

TEST REPORT

FCC ID: 2AFW2-B066 Product: Bluetooth Keyboard Model No.: B066 Additional Model No.: N/A Trade Mark: N/A Report No.: TCT201223E036 Issued Date: Dec. 30, 2020 Model No.: B066

Issued for:

Shenzhen DZH Industrial Co., Ltd 3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, Shajing, Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification		
2.	Test Result Summary		4
3.	EUT Description		
4.	General Information		5
	4.1. Test environment and mode		
	4.2. Description of Support Units		6
5.	Facilities and Accreditations		7
	5.1. Facilities		7
	5.2. Location		
	5.3. Measurement Uncertainty	\sim	7
6.	Test Results and Measurement Data		
	6.1. Antenna requirement		8
	6.2. Conducted Emission		9
	6.3. Conducted Output Power		
	6.4. 20dB Occupy Bandwidth		
	6.5. Carrier Frequencies Separation		
	6.6. Hopping Channel Number		
	6.7. Dwell Time		25
	6.8. udorandom Frequency Hopping Sequence		
	6.9. Conducted Band Edge Measurement		
	6.10. Conducted Spurious Emission Measurement		
	6.11. Radiated Spurious Emission Measurement		
A	ppendix A: Photographs of Test Setup		

Appendix B: Photographs of EUT

TCT通测检测 TESTING CENTRE TECHNOLOGY

TCT通测检测

Report No.: TCT201223E036

1. Test Certification

	[]]]]]]]]]]]]]]]]]]]
Product:	Bluetooth Keyboard
Model No.:	B066
Additional Model:	N/A
Trade Mark:	N/A
Applicant:	Shenzhen DZH Industrial Co., Ltd
Address:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, Shajing, Shenzhen, China
Manufacturer:	Shenzhen DZH Industrial Co., Ltd
Address:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, Shajing, Shenzhen, China
Date of Test:	Dec. 24, 2020 – Dec. 29, 2020
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Aaron Mo

Reviewed By:

Beryl Zhao TomSm

Approved By:

Tomsin

 Date:
 Dec. 29, 2020

 Date:
 Dec. 30, 2020

 Date:
 Dec. 30, 2020

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

Hotline: 400-6611-140

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Tel: 86-755-27673339

Fax: 86-755-27673332 http://www.tct-lab.com

Page 4 of 55

3. EUT Description

Product Name:	Bluetooth Keyboard
Model :	B066
Additional Model:	N/A
Trade Mark:	N/A
Bluetooth version:	V5.1
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK
Modulation Technology:	FHSS
Antenna Type:	PCB Antenna
Antenna Gain:	1.87dBi
Power Supply:	Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Operation Frequency each of channel for GFSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
<u> </u>							
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19 2421MHz 39 2441MHz 59 2461MHz -							-
Remark:	Channel 0, 3	9 &78 ha	ve been tes	ted for G	FSK modula	tion mod	e.

4. General Information

4.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	25.0 °C	25.0 °C				
Humidity:	55 % RH	55 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
		/		1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 6 of 55

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098 Shenzhen Tongce Testing Lab

TCT通测检测

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

 IC - Registration No.: 10668A-1 The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

Tel: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

Page 7 of 55

Page 8 of 55

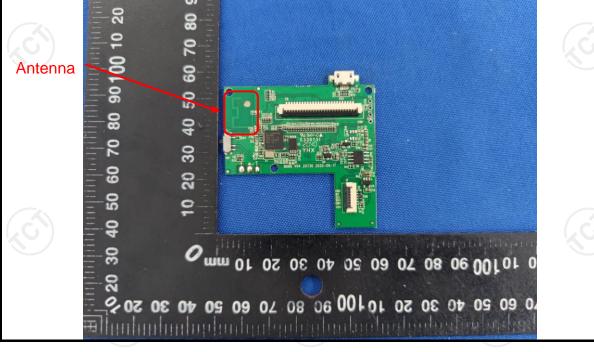
6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

