

Page 1 of 53 Report No.: EED32I00153401

TEST REPORT

Product : Detachable Bluetooth Keyboard Case

Trade mark : N/A

Model/Type reference : G1416B

Serial Number : N/A

Report Number : EED32I00153401

FCC ID : 2AFW2G1416B

Date of Issue : Jul. 19, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Shenzhen DZH Industrial Co., Ltd 3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, ShaJing, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

TOM- Chon

Compiled by:

Approved by

Report Seal

Kevin Ian (Project Engineer)

Reviewed by:

Date:

Kevin yang (Reviewer)

Tom chen (Test Project)

Jul. 19, 2016

Sheek Luo (Lab supervisor)

Check No.: 2384306031

Hotline: 400-6788-333

Page 2 of 53

2 Version

Version No.	Date	Description		
00	Jul. 19, 2016	Original		
6				

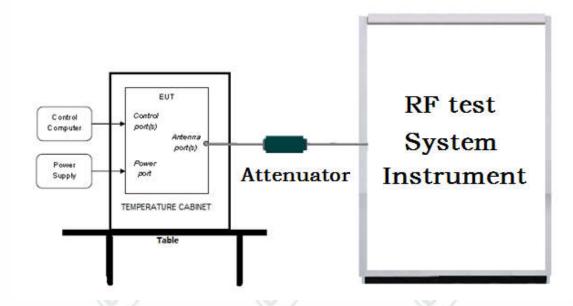
3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested samples and the sample information are provided by the client.

4 Content

2 VERSION 3 TEST SUMMARY 4 CONTENT 5 TEST REQUIREMENT 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVALTION FROM STANDARD CONDITIONS 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST 8 RADIO TECCHNICAL REQUIREMENTS SPECIFICATION Appendix B): Carrier Frequency Separation Appendix B): Conflucted Peak Output Power Appendix C): Dwell Time Appendix C): Dwell Time Appendix C): Dwell Time Appendix C): Producted Peak Output Power Appendix C): Producted Peak Output Power Appendix C): Preducted Spurious Emissions Appendix J): AT Power Line Conducted Emissions Appendix J): AT Power Line Conducted Emissions Appendix J): A Power Line Conducted Emission Appendix J): A Rower Line Conducted Emission Appendix J): A Rower Line Conducted Emission Appendix J): A Power Line Conducted Emission Appendix J): A Power Line Conducted Emission Appendix J): A Rower Line Condu	1 COVER PAGE	•••••	•••••	•••••	•••••	1
4 CONTENT. 5 TEST REQUIREMENT 5.1 Test setup. 5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 Test Environment. 5.3 Test Condition. 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 General Description of EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 Test LOCATION 6.6 Test Facility. 6.7 Deviation From Standards. 6.8 Abinormalities From Standards. 6.9 Other Information Requested by the Customer. 6.10 Measurement Uncertainty (95% confidence Levels, k=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth. Appendix A): 20dB Occupied Bandwidth. Appendix D): Hopping Channel Number. Appendix D): Hopping Channel Number. Appendix F): Band-edge for RF Conducted Emissions. Appendix G): RF Conducted Spurious Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix J): Antenna Requirement. Appendix J): Antenna Requirement. Appendix J): A C Power Line Conducted Emission. Appendix J): A C Power Line Conducted Emission. Appendix J): Restricted bands around fundamental frequency (Radiated).	2 VERSION			•••••		2
5 TEST REQUIREMENT 5.1 TEST SETUP. 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM STANDARDS 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, k=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix A): Carrier Frequency Separation Appendix D): Hopping Channel Number Appendix D): Hopping Channel Number Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix J): Antenna Requirement Appendix J): Antenna Requirement Appendix J): Artenna Requirement Appendix J): Restricted bands around fundamental frequency (Radiated) Appendix J): Radiated Spurious Emissions	3 TEST SUMMARY			•••••		3
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION. 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM STANDARDS 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix D): Hopping Channel Number Appendix C): Dwell Time Appendix C): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix I): Antenna Requirement Appendix J): Antenna Requirement Appendix J): Radiated Spurious Emission Appendix J): Radiated Spurious Emissions Appendix J): Radiated Spurious Emissions Appendix J): Radiated Spurious Emissions PHOTOGRAPHS OF TEST SETUP	4 CONTENT			•••••	•••••	4
5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 TEST FACILITY. 6.7 DEVIATION FROM STANDARDS. 6.8 ABNORMALITIES FROM STANDARD CONDITIONS. 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time. Appendix C): Dwell Time. Appendix D): Hopping Channel Number. Appendix E): Conducted Peak Output Power. Appendix G): RF Conducted Fensisions. Appendix G): RF Conducted Spurious Emissions. Appendix G): RF Conducted Emissions. Appendix J): Antenna Requirement. Appendix J): Radiated Spurious Emissions. PHOTOGRAPHS OF TEST SETUP.	5 TEST REQUIREMEN	Т		•••••	•••••	5
6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 TEST FACILITY. 6.7 DEVIATION FROM STANDARDS. 6.8 ABNORMALITIES FROM STANDARD CONDITIONS. 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time. Appendix D): Hopping Channel Number. Appendix D): Hopping Channel Number. Appendix E): Conducted Peak Output Power. Appendix E): Conducted Peak Output Power. Appendix F): Band-edge for RF Conducted Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix I): Antenna Requirement. Appendix J): AC Power Line Conducted Emission. Appendix K): Restricted bands around fundamental frequency (Radiated). Appendix L): Radiated Spurious Emissions.	5.1.1 For Conduct 5.1.2 For Radiated 5.1.3 For Conduct 5.2 TEST ENVIRONMEN 5.3 TEST CONDITION 6 GENERAL INFORMA	ed test setup I Emissions test setup ed Emissions test setup NT TION				5 6 6
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time. Appendix D): Hopping Channel Number. Appendix E): Conducted Peak Output Power. Appendix F): Band-edge for RF Conducted Emissions. Appendix G): RF Conducted Spurious Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix I): Antenna Requirement. Appendix J): AC Power Line Conducted Emission. Appendix K): Restricted bands around fundamental frequency (Radiated). Appendix L): Radiated Spurious Emissions.	6.2 GENERAL DESCRIF 6.3 PRODUCT SPECIFI 6.4 DESCRIPTION OF \$ 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM \$ 6.8 ABNORMALITIES FF 6.9 OTHER INFORMATI	PTION OF EUT CATION SUBJECTIVE TO THIS SUPPORT UNITS STANDARDS ROM STANDARD CONDITIONS ON REQUESTED BY THE CUS	STANDARD			
Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions	7 EQUIPMENT LIST			•••••		10
Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions	8 RADIO TECHNICAL	REQUIREMENTS SPECIF	ICATION	•••••		12
	Appendix B): Carri Appendix C): Dwe Appendix D): Hopp Appendix E): Cond Appendix F): Band Appendix G): RF (Appendix H): Pseu Appendix J): Anter Appendix J): AC P Appendix K): Rest Appendix L): Radia	er Frequency Separation Il Time Joing Channel Number Jucted Peak Output Power Jedge for RF Conducted E Conducted Spurious Emiss Judorandom Frequency Hop Judorandom Frequency Hop	Emissions	iated)		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS						
	PHOTOGRAPHS OF E	UT CONSTRUCTIONAL E	DETAILS			46


