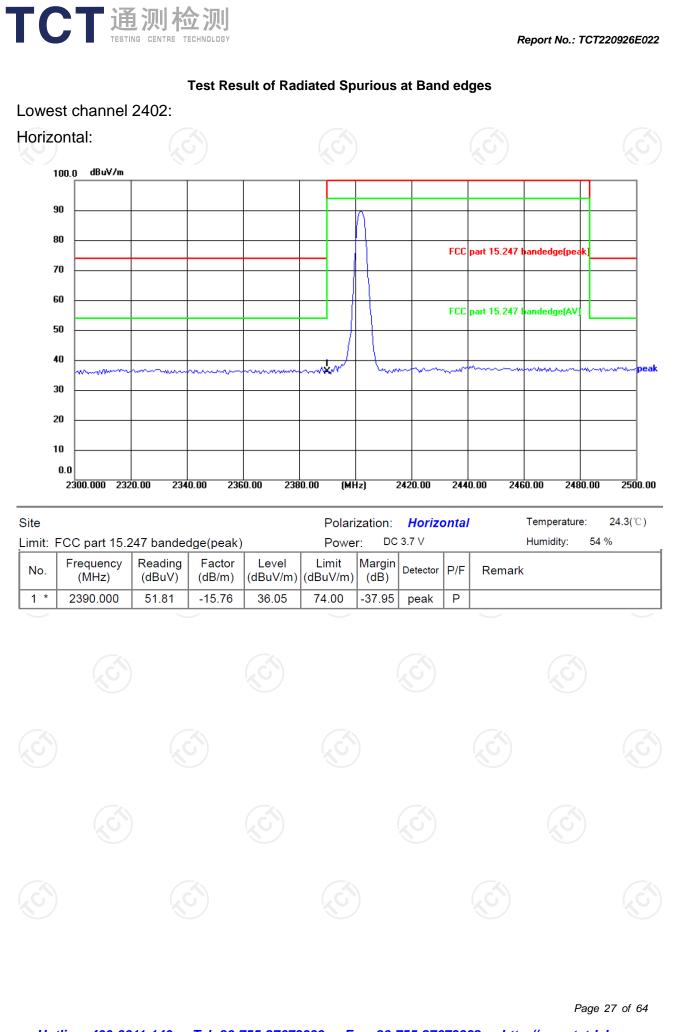

Site #2 3m Anechoic Chamber Limit: FCC Part 15C RE_3m Polarization: *Horizontal*

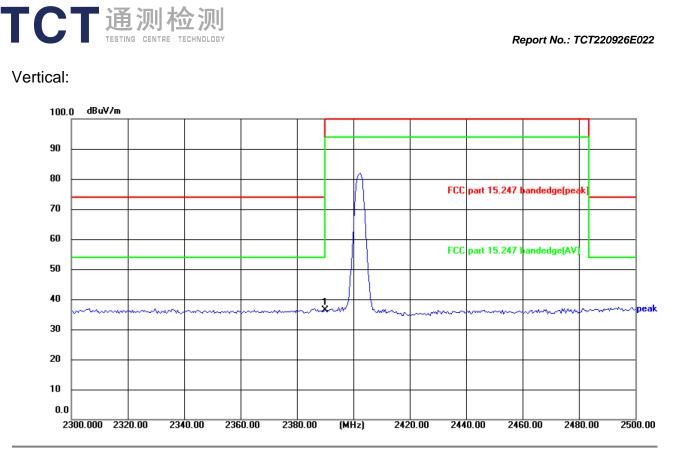
al Temperature

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Temperature: 24.8(C) Humidity: 54 %

N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	44.1202	6.05	13.93	19.98	40.00	-20.02	QP	Ρ	
	2	75.9773	8.16	10.02	18.18	40.00	-21.82	QP	Ρ	
3	3	159.7844	10.13	13.41	23.54	43.50	-19.96	QP	Ρ	
4	*	263.8190	15.39	12.82	28.21	46.00	-17.79	QP	Ρ	
5	5	305.6800	11.98	13.90	25.88	46.00	-20.12	QP	Ρ	
6	6	543.2742	5.54	20.22	25.76	46.00	-20.24	QP	Ρ	


Site #2	2 3m Anechoi	c Chambe	r	Polariz	zation: Ve	ertical			Temperature: 24.8(C)	Humidity: 54 %
Limit: I	FCC Part 15C	RE_3m			Po	wer: DC	C 5 V(Ad	apte	r Input AC 120 V/60	Hz)
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	39.7146	16.24	13.97	30.21	40.00	-9.79	QP	Ρ		
2	43.6584	15.91	13.93	29.84	40.00	-10.16	QP	Р		
3	73.8756	14.28	10.39	24.67	40.00	-15.33	QP	Ρ		
4	134.5592	11.32	12.90	24.22	43.50	-19.28	QP	Ρ		
5	155.3644	14.23	13.38	27.61	43.50	-15.89	QP	Ρ		
6	264.7457	8.45	12.89	21.34	46.00	-24.66	QP	Ρ		


Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and the worst case Mode

- (Lowest channel) was submitted only. 3. Freq. = Emission frequency in MHz
- Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit ($dB\mu V/m$) = Limit stated in standard
- $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
- * is meaning the worst frequency has been tested in the test frequency range.

Page 26 of 64

Site					Polarization: Vertical					Temperature	e: 24.3(℃)
Limit:	Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V									Humidity:	54 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark		
1 *	2390.000	52.11	-15.76	36.35	74.00	-37.65	peak	Ρ			

Page 28 of 64

hest	channel	2480:									
rizont	al:										
100) dBuV/m										
100.0											
90											
80										ΔL	
00							FCC	part 15.247	andedge(pe	ak _	
70											
60					 			part 15.247			
50					1			part 15.247	anueuye(Aw		
40											
40	~~~~~	mm	-	man	 ·	m		m	wanter		man
30										+	
20					 					-	
10											
0.0											

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Site					Polar	ization:	Horiz	ontal	1	Temperature	: 24.3(℃)
Limit:	.imit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V									Humidity:	54 %
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark		
1 *	2483.500	64.21	-15.41	48.80	74.00	-25.20	peak	Ρ			

Page 29 of 64

Report No.: TCT220926E022

		E TECHNOLOGY				F	Report No.: 1	TCT220920
cal:								
100.0 dB	uV/m			 				_
90								
80					FCC	part 15.247	bandedge(pe	sk
70								
60					FCC	nart 15 247	bandedge(AV	
50				 	 			×
40								1
30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	en e	~~~~~	 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 e	www.www.www.www.www.www.www.www.www.ww	norm	him
20								
10					 			