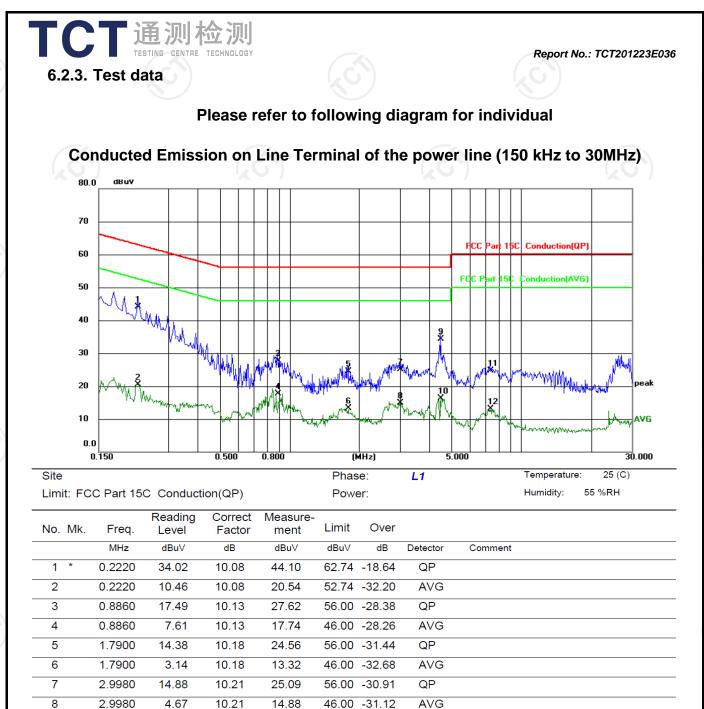
The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 1.87dBi.

6.2. Conducted Emission

6.2.1. Test Specification

Test Method: ANSI C63.10:2013 Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Ave 0.15-0.5 66 to 56* 56 to 0.5-5 56 4 5-30 60 5 Reference Plane Fermark: EU.T AC power Filter AC power Full Formark: EU.T Feedmark: EU.T Feedmark: EU.T Feedmark: EU.T Feedmark: Feudet: Refer to item 4.1 1. The E.U.T is connected to an adapter throug impedance stabilization network (L.I.S.N provides a 500hm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to		(, c	15.207	FCC Part1	est Requirement:				
Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) Quasi-peak Ave 0.15-0.5 66 to 56* 56 to 0.5-5 56 2 5-30 60 5 Reference Plane Image: Plane Image: Plane Image: Plane				ANSI C63					
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV) (MHz) Quasi-peak Ave 0.15-0.5 66 to 56* 56 to 0.5-5 56 2 5-30 60 5 Reference Plane Test Setup: Remark E.U.T AC power Filter AC power Filter EMI Receiver EMI Remark E.U.T LISN Line impedence Stabilization Network Test Mode: Refer to item 4.1 1. The E.U.T is connected to an adapter throug impedance stabilization network (L.I.S.N provides a 500hm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to an elabore througe impedance measuring equipment.									
Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Ave 0.15-0.5 66 to 56* 56 0.5-5 56 2 5-30 60 5 Reference Plane EU.T + AC power Filter Ac power Filter Ac power EU.T Equipment Under Test USB Line Impedance Stabilization Network Test Mode: Refer to item 4.1 1. The E.U.T is connected to an adapter throug impedance stabilization network (L.I.S.N provides a 500hm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to an elapter throug impedance		X	C		150 KHZ 10	requency Range:			
Limits: Image: Constraint of the second state of the second		∋=auto	kHz, Sweep time	RBW=9 kH	Receiver setup:				
Limits: 0.15-0.5 66 to 56* 56 to 56 0.5-5 56 2 5-30 60 5 Reference Plane 40cm 80cm Filter Ac power Itsk Enderstein Refer to item 4.1 1. The E.U.T is connected to an adapter througe impedance stabilization network (L.I.S.N provides a 50		dBuV)	Limit (ency range	Frequei				
0.5-5 56 4 5-30 60 5 Reference Plane 1 The E.U.T is connected to an adapter throug impedance stabilization network (L.I.S.N provides a 500hm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to to the peripheral devices are also connected to the peripheral devices are devices are also conne	-	Average		/	· · · · · ·				
5-30 60 5 Reference Plane Image: text of the second secon	46*	56 to 46*	66 to 56*	15-0.5	0.1	.imits:			
Reference Plane Test Setup: Remark E.U.T AC power E.U.T AC power Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test Mode: Refer to item 4.1 1. The E.U.T is connected to an adapter throug impedance stabilization network (L.I.S.N provides a 500hm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to an adapter devices are a	; ()	46	56	0.5-5	0.				
Test Setup: Image: Test table/Insulation plane Remark: E.U.T. Fayupment Under Test LISN: Line Impedence Stabilization Network Test Mode: Refer to item 4.1 1. The E.U.T is connected to an adapter througe impedance stabilization network (L.I.S.N provides a 500hm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter througe impedance of the provides are also connected to an adapter the provides are also connected to an adapter thro)	50	60	5-30	5				
Test Setup: Image: Test table/Insulation plane Filter AC poor Remark: E.U.T AC power EMI Receiver ISN Line Impedence Stabilization Network Test table height=0.8m Test Mode: Refer to item 4.1 1. The E.U.T is connected to an adapter throug impedance stabilization network (L.I.S.N provides a 500hm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to an adapter througe impedance			e Plane	Reference					
 The E.U.T is connected to an adapter throug impedance stabilization network (L.I.S.N provides a 50ohm/50uH coupling impedance measuring equipment. The peripheral devices are also connected to 	er]— AC power	Test Setup: E.U.T AC power Test table/Insulation plane EMI Receiver Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network						
impedance stabilization network (L.I.S.N provides a 50ohm/50uH coupling impedance measuring equipment. 2. The peripheral devices are also connected to)	K	Refer to ite	est Mode:				
 Test Procedure: Coupling impedance with 50ohm termination. refer to the block diagram of the test sephotographs). Both sides of A.C. line are checked for n conducted interference. In order to find the n emission, the relative positions of equipment and the second secon	 The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 					est Procedure:			
Test Result: PASS		Ċ			PASS	est Result:			