Page 4 of 53

Report No. : EED32I00153401 **5 Test Requirement**

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

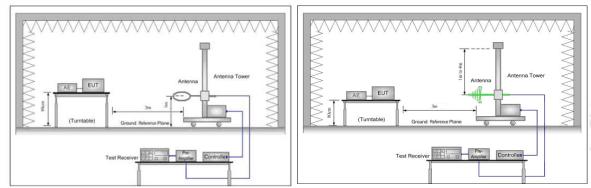


Figure 1. Below 30MHz Figure 2. 30MHz to 1GHz

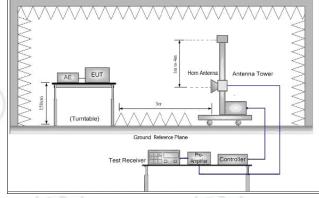
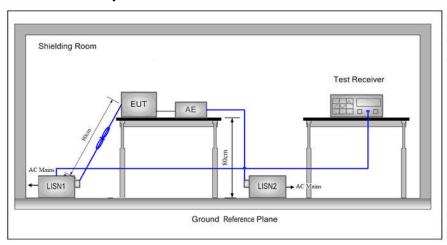


Figure 3. Above 1GHz



5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

Page 6 of 53

5.2 Test Environment

Operating Environment:			
Temperature:	21°C	(7)	
Humidity:	54% RH	2)	(0)
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Toot Mode	Tu	RF Channel		
Test Mode	1X	Low(L)	Middle(M)	High(H)
CECK	24021417 - 24901417	Channel 1	Channel 40	Channel79
GFSK	2402MHz ~2480MHz	2402MHz	2441MHz	2480MHz

Report No.: EED32I00153401 **6 General Information**

6.1 Client Information

Applicant:	Shenzhen DZH Industrial Co., Ltd
Address of Applicant:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, ShaJing, Shenzhen
Manufacturer:	Shenzhen DZH Industrial Co., Ltd
Address of Manufacturer:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, ShaJing, Shenzhen
Factory:	Shenzhen DZH Industrial Co., Ltd
Address of Factory:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, ShaJing, Shenzhen

Page 7 of 53

6.2 General Description of EUT

Product Name:	Detachable Bluetooth Keyboard Case		(5.42)	
Mode No.(EUT):	G1416B			
Trade Mark:	N/A			
EUT Supports Radios application:	2402~2480MHz	(30)		(3)
Sample Received Date:	May 25, 2016	0		0
Sample tested Date:	May 25, 2016 to Jul. 19, 2016			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Modulation Type:	GFSK	(0)	(6.)	
Number of Channel:	79			
Sample Type:	Portable production			
Test Power Grade:	N/A			100
Test Software of EUT:	N/A	(6,)		(0)
Antenna Type:	PIFA			
Antenna Gain:	-1.2dBi			
Test Voltage:	AC 120V/60Hz	72	15	
Operation Frequency each	h of channel	(-40)	1363	

Operation Frequency each of channe

Operation	rioquonoy ou	on on annie	1				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz

Report No.: EED32I00153401 Page 8 of 53

13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		(41)

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Report No. : EED32I00153401 Page 9 of 53

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%
400	1 4 4	

7 Equipment List

Page 10 of 53

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	70	01-12-2016	01-11-2017
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001	(4)	01-12-2016	01-11-2017
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d	("	04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

	Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

Report No.: EED32I00153401 Page 11 of 53

Report No. : EED3210	00153401	(0,)		(6)	Page 11 of 53
	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(3)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	(0.)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

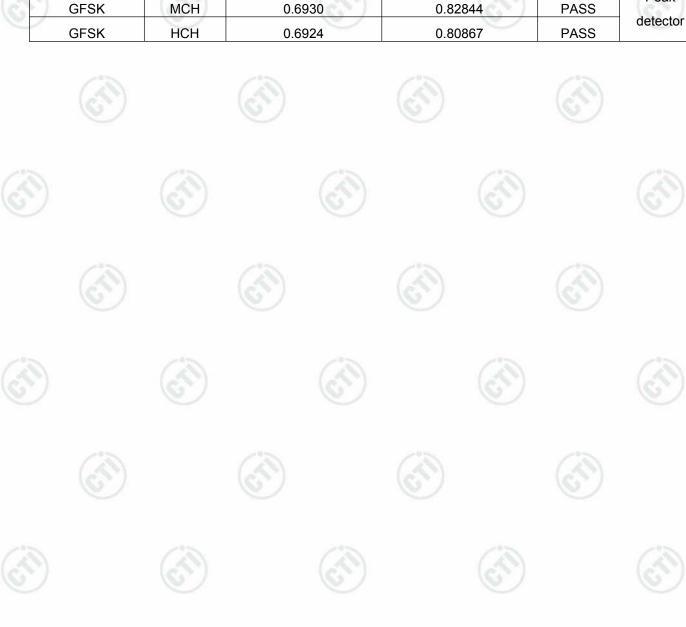
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Page 12 of 53



Page 13 of 53

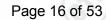
Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.6941	0.81199	PASS	630
GFSK	МСН	0.6930	0.82844	PASS	Peak
GFSK	НСН	0.6924	0.80867	PASS	detector

Test Graph



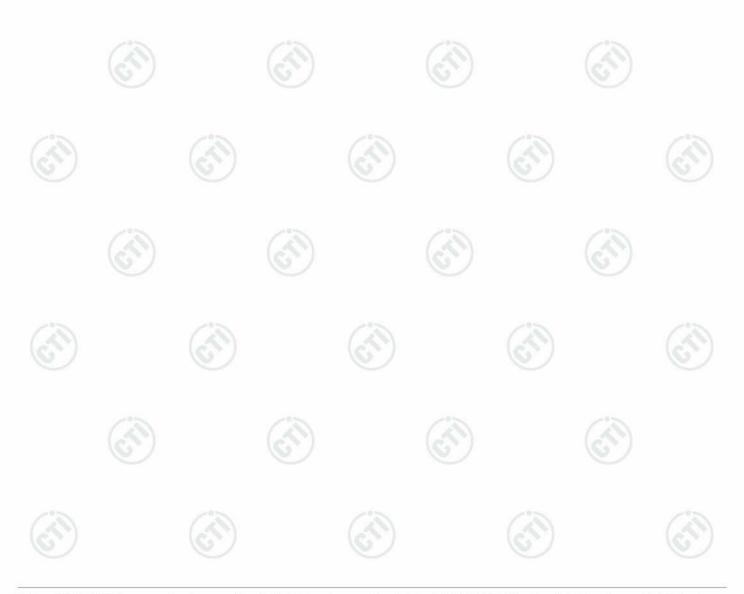


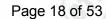
Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.002	PASS
GFSK	MCH	1.000	PASS
GFSK	НСН	1.002	PASS