Site					Polarization: Vertical					Temperature	: 24.3(°C)
Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Humidity: 54 %									54 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark		
1 *	2483.500	63.16	-15.41	47.75	74.00	-26.25	peak	Ρ			

Above 1GHz

M	lodulation	Type: GF	SK							
L	ow channe	el: 2402 N	IHz							
F	requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4804	Н	46.62		0.66	47.28		74	54	-6.72
	7206	Н	35.70		9.50	45.20		74	54	-8.80
		Н								
	(.C)		(.C)		(.G`)		(.c.)	
	4804	V	45.40		0.66	46.06		74	54	-7.94
	7206	V	35.88		9.50	45.38		74	54	-8.62
		V								

Middle cha	nnel: 2441	MHz			5)				Z
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	45.63		0.99	46.62		74	54	-7.38
7323	KOĤ)	34.17	-1,0	9.87	44.04	01	74	54	-9.96
	H								
4882	V	45.63		0.99	46.62		74	54	-7.38
7323	V	35.57		9.87	45.44		74	54	-8.56
27	V			'	/				

High chanr	nel: 2480 N	/IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	44.61)	1.33	45.94		74	54	-8.06
7440	Н	34.64		10.22	44.86		74	54	-9.14
	Н								
G))				(.0			(\mathbf{G})		(.C
4960	V	45.43		1.33 🔪	46.76		74	54	-7.24
7440	V	35.61		10.22	45.83		74	54	-8.17
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

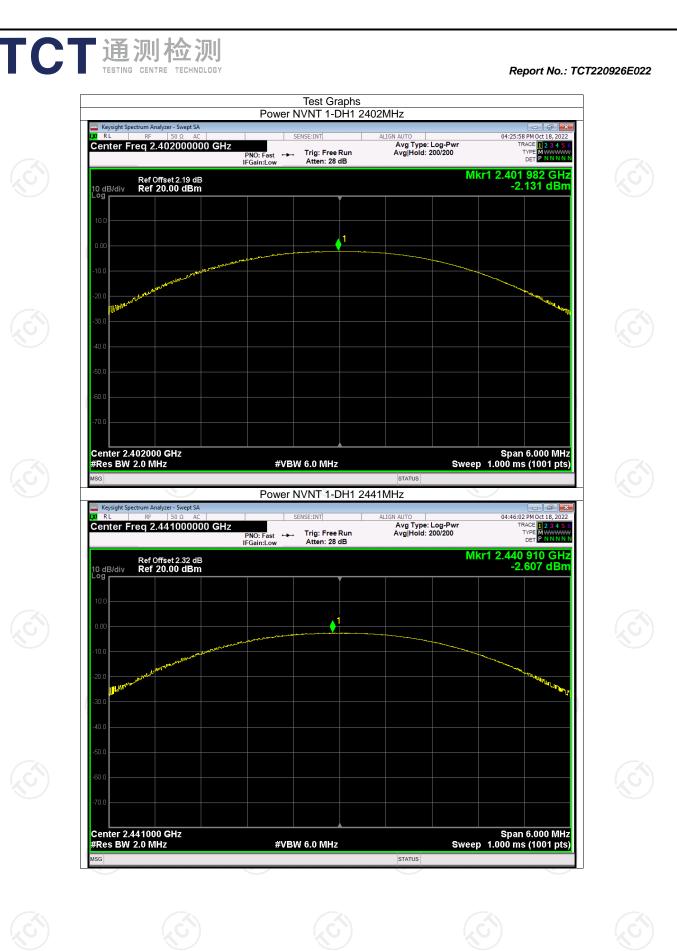
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

CT 通测检测 TESTING CENTRE TECHNOLOGY


Appendix A: Test Result of Conducted Test

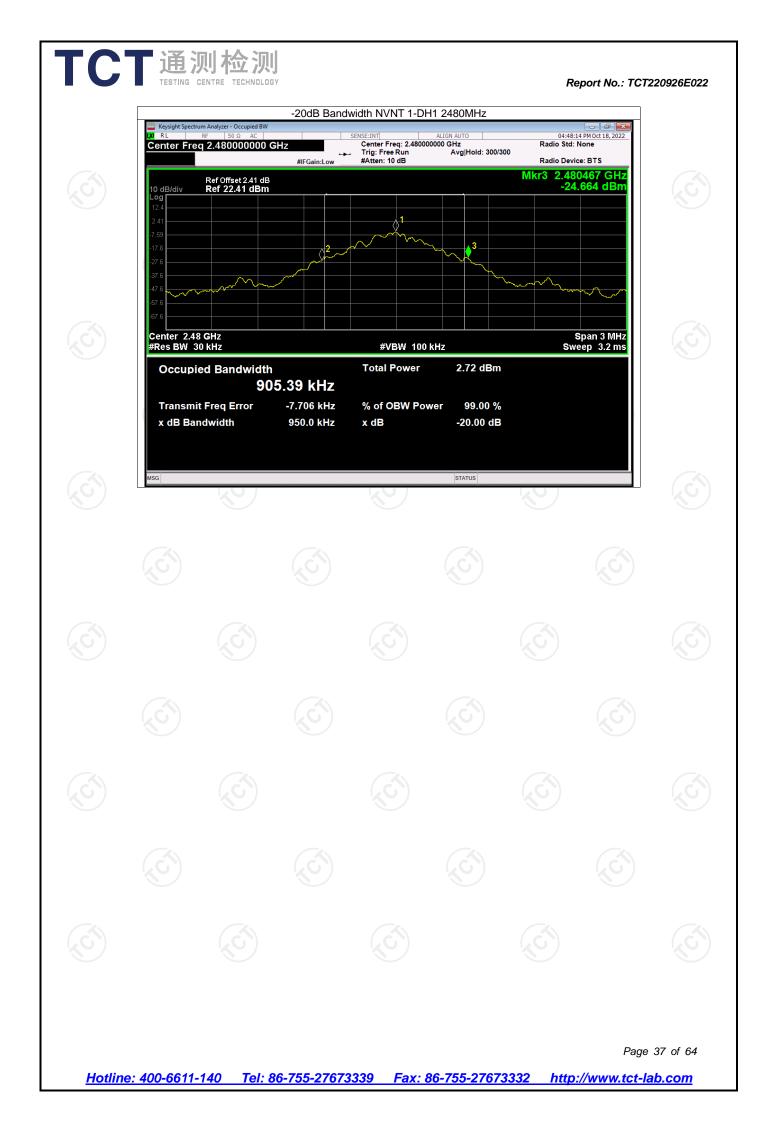
TCT通测检测 TECTING CENTRE TECHNOLOGY

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-2.13	30	Pass
NVNT	1-DH1	2441	-2.61	30	Pass
NVNT	1-DH1	2480	-3.00	30	Pass