6.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843) Equipment Manufacturer Model **Serial Number Calibration Due Test Receiver** R&S ESCI3 100898 Jul. 27, 2021 LISN-2 Schwarzbeck **NSLK 8126** 8126453 Sep. 11, 2021 TCT Line-5 **CE-05** N/A Sep. 02, 2021 Shurple N/A N/A **EMI Test Software** EZ-EMC Technology

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Hotline: 400-6611-140

Report No.: TCT201223E036

Page 10 of 55
Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Note:

9

10

11 12

Freq. = Emission frequency in MHz

23.98

6.01

14.27

2.79

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

10.26

10.26

10.36

10.36

34.24

16.27

24.63

13.15

Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

4.4899

4.4899

7.3500

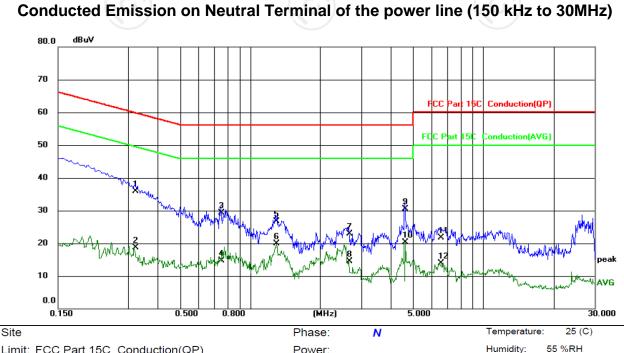
7.3500

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 11 of 55

56.00 -21.76

46.00 -29.73


60.00 -35.37

50.00 -36.85

QP

AVG QP

AVG

Limit: FCC Part 15C Conduction(QP)