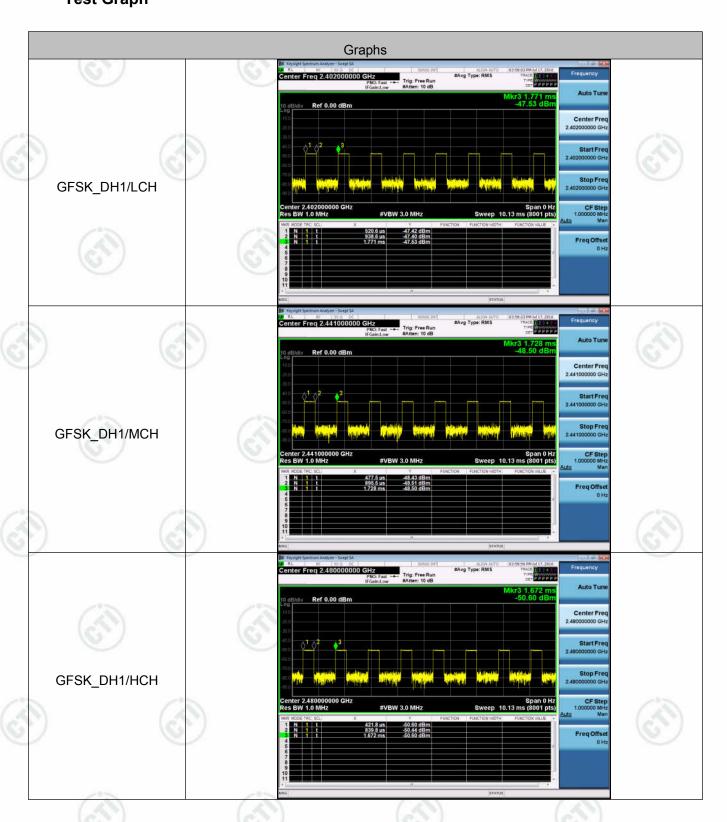
Test Graph





Appendix C): Dwell Time

Result Table

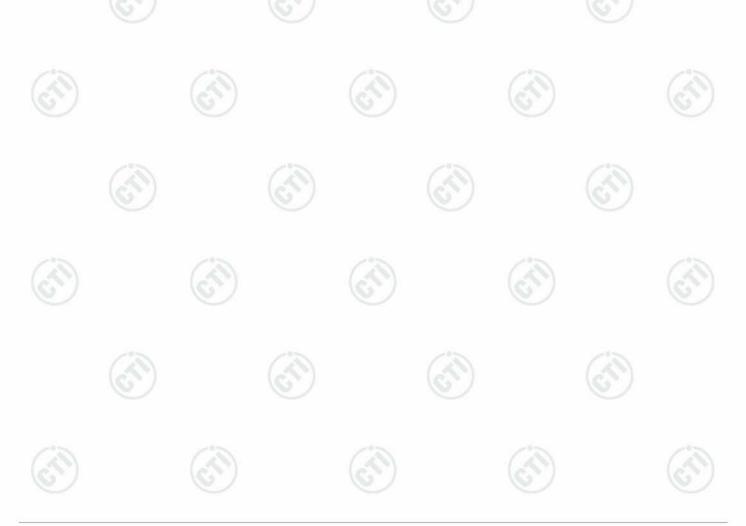

1 - (9, 71)		-W-21			1.46.71		
Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.418	320	0.134	0.33	PASS
GFSK	DH1	MCH	0.418	320	0.134	0.33	PASS
GFSK	DH1	НСН	0.418	320	0.134	0.33	PASS
GFSK	DH3	LCH	1.67454	160	0.268	0.67	PASS
GFSK	DH3	MCH	1.673267	160	0.268	0.67	PASS
GFSK	DH3	HCH	1.67327	160	0.268	0.67	PASS
GFSK	DH5	LCH	2.922203	106.7	0.312	0.78	PASS
GFSK	DH5	MCH	2.9222	106.7	0.312	0.78	PASS
GFSK	DH5	HCH	2.92094	106.7	0.312	0.78	PASS

Test Graph

Report No.: EED32I00153401 Page 19 of 53 Center Freq 2.402000000 GHz GFSK_DH3/LCH 48.29 dBm 48.40 dBm 48.03 dBm Center Free 2.441000000 GH GFSK_DH3/MCH -48.47 dBm -48.50 dBm -48.37 dBm GFSK_DH3/HCH -50.37 dBm -50.79 dBm -49.99 dBm 2.150 ms 3.823 ms 4.650 ms

Report No.: EED32I00153401 Page 20 of 53 Center Freq 2.402000000 GHz GFSK_DH5/LCH 47.56 dBm 47.85 dBm 47.44 dBm Center Free 2.441000000 GH GFSK_DH5/MCH -43.85 dBm -44.03 dBm -43.78 dBm GFSK_DH5/HCH -45.15 dBm -45.14 dBm -45.18 dBm 2.929 ms 5.849 ms 6.678 ms