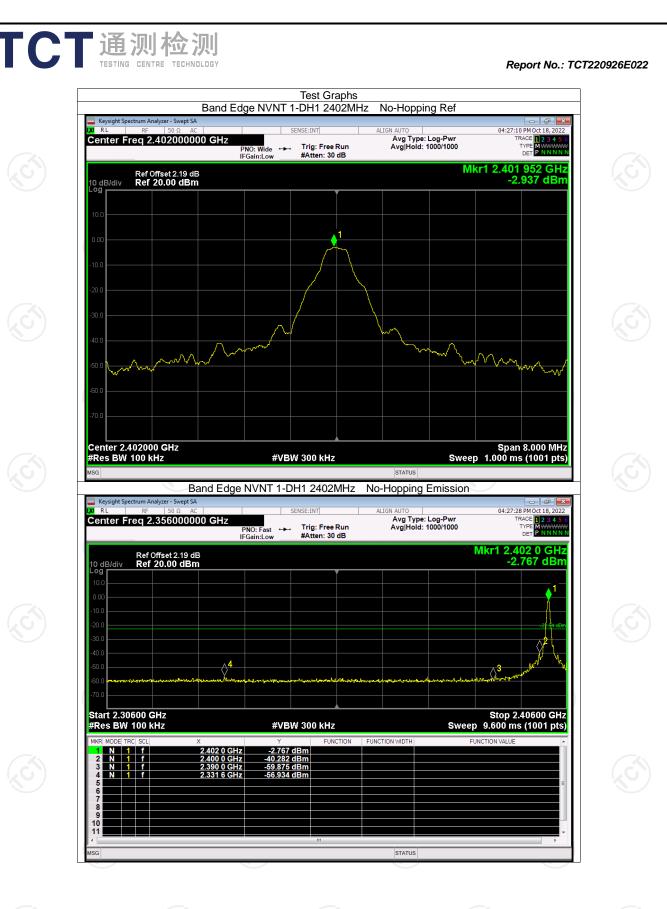
Page 32 of 64

Page 33 of 64


IC		校立 次 リ			Report No.: TCT	220926E022				
	Power NVNT 1-DH1 2480MHz Δ Colspan="2">Colspan="2" Δ Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Δ Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspa=""2" Colspan="2" <									
	Center Freq 2.48		t 🛶 Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN					
	Ref Offs 10 dB/div Ref 20 Log	et 2.41 dB .00 dBm			kr1 2.480 006 GHz -3.003 dBm					
	10.0									
	-10.0	a company and a second second								
	-20.0				and the second s					
	-30.0									
	-40.0									
	-60.0									
	-70.0									
	Center 2.480000 0 #Res BW 2.0 MHz	GHz	#VBW 6.0 MHz	Swee	Span 6.000 MHz p 1.000 ms (1001 pts)					
	Ļ		Res and a second		9					
	e: 400-6611-140	Tel: 86-755-27		86-755-27673332	Page http://www.tct-l	34 of 64				

Condition		-20dB Ban Frequency (MHz)	-20 dB Bandwidth (I	MH7)	Verdict	
NVNT NVNT NVNT	1-DH1 1-DH1 1-DH1	2402 2441 2480	0.952 0.949 0.950		Pass Pass Pass	


TCT通测检测 TESTING CENTRE TECHNOLOGY

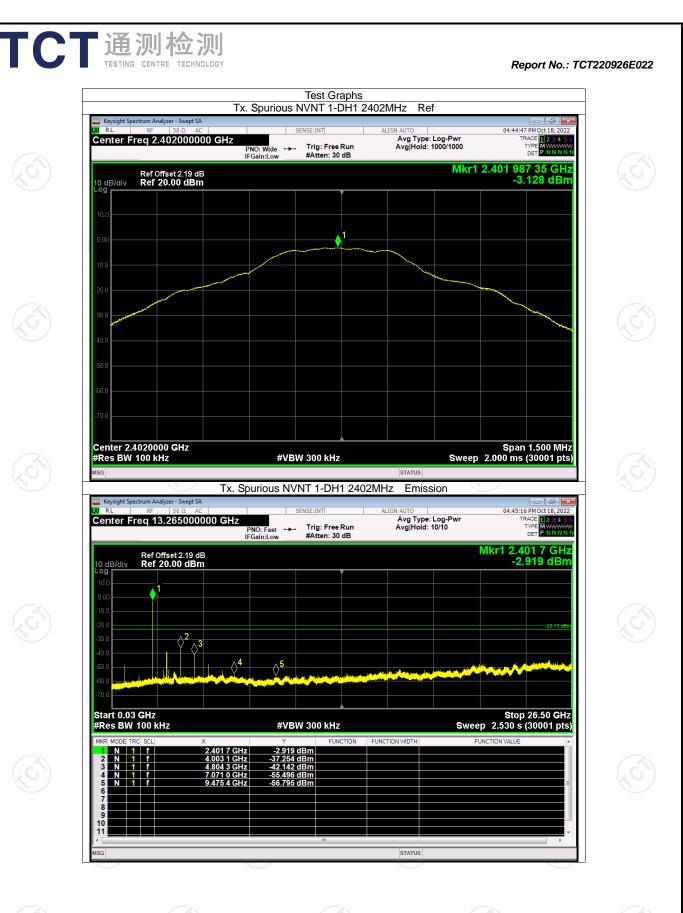

Condition NVNT NVNT NVNT	Mode 1-DH1 1-DH1 1-DH1	Hoppin (M 240 244	ig Freq1 Hz) 1.988 0.990 8.986	quencies Hopping (MH 2402. 2441. 2479.	Freq2 z) 990 986	HFS (MHz) 1.002 0.996 1.000	Limit (MHz) 0.952 0.952 0.952	Verdic Pass Pass Pass
	S		Í		S		Ś	