TCT通测检测 TESTING-CENTRE TECHNOLOGY

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment
1	*	0.3200	25.83	10.09	35.92	59.71	-23.79	QP	
2		0.3200	8.71	10.09	18.80	49.71	-30.91	AVG	
3		0.7500	19.14	10.11	29.25	56.00	-26.75	QP	
4		0.7500	4.60	10.11	14.71	46.00	-31.29	AVG	
5		1.2940	16.62	10.15	26.77	56.00	-29.23	QP	
6		1.2940	9.67	10.15	19.82	46.00	-26.18	AVG	
7		2.6580	12.78	10.20	22.98	56.00	-33.02	QP	
8		2.6580	4.32	10.20	14.52	46.00	-31.48	AVG	
9		4.6140	20.17	10.27	30.44	56.00	-25.56	QP	
10		4.6140	10.02	10.27	20.29	46.00	-25.71	AVG	
11		6.5580	11.30	10.34	21.64	60.00	-38.36	QP	
12		6.5580	3.61	10.34	13.95	50.00	-36.05	AVG	

Power:

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V) = Limit$ stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and the worst case Mode (lowest channel) was submitted only.

Report No.: TCT201223E036

6.3. Conducted Output Power

6.3.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.					
Test Result:	PASS					

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2021
RF cable (9kHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2021
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

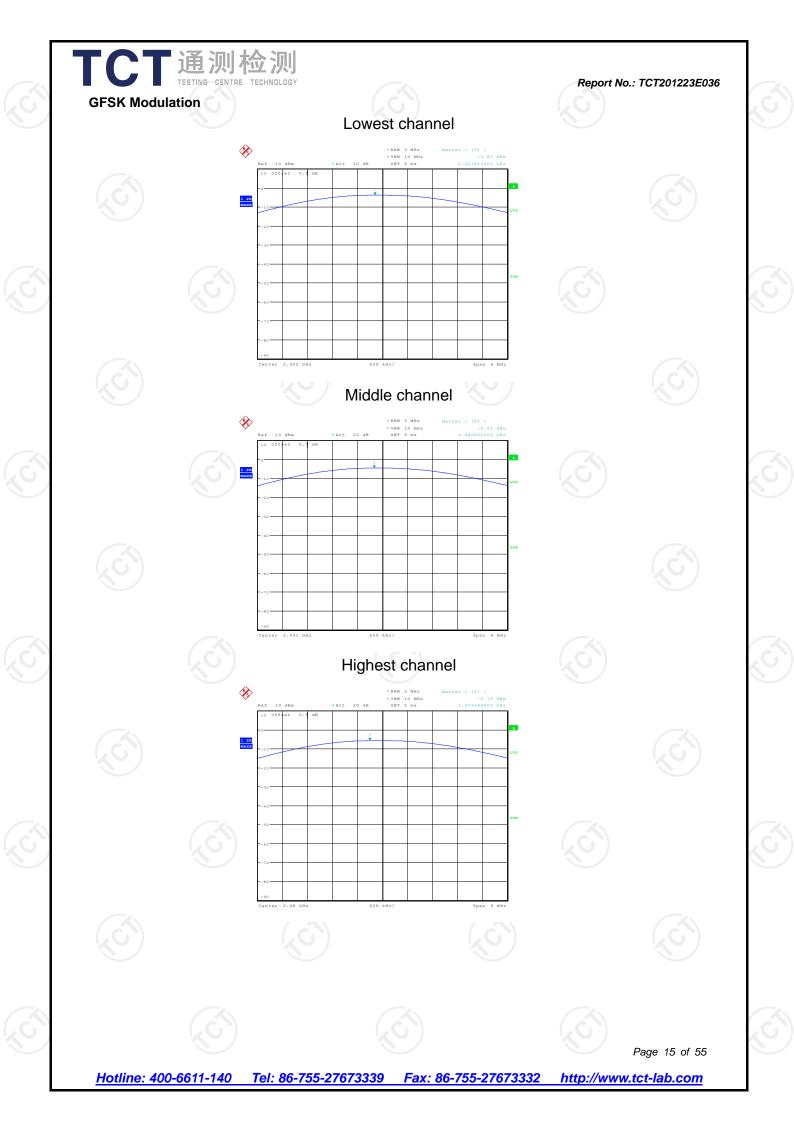
6.3.3. Test Data

Report No.: TCT201223E036

GFSK mode


GFSK Mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-3.83	21.00	PASS
Middle	-4.65	21.00	PASS
Highest	-5.72	21.00	PASS
			C.