Appendix D): Hopping Channel Number

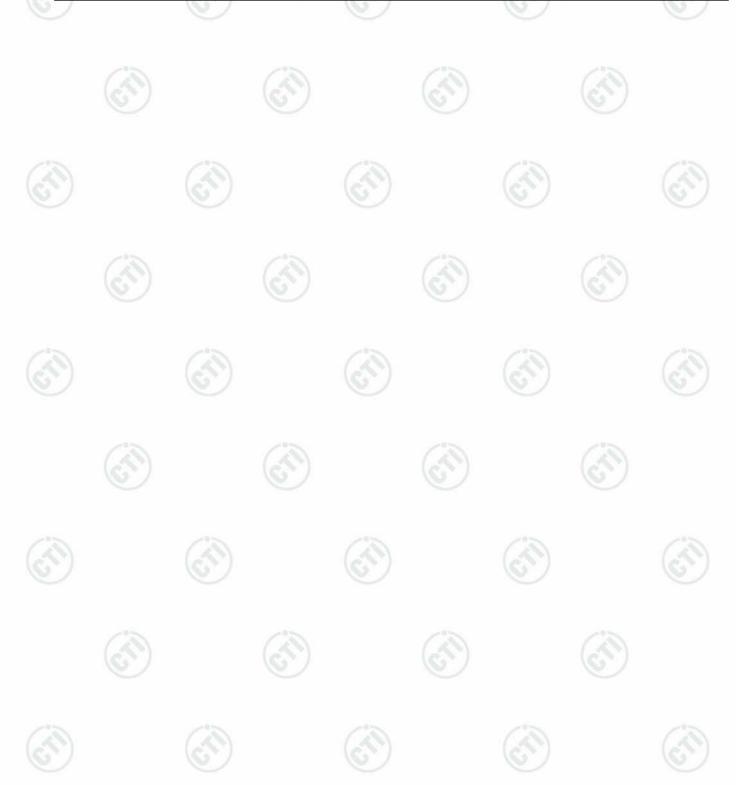

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS

Page 21 of 53

Graphs

| State | Center | Freq 2.44175000 GHz | Center | C

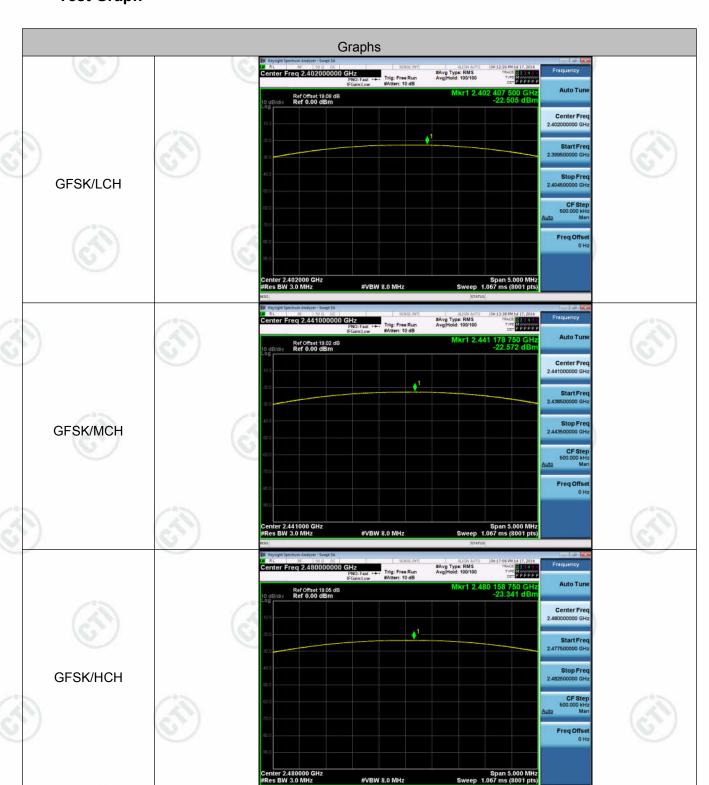


Report No.: EED32I00153401 **Appendix E): Conducted Peak Output Power**

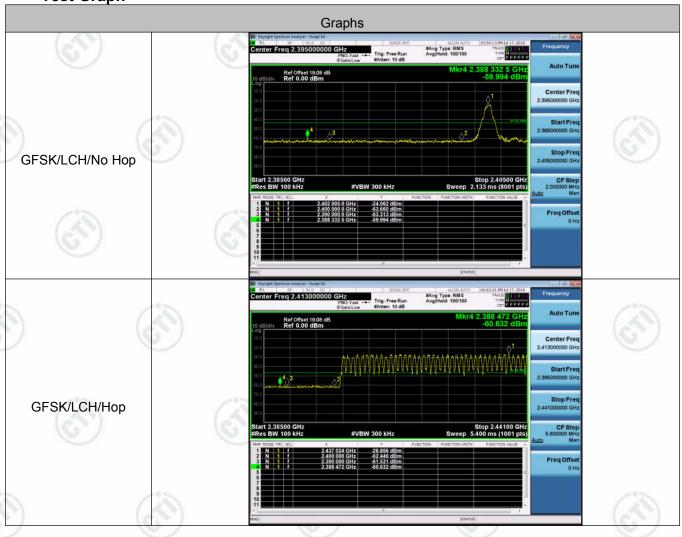
Page 22 of 53

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-22.505	PASS
GFSK	MCH	-22.572	PASS
GFSK	НСН	-23.341	PASS



Test Graph


Report No. : EED32I00153401 Page 24 of 53

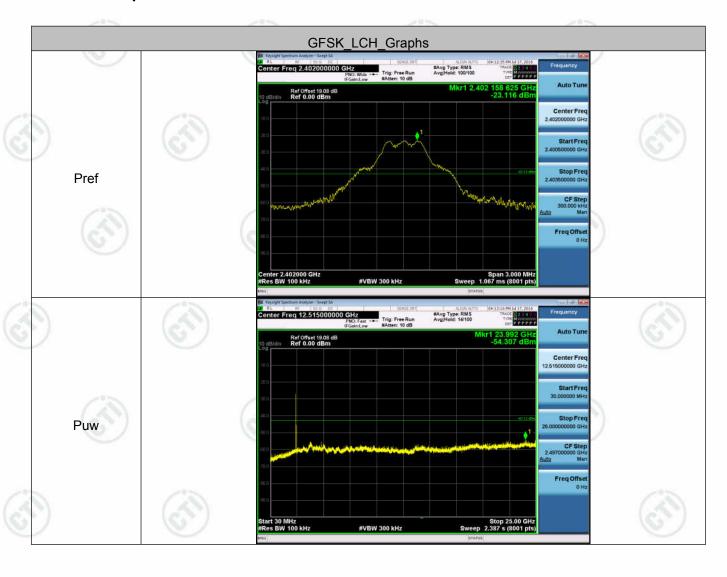
Appendix F): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
0501			-24.062	Off	-59.994	-44.06	PASS
GFSK	LCH	2402	-26.856	On	-60.632	-46.86	PASS
OFOK	11011	0400	-25.192	Off	-60.310	-45.19	PASS
GFSK	HCH	2480	-25.931	On	-59.981	-45.93	PASS

Test Graph

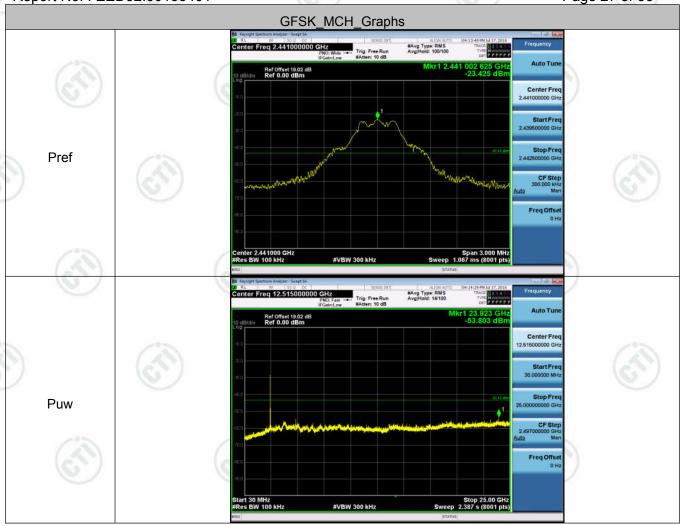
Report No.: EED32I00153401 Page 25 of 53 Center Freq 2.487500000 GHz #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 19.05 dB Ref 0.00 dBm GFSK/HCH/No Hop #Avg Type: RMS AvgiHold: 100/100 GFSK/HCH/Hop

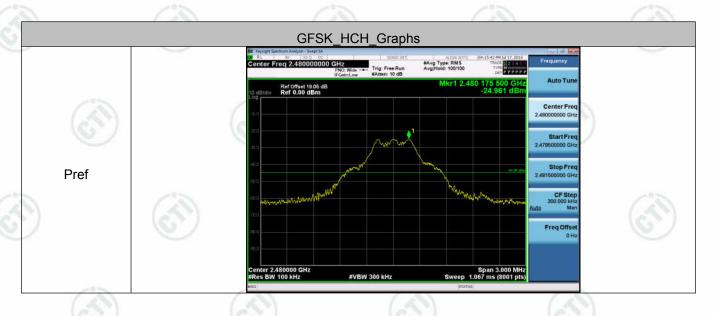

Report No. : EED32I00153401 Page 26 of 53

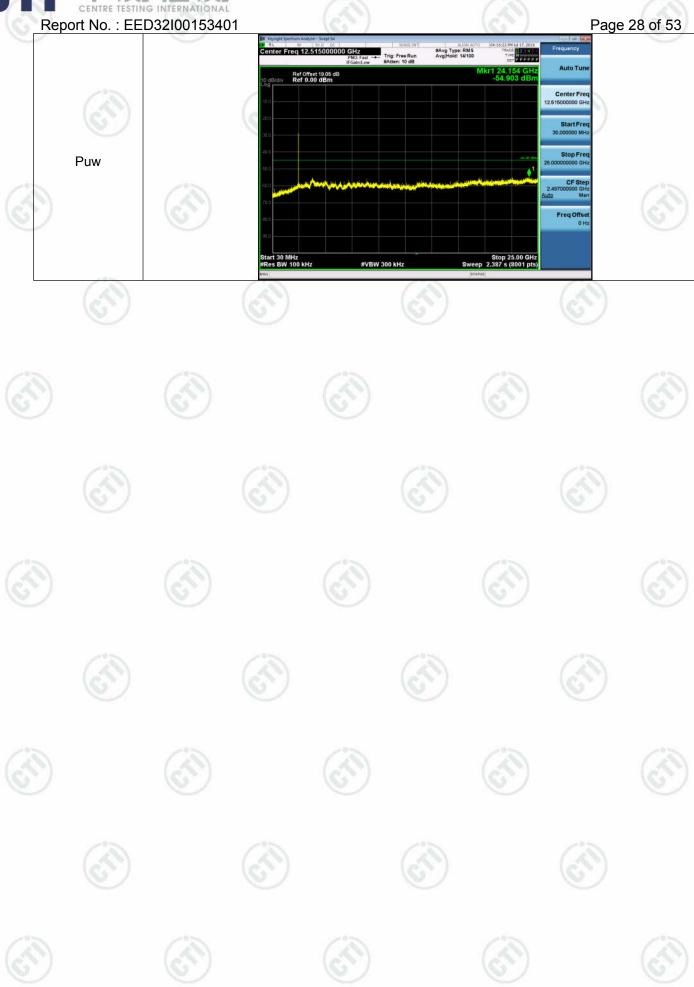
Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-23.116	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	-23.425	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	нсн	-24.961	<limit< td=""><td>PASS</td></limit<>	PASS