Page 39 of 64

ГС		金 测 TECHNOLOGY			Report N	o.: TCT220926E02
	Keysight Spectrum Analyzer	- Swept SA 50 Ω AC	S NVNT 1-DH1 248	ALIGN AUTO Avg Type: Log-Pv	04:51:25 PM Oct 18, rr TRACE 23	2022
	Ref Offse 10 dB/div Ref 20.0 10.0 10.0 10.0 -20.0 -30.0 -40.0	PNO: Wide IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>100/10	Mkr1 2.478 986 G -3.999 dl	HZ
	-50.0 -70.0 -70.0 Center 2.479500 G #Res BW 100 kHz MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5 6	# X	VBW 300 kHz FUNCTION 199 dBm 120 dBm	FUNCTION WIDTH	Span 2.000 M Sweep 1.000 ms (1001 FUNCTION VALUE	AHZ pts)
	7 8 9 10 11 	9		STATUS		,. ,.
	:: 400-6611-140	Tel: 86-755-276		86-755-27673 .		Page 40 of 64 <u>w.tct-lab.com</u>

TC		川检测	1			I	Report No.: TC	T220926E022
		Frequ		Band Edge Hopping		value	Limit	
Condition NVNT NVNT	n Mode 1-DH1 1-DH1	(MF 24) 24)	Hz) 02	Mode No-Hoppin No-Hoppin	g -5	d Bc) 53.99 14.24	(dBc) -20 -20	Verdict Pass Pass
	400-6611-14						Pag	e 41 of 64

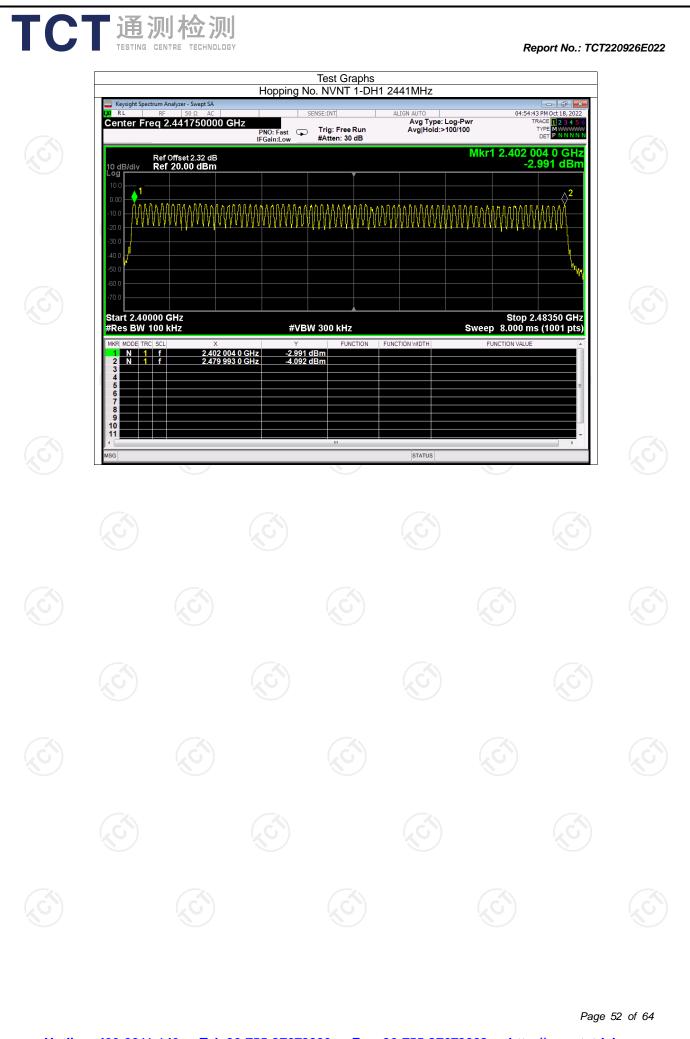
	rsight Spectrum Analyzer - Swept SA	nd Edge NVNT 1-DH1 2480N		- 6 -	_
Cen	- RF 50 Ω AC ter Freq 2.480000000 G	PNO: Wide ++++ Irig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	04:48:23 PM Oct 18, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN	
10 dE	Ref Offset 2.41 dB 3/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	М	kr1 2.479 992 GHz -3.858 dBm	6
Log					
0.00		1_			
-10.0					
-20.0					
-30.0					C
-40.0		A A A A A A A A A A A A A A A A A A A	- many		1 C
-50.0	mmm			Mary my	
-60.0					
-70.0					
Cen #Res	ter 2.480000 GHz s BW 100 kHz	#VBW 300 kHz	Swee	Span 8.000 MHz p 1.000 ms (1001 pts)	
		Edge NVNT 1-DH1 2480MHz			
LXI RI	rsight Spectrum Analyzer - Swept SA RF 50 Ω AC ter Freq 2.526000000 G	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	04:48:28 PM Oct 18, 2022	
	ter Freq 2.32000000 G		Avg/Hold: 200/200	TRACE 1 2 3 4 5 6 TYPE M WWWW	
		PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 200/200	Mkr1 2.479 9 GHz	
10 dl Log	Ref Offset 2.41 dB B/div Ref 20.00 dBm	PNO: Fast ++++ Irig: Free Run	Avg/Hold: 200/200	DET P NNNN	
Log 10.0 -10.0		PNO: Fast ++++ Irig: Free Run	Avg Hoid: 200/200	Mkr1 2.479 9 GHz	
Log 10.0 -10.0 -20.0 -30.0		PNO: Fast ++++ Irig: Free Run	Avg Hold: 200/200	Mkr1 2.479 9 GHz	(Č
Log 10.0 -10.0 -20.0 -30.0 -40.0 -50.0	Ref Offset 2.41 dB Ref 20.00 dBm	PNO: Fast \rightarrow Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 200/200	-23.85 mem	
Log 10.0 -10.0 -20.0 -30.0 -40.0	Ref Offset 2.41 dB Ref 20.00 dBm	PNO: Fast \rightarrow Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 200/200	DET P NNNN Mkr1 2.479 9 GHz -3.713 dBm -25105 одн -25105 одн	
Log 100 -100 -200 -300 -400 -500 -600 -700 Star #Re	Ref Offset 2.41 dB Ref 20.00 dBm	PNO: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB	Avg Hold: 200/200	Mkr1 2.479 9 GHz -3.713 dBm -2538 dam -2538 da	(S)
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50.0 -50.0 -70.0 Star #Re MKR 2	Ref Offset 2.41 dB Ref 20.00 dBm	PNO: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB	Avg Hold: 200/200	CET P NNNN Mkr1 2.479 9 GHz -3.713 dBm -2336 080 -2336 080 	
Log 100 -100 -200 -200 -300 -400 -500 -700 Star #Re MKR 1 2 3 4 5 6	Ref Offset 2.41 dB 3/div Ref 20.00 dBm 1	PNO: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB	Avg Hold: 200/200	Mkr1 2.479 9 GHz -3.713 dBm -2538 dam -2538 da	
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50.0 -50.0 -50.0 -70.0 Star #Re MKR 1 2 3 4 4 5	Ref Offset 2.41 dB 3/div Ref 20.00 dBm 1	PNO: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB #Atten: 30 dB #VBW 300 kHz #VBW 300 kHz PUNCTION 3 6 GHz -49.655 dBm 0 GHz -60.333 dBm	Avg Hold: 200/200	Mkr1 2.479 9 GHz -3.713 dBm -2538 dam -2538 da	
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50.0 -50.0 -70.0 Star #Re MKR 1 2 3 3 4 5 5 6 7 8 9	Ref Offset 2.41 dB 3/div Ref 20.00 dBm 1	PNO: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB #Atten: 30 dB #VBW 300 kHz #VBW 300 kHz PUNCTION 3 6 GHz -49.655 dBm 0 GHz -60.333 dBm	Avg Hold: 200/200	Mkr1 2.479 9 GHz -3.713 dBm -2538 dam -2538 da	
Log 100 -100 -200 -300 -400 -500 -500 -700 Star #Re %KR 1 2 3 4 5 5 6 7 7 8 9 10	Ref Offset 2.41 dB 3/div Ref 20.00 dBm 1	PNC: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB #Atten: 30 dB #VBW 300 kHz #VBW 300 kHz #VBW 300 kHz PUNCTION 9 GHz	FUNCTION WIDTH F FUNCTION WIDTH F	Mkr1 2.479 9 GHz -3.713 dBm -2538 dam -2538 da	
Log 100 -100 -200 -300 -400 -500 -500 -700 Star #Re %KR 1 2 3 4 5 5 6 7 7 8 9 10	Ref Offset 2.41 dB 3/div Ref 20.00 dBm 1	PNC: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB #Atten: 30 dB #VBW 300 kHz #VBW 300 kHz #VBW 300 kHz PUNCTION 9 GHz	FUNCTION WIDTH F FUNCTION WIDTH F	Mkr1 2.479 9 GHz -3.713 dBm -2538 dam -2538 da	
Log 100 -100 -200 -300 -400 -500 -500 -700 Star #Re %KR 1 2 3 4 5 5 6 7 7 8 9 10	Ref Offset 2.41 dB 3/div Ref 20.00 dBm 1	PNC: Fast Trig: Free Kun IFGain:Low #Atten: 30 dB #Atten: 30 dB #VBW 300 kHz #VBW 300 kHz #VBW 300 kHz PUNCTION 9 GHz	FUNCTION WIDTH F FUNCTION WIDTH F	Mkr1 2.479 9 GHz -3.713 dBm -2538 dam -2538 da	