Test plots as follows:



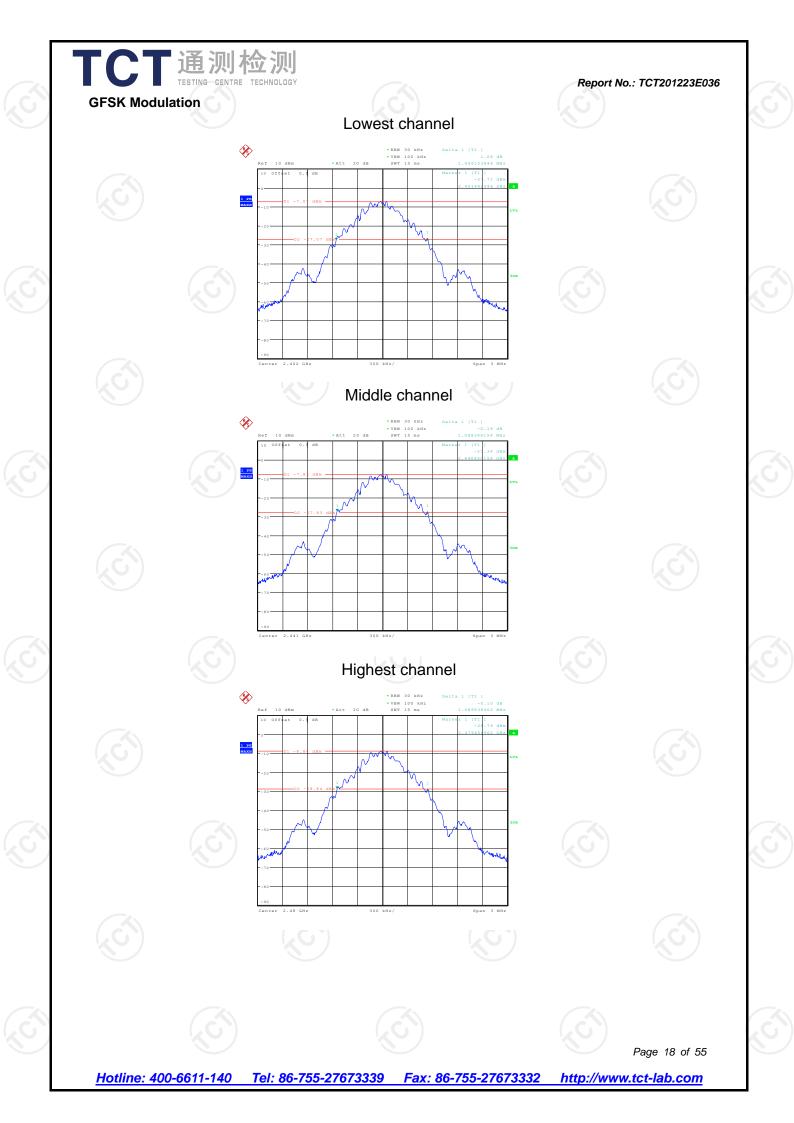
Page 14 of 55

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1% RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments


Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2021
RF cable (9kHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2021
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

Report No.: TCT201223E036

		20dB Occupy E	Bandwidth (kHz)	
	Test channel -	GFSK	Conclusion	
	Lowest	1096.15	PASS	
	Middle	1088.35	PASS	
	Highest	1089.54	PASS	
Test plots as follows:				