Test Graph

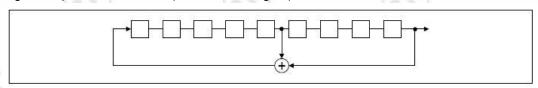



Report No. : EED32I00153401 Page 27 of 53

Page 29 of 53

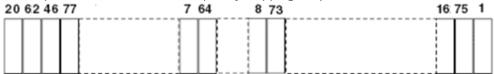
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

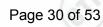
- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

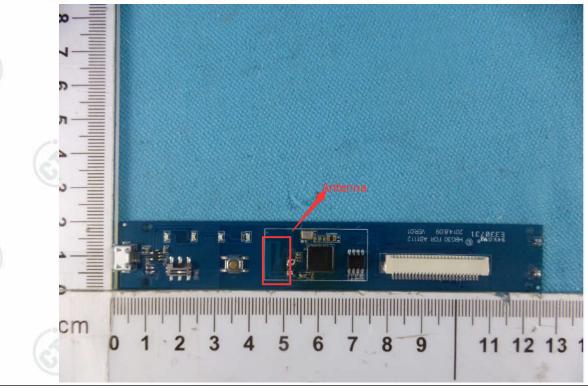
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.2dBi.

Report No.: EED32I00153401

Appendix J): AC Power Line Conducted Emission

Page 31 of 53

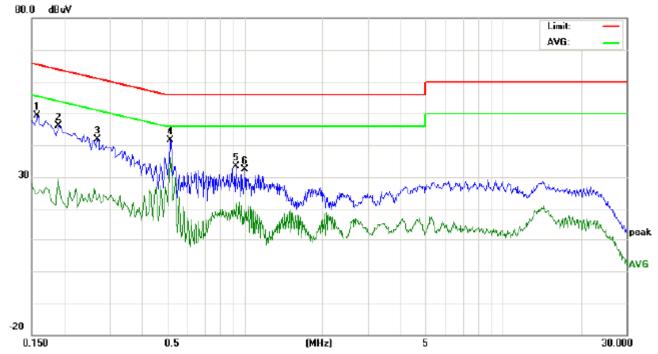
Test Procedure:	Test frequency range :150KHz-	30MHz			
	 1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not 				
	exceeded. 3)The tabletop EUT was place reference plane. And for flow horizontal ground reference 4) The test was performed wit	or-standing arrangem plane,	ent, the EUT was p	laced on the	
	EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	d to the horizontal gro he boundary of the u r LISNs mounted or etween the closest po	ound reference plan init under test and n top of the groun ints of the LISN 1 a	ie. The LISN bonded to a lid reference and the EUT	
	5) In order to find the maximum			الماممة لممم	
	of the interface cables must conducted measurement.	be changed according			
Limit:		be changed according			
Limit:	conducted measurement.	Limit (d	BµV)		
Limit:		/ **	ΒμV) Average		
Limit:	conducted measurement.	Limit (d	100		
Limit:	Frequency range (MHz)	Limit (d Quasi-peak	Average		

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

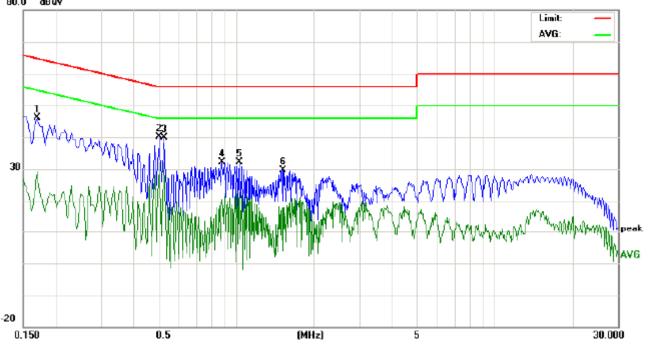
NOTE: The lower limit is applicable at the transition frequency



Page 32 of 53

Live line:

No.	Freq.	Reading_Level (dBuV)		Correct Measurement Factor (dBuV)		Limit (dBuV)		Margin (dB)						
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	39.52	35.77	15.15	9.80	49.32	45.57	24.95	65.56	55.56	-19.99	-30.61	Р	
2	0.1900	36.23	34.35	19.77	9.80	46.03	44.15	29.57	64.03	54.03	-19.88	-24.46	Р	
3	0.2700	32.15	28.60	13.12	9.80	41.95	38.40	22.92	61.12	51.12	-22.72	-28.20	Р	
4	0.5180	31.85	27.87	26.25	9.90	41.75	37.77	36.15	56.00	46.00	-18.23	-9.85	Р	
5	0.9260	23.37	20.33	10.91	10.00	33.37	30.33	20.91	56.00	46.00	-25.67	-25.09	Р	
6	1.0020	22.33	19.34	5.68	10.00	32.33	29.34	15.68	56.00	46.00	-26.66	-30.32	Р	



Page 33 of 53

Neutral line: 80.0 dBuV

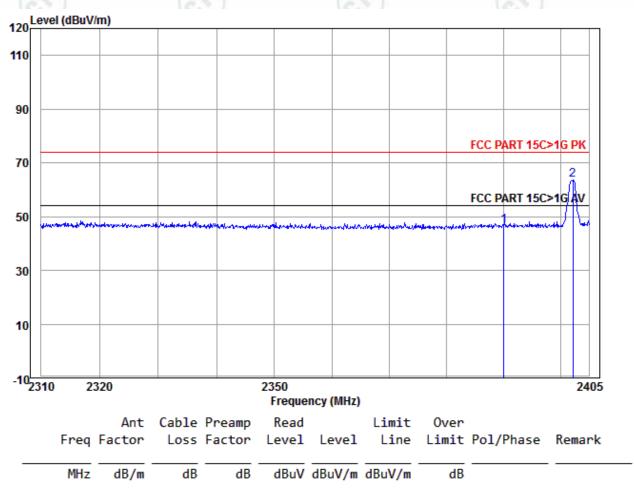
No	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)			nit uV)		rgin dB)		
110.	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	36.27	34.15	19.43	9.80	46.07	43.95	29.23	64.96	54.96	-21.01	-25.73	Р	
2	0.5060	30.26	28.11	22.15	9.90	40.16	38.01	32.05	56.00	46.00	-17.99	-13.95	Р	
3	0.5260	30.02	28.05	22.15	9.90	39.92	37.95	32.05	56.00	46.00	-18.05	-13.95	Р	
4	0.8820	22.26	17.32	10.42	9.98	32.24	27.30	20.40	56.00	46.00	-28.70	-25.60	Р	
5	1.0300	22.12	18.14	12.51	10.00	32.12	28.14	22.51	56.00	46.00	-27.86	-23.49	Р	
6	1.5140	19.74	14.48	7.88	10.00	29.74	24.48	17.88	56.00	46.00	-31.52	-28.12	Р	