TC		」检测	ſ			F	Report No.: TCT	T220926E022
		Frequ		Edge(Hop Hopping	oping) Max '	Value	Limit	
Condition NVNT	Mode 1-DH1	(MI 24	Hz)	Mode Hopping	(dE	Bc)	(dBc) -20	Verdict Pass
NVNT	1-DH1	24		Hopping		.77	-20	Pass
<u>Hotline:</u>	<u>400-6611-1</u> 4	40 Tel: 8	<u>6-755-2767:</u>	3339 Fax: 8		1 <u>332 http</u>	Page D://www.tct-	e 44 of 64 l <mark>ab.com</mark>

Page 45 of 64

024 RL RF 50 Ω AC Center Freq 2.480000000	O GHz PNO: Wide →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO 04:57:41 PM Oct 1 Avg Type: Log-Pwr TRACE 12 Avg Hold: 10000/10000 TVPE 12 DET P	8,2022
Ref Offset 2.41 dB 10 dB/div Ref 20.00 dBm	, , , , , , , , , , , , , , , , , , ,	Mkr1 2.477 000 -3.824 o	GHz IBm
10.0			
-10.0	my my my		
-20.0 - W M h	the have have have have have have have ha		
-30.0	i in		
-40.0		MMM MMM MMMM	
-60.0			mM
-70.0			
Center 2.480000 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 8.000 Sweep 1.000 ms (100	MHz 1 pts)
MSG Band I	Edge(Hopping) NVNT 1-DH1 2480N	AHz Hopping Emission	
R RF SO Ω AC Center Freq 2.526000000 C <thc< td=""><td>PNO: Fast Trig: Free Run</td><td>ALIGN AUTO 05:00:12 PM Oct 1 Avg Type: Log-Pwr TRACE Avg Hold: 10000/10000 TYPE M</td><td>8,2022 3 4 5 6</td></thc<>	PNO: Fast Trig: Free Run	ALIGN AUTO 05:00:12 PM Oct 1 Avg Type: Log-Pwr TRACE Avg Hold: 10000/10000 TYPE M	8,2022 3 4 5 6
Ref Offset 2.41 dB 10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1 2.480 0 -3.656 c	GHz
			5.02 (IBM
-20.0			
-30.0	A 3		
-30.0			~~~~~
-30.0 -40.0 -50.0 -60.0	#VBW 300 kHz	Stop 2.57600 Sweep 9.600 ms (1001	
30.0 40.0 50.0	#VBW 300 kHz #VBW 300 kHz 2480 0 GHz -3.656 dBm -483 5 GHz -51.596 dBm		
-30.0 -40.0 -50.0 -60.0 -70.0 Start 2.47600 GHz #Res BW 100 kHz MKR MODE TRC SCL X MKR MODE TRC SCL X 1 N 1 f 22 3 N 1 f 22	#VBW 300 kHz Y FUNCTION FI 2.480 0 GHz -3.656 dBm	Sweep 9.600 ms (1001	
300 400 400 400 500 400 500 400 500 400 500 400 500 400 500 400 500 400 500 400 500 500 600 500 700 500 600 500 700 500 700 500 700 7	#VBW 300 kHz +VBW 40 kHz +VBW 300 kHz +VBW 40 kHz +	Sweep 9.600 ms (1001	