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

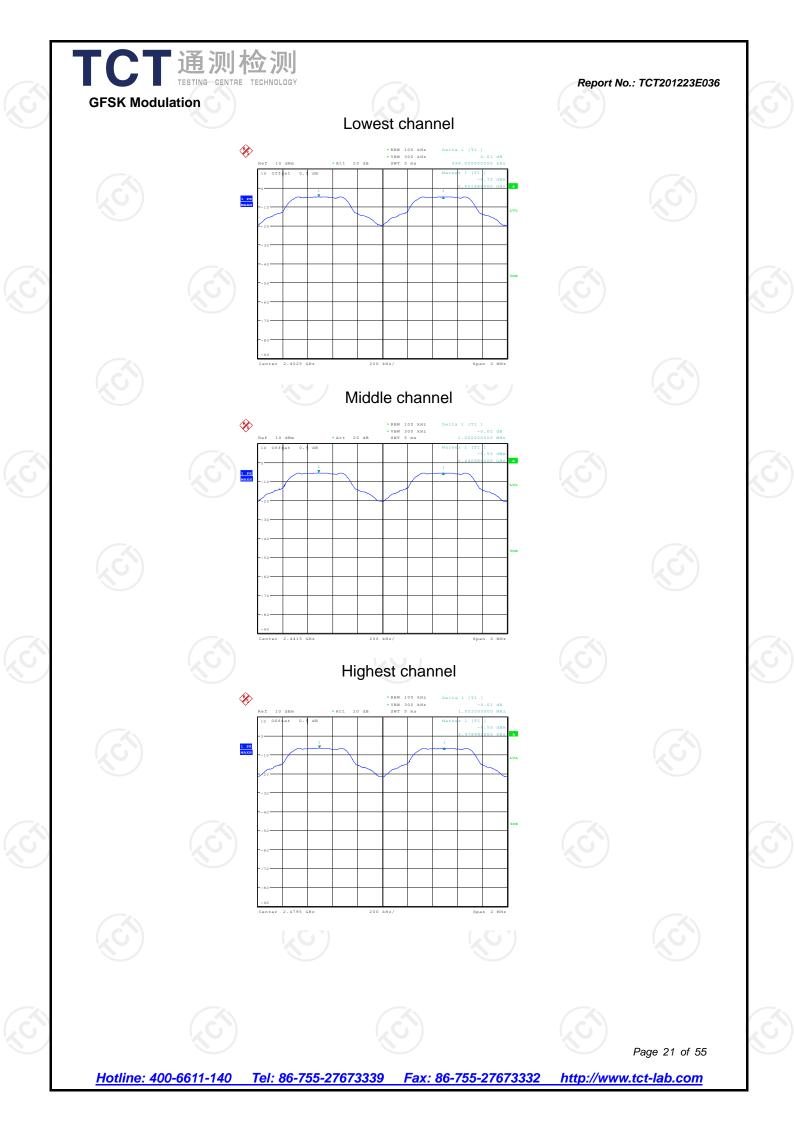
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

6.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2021
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2021
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 19 of 55



Page 20 of 55

6.5.3. Test data

GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	998.00	730.77	PASS		
Middle	1002.00	730.77	PASS		
Highest	1002.00	730.77	PASS		

Note: Accor	Mode 20dB bandwidth (kHz (worse case)) Limit (kl (Carrier Freq Separati		
	GFSK		1096.15	730.77	
ſest plots a	s follows:				

6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 				
Test Result:	PASS				

6.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2021
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2021
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

Report No.: TCT201223E036

Mode	H	opping channel numbers	Limit	Result
GFSK		79	15	PASS
est plots as follows:				

	CHNOLOGY	GFSK		Report No	o.: TCT201223E036
	10 Offset 0.5 dB	• VBW 300 kHz 20 dB SWT 10 ms	Delie 1 (11) - 1, 40 dB 77.9673442 MB 14.61 dB 2.40200 212 dB 2.40200 212 dB 2.40200 122		
	-60	8.35 MHz/	Btop 2.4835 GBz		
					Page 24 of 55

6.7. Dwell Time

6.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = clear write. Measure and record the results in the test report.
Test Result:	PASS