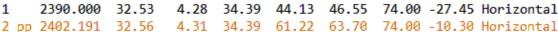
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32I00153401 Page 34 of 53

Appendix K): Restricted bands around fundamental frequency (Radiated)

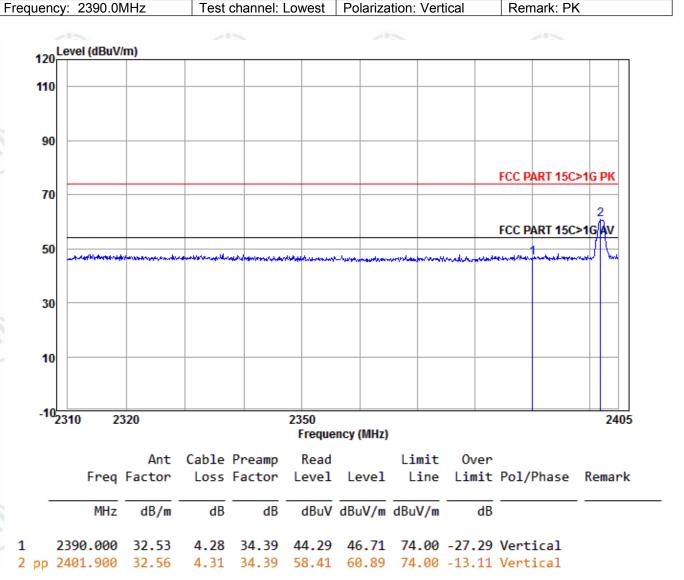

eceiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above IGHZ	Peak	1MHz	10Hz	Average					
est Procedure:	Below 1GHz test procedure as below:									
	a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximu polarizations of the ar d. For each suspected e the antenna was tune table was turned from e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show col bands. Save the spector lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charmeter (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, ar j. Repeat above proced	choic camber. The of the highest rate of the highest rate eters away from op of a variable-highest rate of the first are set to mission, the EUT of the highest from 0 degrees to 360 em was set to Penum Hold Mode, and of the restrict mpliance. Also material manalyzer plots channel for the distance is 1 elowest channel ements are perford found the X axiones until all frequence.	the table was adiation. The interfer neight anter meter to for eld strength make the room of the table and of the form table meter and the Highermed in X, kis positionic uencies meter and the table meter and the table meter and the Highermed in X, kis positionic uencies meter mediation.	ence-receinna tower. For Both hor neasurement of find the properties of the receipt of the properties	above the ground above the ground and verticent. worst case and the rotatable maximum reading and Specified and the restricted and the restricted and the restricted and modular and specified are transmit as in the restricted and modular and modular and modular and modular and modular and specified as in the restricted and modular and modul					
imit:	Frequency	Limit (dBµV			mark					
	30MHz-88MHz	40.0	~	·	eak Value					
	88MHz-216MHz	43.5	,	-	eak Value					
	216MHz-960MHz	46.0	0	· ·	eak Value					
	960MHz-1GHz	54.0	0	Quasi-pe	eak Value					
	Above 1GHz	54.0	54.0 Average Val							
	Above 1912	74.0	0	Peak	Value					



Test plot as follows:

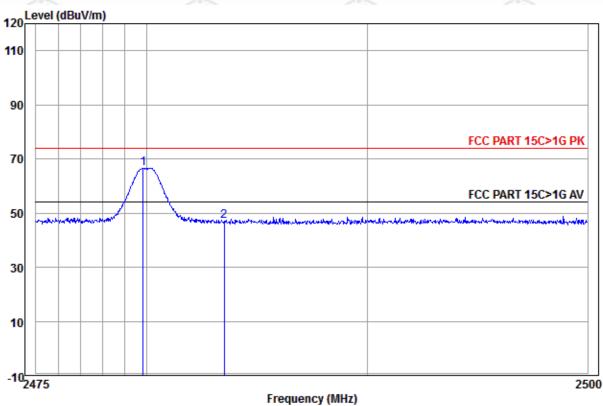
Worse case mode:	GFSK			
Frequency: 2390 0MHz		Test channel: Lowest	Polarization: Horizontal	Remark: PK

Page 35 of 53



Worse case mode: GFSK

Page 36 of 53

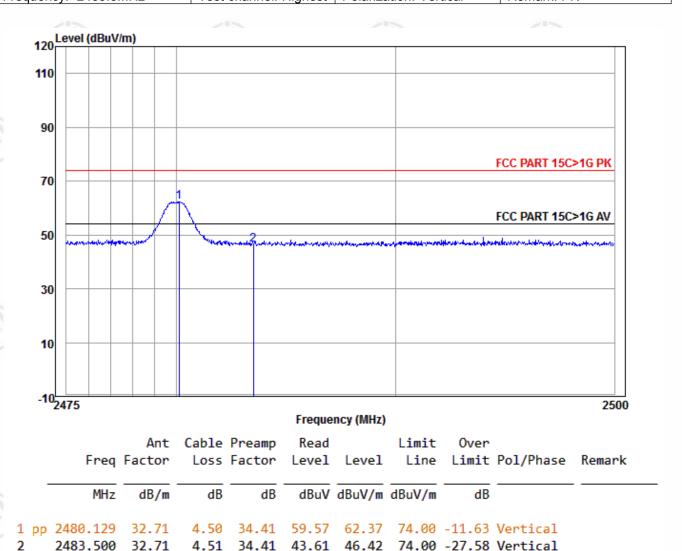


Worse case mode: GFSK
Frequency: 2483.5MHz Test channel: Highest Polarization: Horizontal Remark: PK

Cable Preamp Read Limit 0ver Freq Factor Loss Factor Line Limit Pol/Phase Remark Level Level MHz dΒ dBuV dBuV/m dBuV/m dB dB/m dB

1 pp 2479.830 32.71 4.50 34.41 63.82 66.62 74.00 -7.38 Horizontal 2 2483.500 32.71 4.51 34.41 44.19 47.00 74.00 -27.00 Horizontal

Page 37 of 53



Worse case mode: GFSK
Frequency: 2483.5MHz Test channel: Highest Polarization: Vertical Remark: PK

Page 38 of 53

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor Note:

Page 39 of 53

Appendix L): Radiated Spurious Emissions

eceiver Setup:					
(3)	Frequency	Detector	RBW	VBW	Remark
(250)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	4011	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