ГСТ	通测检测 TESTING CENTRE TECHNOLO	J) JGY			Rep	oort No.: TC	T220926E022
Condition NVNT NVNT NVNT		nducted F quency (M 2402 2441 2480		ous Emis x Value (dE -34.12 -35.86 -36.69	3c) Limit -2 -2		Verdict Pass Pass Pass
<u>Hotline: 400</u>	-6611-140 Tol-	<u>86-755-2767:</u>	3330 Eav	86-755-2767	3332 http:/	Pag /www.tct-	e 47 of 64



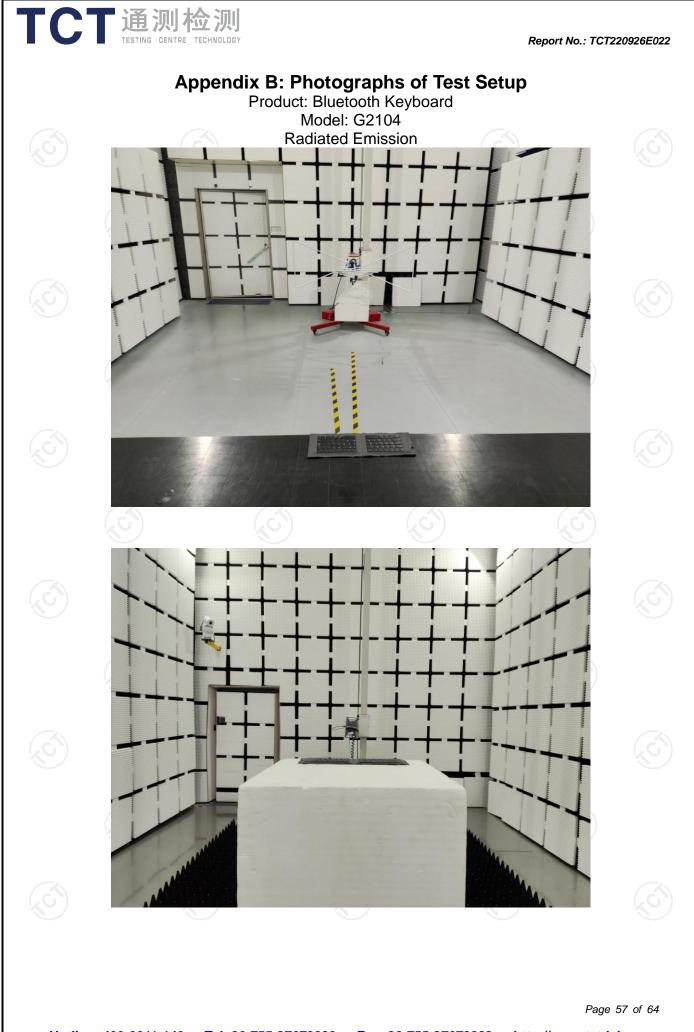
Page 48 of 64

: TCT220926E022		NT 1-DH1 2441MHz R		通测检测 TESTING CENTRE TECHNOL	
2	04:46:33 PM Oct 18, 20 be: Log-Pwr TRACE 12.34 d: 1000/1000 DET P.NNN DET P.NNN	EINT ALIGN AUTO	AC SENS	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.441000000	LX/
2	Mkr1 2.440 985 15 GI -3.586 dB	Atten: 30 dB	IFGain:Low	Ref Offset 2.32 dB 0 dB/div Ref 20.00 dBm	
				0 dB/div Ref 20.00 dBm	Log
		1		0.00	
				10.0	-10.
				30.0	
				40.0	-40.
				50.0	-50.
				70.0	
z	Span 1.500 M			Center 2.4410000 GHz	
	Sweep 2.000 ms (30001 p	STATUS	#VBW (sg	#Re MSG
2	SSION 04:47:03 PM Oct 18, 20 De: Log-Pwr TRACE 1234	INT ALIGN AUTO	AC SENS	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 13.26500000	(X)
-	De: Log-Pwr d: 10/10 TYPE MWWW DET P NNN Mkr1 2.441 4 GH	rig: Free Run Avg Hold Atten: 30 dB	PNO: Fast ↔→→ IFGain:Low		
	-3.696 dB		Bm	Ref Offset 2.32 dB Ref 20.00 dBm .og	
	-23.59 (∂ ³	30.0 40.0	
					-60.
2	Stop 26.50 GI Sweep 2.530 s (30001 p	00 1/47	#VBW 3	^{70.0} Start 0.03 GHz ¢Res BW 100 kHz	Sta
	FUNCTION VALUE	FUNCTION FUNCTION WIDTH	X Y 2.441 4 GHz -3.696 dB 3.254 9 GHz -39.460 dB	MKR MODE TRC SCL X	МКЯ
		1 1	4.882 0 GHz -42.546 dB 7.174 3 GHz -56.430 dB 9.953 6 GHz -56.078 dB	3 N 1 f 4 4 N 1 f 7	4 5
					8 9 10
~	•	III STATUS		<	11 MSG