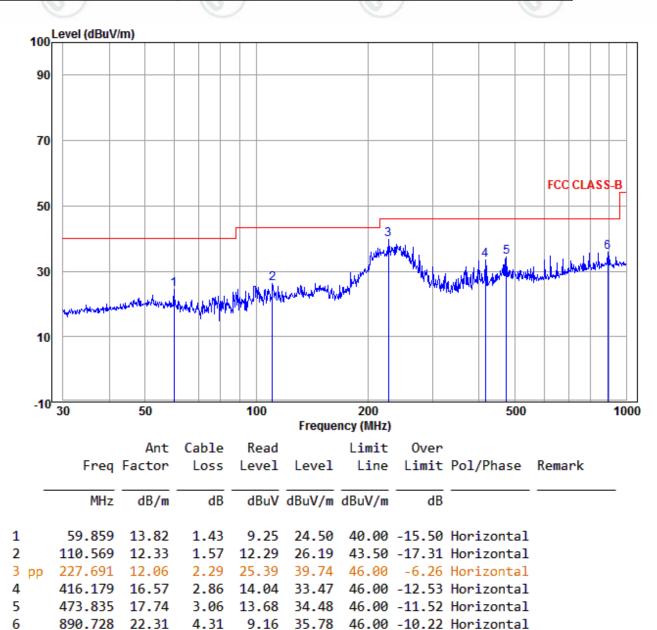
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	<i>-</i>	- //	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



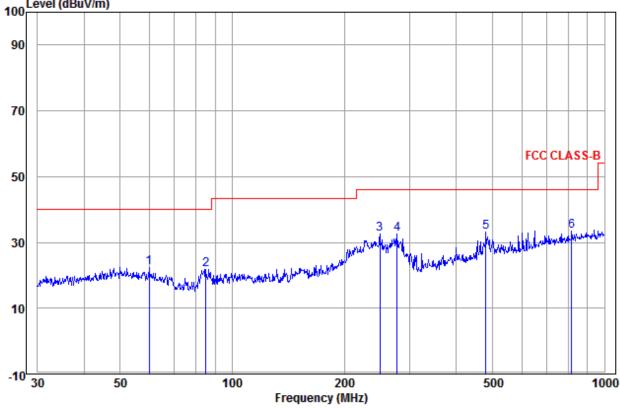
Page 40 of 53

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)		/*			
Test mode:	Transmitting	Horizontal			





Test mode: Transmitting Vertical

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		u0/ III	40	abar	abar,	abar,	40		
4	E0 8E0	12 02	1 12	7 22	22 49	40.00	17 52	V+1	
1	59.659	13.02	1.45	7.25	22.40	40.00	-1/.52	Vertical	
2	84.999	9.94	1.58	10.35	21.87	40.00	-18.13	Vertical	
3	249.425	12.39	2.35	17.95	32.69	46.00	-13.31	Vertical	
4	277.094	13.02	2.37	17.16	32.55	46.00	-13.45	Vertical	
5	480.528	17.91	3.08	12.22	33.21	46.00	-12.79	Vertical	
6 рр	815.968	21.70	3.94	7.68	33.32	46.00	-12.68	Vertical	

Page 41 of 53

Transmitter Emission above 1GHz

Page 42 of 53

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.42	35.05	48.00	45.39	74	-28.61	Pass	Horizontal
1668.044	31.18	2.98	34.54	47.23	46.85	74	-27.15	Pass	Horizontal
3719.146	33.00	5.49	34.57	45.78	49.70	74	-24.30	Pass	Horizontal
4804.000	34.69	5.11	34.35	50.78	56.23	74	-17.77	Pass	Horizontal
7206.000	36.42	6.66	34.90	38.05	46.23	74	-27.77	Pass	Horizontal
9608.000	37.88	7.73	35.08	37.38	47.91	74	-26.09	Pass	Horizontal
1280.072	30.41	2.61	34.88	46.68	44.82	74	-29.18	Pass	Vertical
3644.175	33.06	5.50	34.57	44.67	48.66	74	-25.34	Pass	Vertical
4804.000	34.69	5.11	34.35	48.73	54.18	74	-19.82	Pass	Vertical
7206.000	36.42	6.66	34.90	39.06	47.24	74	-26.76	Pass	Vertical
9608.000	37.88	7.73	35.08	36.72	47.25	74	-26.75	Pass	Vertical
11963.890	39.59	8.49	34.39	36.01	49.70	74	-24.30	Pass	Vertical

Worse case mode:		GFSK		Test channel:		Lowest	Remark:	Average)
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4804.000	34.69	5.11	34.35	46.09	51.54	54	-2.46	Pass	Horizontal
4804.000	34.69	5.11	34.35	46.06	51.51	54	-2.49	Pass	Vertical

Worse case	mode:	GFSK		Test char	nnel:	Middle	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.42	35.05	47.84	45.23	74	-28.77	Pass	Horizontal
1668.044	31.18	2.98	34.54	47.06	46.68	74	-27.32	Pass	Horizontal
3747.656	32.98	5.48	34.58	45.99	49.87	74	-24.13	Pass	Horizontal
4882.000	34.85	5.08	34.33	51.14	56.74	74	-17.26	Pass	Horizontal
7323.000	36.43	6.77	34.90	38.59	46.89	74	-27.11	Pass	Horizontal
9764.000	38.05	7.60	35.05	38.65	49.25	74	-24.75	Pass	Horizontal
1038.921	29.81	2.31	35.15	47.77	44.74	74	-29.26	Pass	Vertical
1659.574	31.16	2.97	34.54	46.83	46.42	74	-27.58	Pass	Vertical
3616.451	33.08	5.50	34.56	44.88	48.90	74	-25.10	Pass	Vertical
4882.000	34.85	5.08	34.33	51.04	56.64	74	-17.36	Pass	Vertical
7323.000	36.43	6.77	34.90	39.20	47.50	74	-26.50	Pass	Vertical
9764.000	38.05	7.60	35.05	38.19	48.79	74	-25.21	Pass	Vertical

Report No.: EED32I00153401 Page 43 of 53

Worse case mode:		GFSK		Test channel:		Middle	Remark:	Average	Average	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
4882.000	34.85	5.08	34.33	45.78	51.38	54	-2.62	Pass	Horizontal	
4882.000	34.85	5.08	34.33	45.18	50.78	54	-3.22	Pass	Vertical	

Worse case	rse case mode: GFSK		Test ch	nannel:	Highest	Highest Remark:		Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1289.885	30.43	2.62	34.87	46.79	44.97	74	-29.03	Pass	Horizontal
1668.044	31.18	2.98	34.54	48.04	47.66	74	-26.34	Pass	Horizontal
4960.000	35.02	5.05	34.31	48.76	54.52	74	-19.48	Pass	Horizontal
5895.771	35.82	7.20	34.30	41.39	50.11	74	-23.89	Pass	Horizontal
7440.000	36.45	6.88	34.90	39.77	48.20	74	-25.80	Pass	Horizontal
9920.000	38.22	7.47	35.02	38.74	49.41	74	-24.59	Pass	Horizontal
1257.465	30.36	2.58	34.90	47.07	45.11	74	-28.89	Pass	Vertical
1668.044	31.18	2.98	34.54	47.84	47.46	74	-26.54	Pass	Vertical
4960.000	35.02	5.05	34.31	50.65	56.41	74	-17.59	Pass	Vertical
6561.030	36.19	6.87	34.65	42.14	50.55	74	-23.45	Pass	Vertical
7440.000	36.45	6.88	34.90	39.74	48.17	74	-25.83	Pass	Vertical
9920.000	38.22	7.47	35.02	38.18	48.85	74	-25.15	Pass	Vertical

Wo	Worse case mode:		GFSK		Test channel:		Highest	lighest Remark:		Average	
Fre	equency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
49	960.000	35.02	5.05	34.31	43.33	49.09	54	-4.91	Pass	Horizontal	
49	960.000	35.02	5.05	34.31	45.71	51.47	54	-2.53	Pass	Vertical	

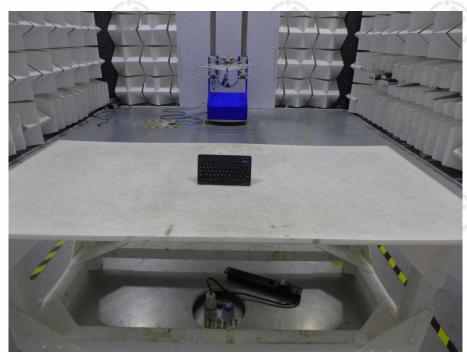
Note:

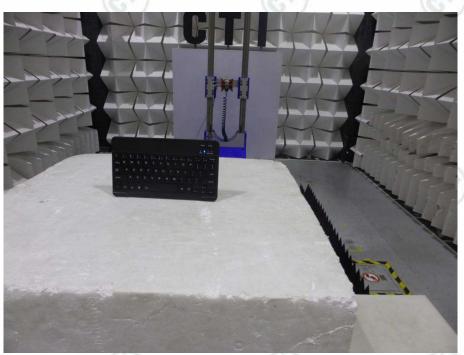
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



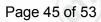

Page 44 of 53

PHOTOGRAPHS OF TEST SETUP

Test mode No.: G1416B

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



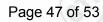
Report No. : EED32I00153401 Page 46 of 53

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: G1416B

View of Product-1

View of Product-2

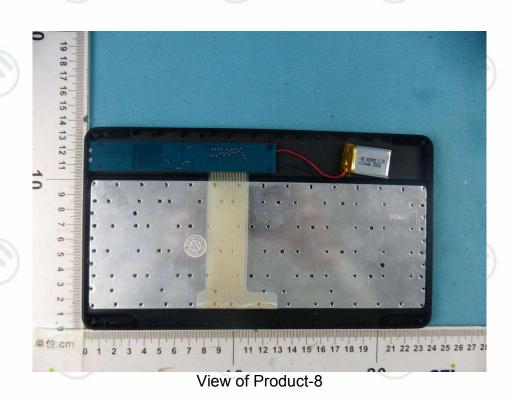


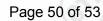
View of Product-4

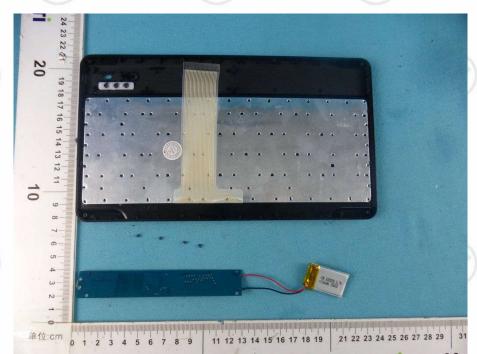
View of Product-5

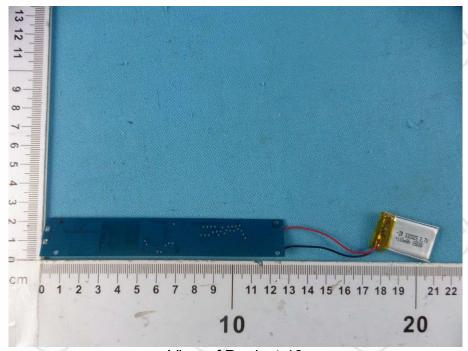
View of Product-6



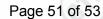


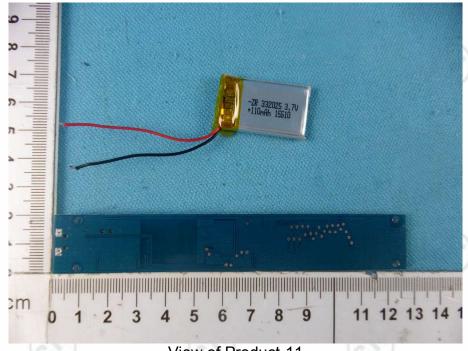


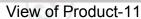


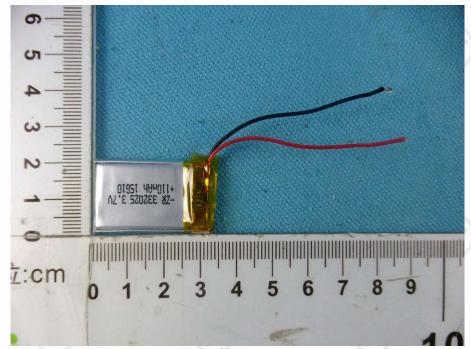


View of Product-9

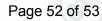

View of Product-10

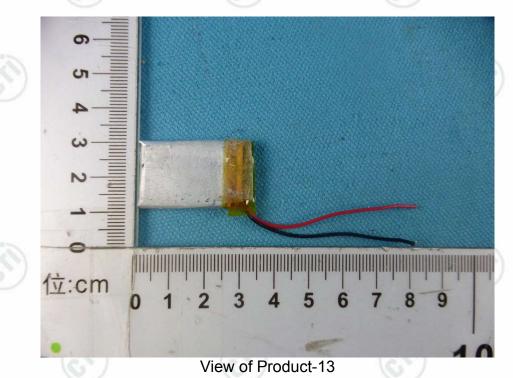


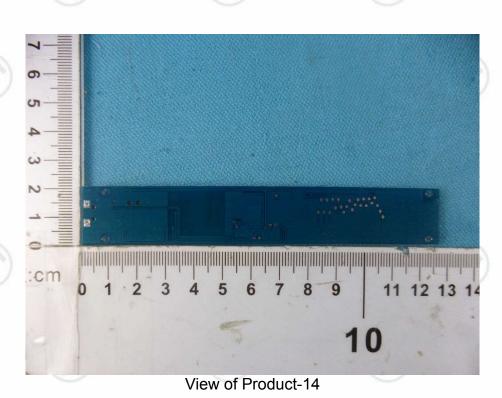


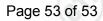


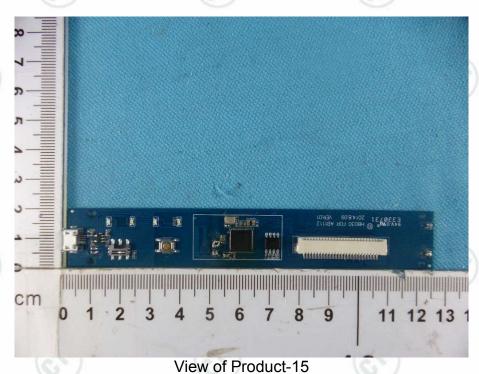
View of Product-12

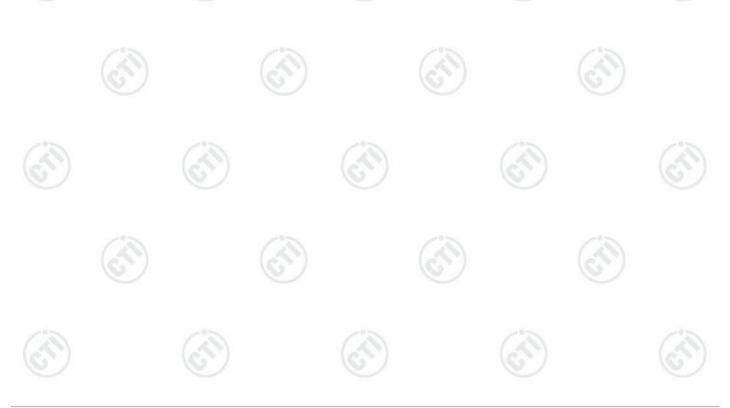












*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