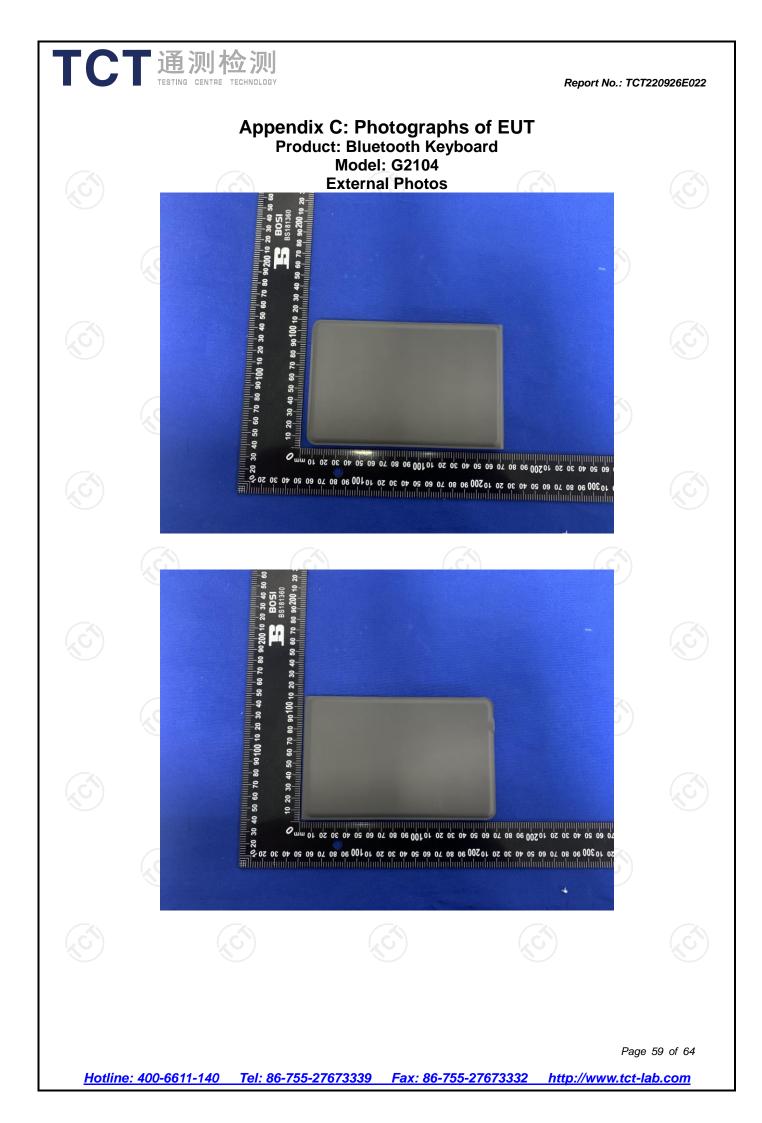
	通测检测 TESTING CENTRE TECHNOLOGY Keysight Spectrum Analyzer - Swept SA	Tx. Spurious NVNT 1-DH1 2		Report No.: TCT2	
	RL RF 50 Ω AC enter Freq 2.480000000 GH	Z PNO: Wide IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	04:48:45 PM Oct 18, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 2.41 dB dB/div Ref 20.00 dBm		Mkr1 2.	479 984 80 GHz -3.965 dBm	
1	0.0				
	.0				
-2					
				and the second second	
	0.0				
-6					
	enter 2.4800000 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep 2	Span 1.500 MHz .000 ms (30001 pts)	
	Keysight Spectrum Analyzer - Swept SA	x. Spurious NVNT 1-DH1 248	0MHz Emission		
C	RL RF 50 Ω AC enter Freq 13.265000000 GI	IZ PNO: Fast IFGain:Low SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	04:49:15 PM Oct 18, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN	
10 L	Ref Offset 2.41 dB dB/div Ref 20.00 dBm		M	kr1 2.480 2 GHz -5.349 dBm	
C					
-2				-23.97 aBm	
-6					
-7	tart 0.03 GHz			Stop 26.50 GHz	
#	Res BW 100 kHz R MODE TRC SCL X N 1 f 2.480 2	#VBW 300 kHz Y FUNCTION GHz -5.349 dBm		2.530 s (30001 pts)	
	2 N 1 f 3.307 0 3 N 1 f 4.960 5 4 N 1 f 7.558 1 5 N 1 f 9.966 0	GHz -40.654 dBm GHz -44.012 dBm GHz -56.327 dBm		=	
	6 7 8 8 9 8 8				
1 1 MS		m	STATUS	*	
	9				

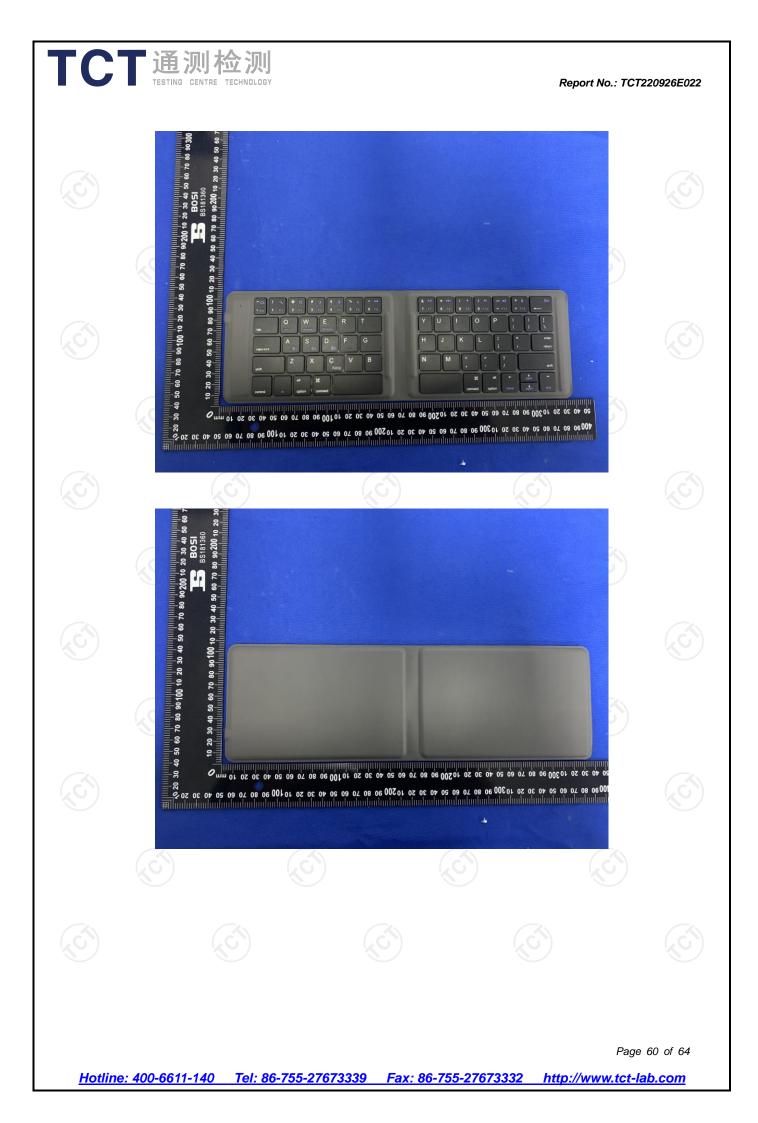
ТС		则检测				Rej	oort No.: TCT2	20926E022
	Condition NVNT	Nu Mode 1-DH1	mber o	f Hoppin Hopping N 79	g Chann umber	el Limit 15	Verd Pas	
Hot	<u>line: 400-6611-</u>	<u>140 Tel: 86</u> -	· 755-2767 3	1339 Fax:	<u>86-755-2767</u>	<u>3332 http:/</u>	Page //www.tct-la	51 of 64 1 b.com

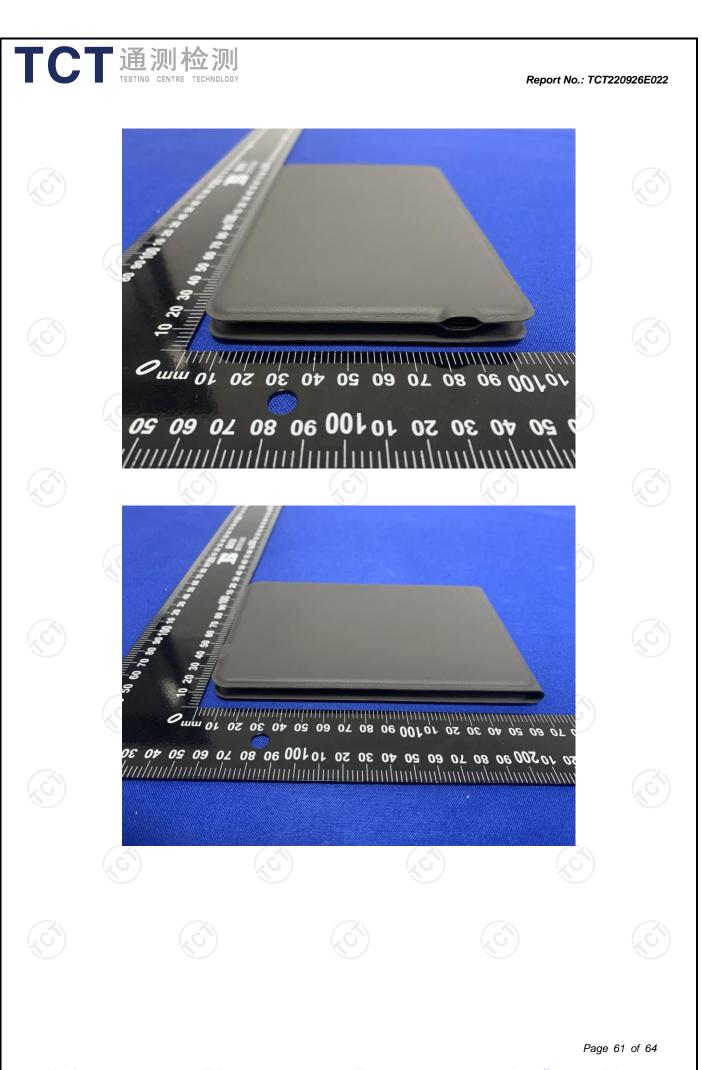
Report No.: TCT220926E022


	Dwell Time									
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict		
NVNT	1-DH1	2441	0.43	25.37	59	31600	400	Pass		
NVNT	1-DH3	2441	1.63	78.24	48	31600	400	Pass		
NVNT	1-DH5	2441	2.83	110.37	39	31600	400	Pass		

of	64
	of


Page 54 of 64


TC1	通测检测 TESTING CENTRE TECHNOLOGY Report No.	o.: TCT220926E022
	Dwell NVNT 1-DH3 2441MHz One Burst W RL RF 50 Ω AC SENSE:INT ALIGN AUTO 05:00:56 PM Oct 18, 2 Center Freq 2.441000000 GHz Trig Delay-500.0 µs Avg Type: Log-Pwr Trace 12 2 PNO: Fast	022
Ś	PNO: Fast IFGain:Low Ing: Video #Atten: 30 dB Difference Ref Offset 2.32 dB ΔMkr1 1.630 r -8.12 d 10 dB/div Ref 20.00 dBm	ns
C	60.0 0	
	1 Δ2 1 t (Δ) 1.630 ms (Δ) -8.12 dB 2 F 1 t 498.0 µs -14.28 dBm -14.28 dBm 3 -14.28 dBm -14.28 dBm -14.28 dBm -14.28 dBm 4 - - - - - 5 - - - - - 6 - - - - - 7 - - - - - 8 - - - - - 9 - - - - -	E
	10	022
	Center Freq 2.441000000 GHz PNO: Fast IFGain:Low Ref Offset 2.32 dB 10 dB/div Ref 20.00 dBm	
S	40 0 50 0 60 0 70 0 Center 2.441000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 31.60 s (10001 p	Hz ots)
	MSG	
		Page 55 of 64


	Keysight Spectrum Analyzer - Swept SA	SENSE:INT ALIGN AU	Burst	12
	Center Freq 2.441000000 GHz	PNO: Fast -→- Trig: Video IFGain:Low #Atten: 30 dB	Type: Log-Pwr TRACE 1 2 3 4 TYPE WWWW DET P NNN	
6	Ref Offset 2.32 dB 10 dB/div Ref 20.00 dBm		-2.53 d	
	0.00 -10.0 2	1Δ2		
	-20.0		TRIG L	
	-40.0 -50.0 1910/977	en alle son and the state of the	ang pang palan pana mini sa sa kana mana mana mana mana mana mana man	
	-60.0 pp/// 4.5	a this priority for an application of the part of the	<u>ta Wiliphi pangapat di Uki pina bordi di di si kaling kaling k</u> aling ka	
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 H Sweep 10.00 ms (10001 pt	z s)
	MKR MODE TRC SCI X 1 Δ2 1 t (Δ) 2.830 2 F 1 t 499. 3 499.	Υ FUNCTION FUNCTION WII 0 ms (Δ) -2.53 dB	TH FUNCTION VALUE	
	4 5 6 7			=
	8 9 10 11			
	MSG	m ST.	NTUS	
	Keysight Spectrum Analyzer - Swept SA K RL RF 50 Ω AC	SENSE:INT ALIGN AU	0 05:02:22 PM Oct 18, 202	
	Center Freq 2.441000000 GHz	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Type: Log-Pwr TRACE 12.3.4 Type United Type United Typ	6 AW I N
	Ref Offset 2.32 dB 10 dB/div Ref 20.00 dBm			
	10.0			
	-10.0			
	-40.0			
	-50.0 -50.0			
	-60.0			(é
	-70.0			
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 H Sweep 31.60 s (10001 pt	lz s)
	MSG	ST.		