6.7.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2021
RF cable (9kHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2021
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

TCT 通测检测 TESTING CENTRE TECHNOLOGY

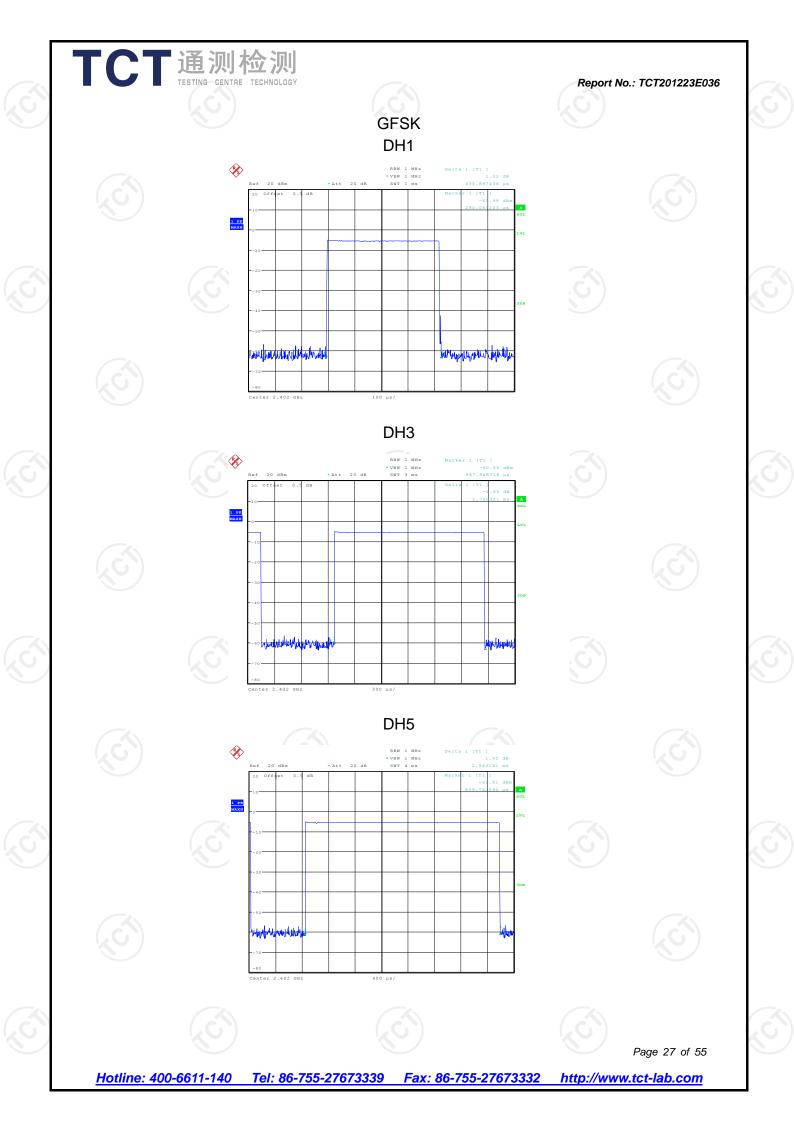
6.7.3. Test Data

Report No.: TCT201223E036

Page 26 of 55

Mode	Packet	Hops Over Occupancy Time (hops)	Package Transfer Time (ms)	Dwell time (second)	Limit (second)	Result
GFSK	DH1	320	0.436	0.140	0.4	PASS
GFSK	DH3	160	1.700	0.272	0.4	PASS
GFSK	DH5	106.67	2.963	0.316	0.4	PASS

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.


For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 4 / 79) x (0.4 x 79) = 160 hops

For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops

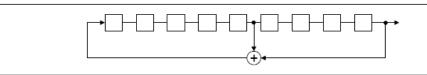
2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

6.8. udorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

024	6	62 64	78 1	13 15 11
			<u> </u>	
		1 1 1		
			ـــــــــــــــــــــــــــــــــــــ	

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No).: TCT20	1223E036
-----------	-----------	----------

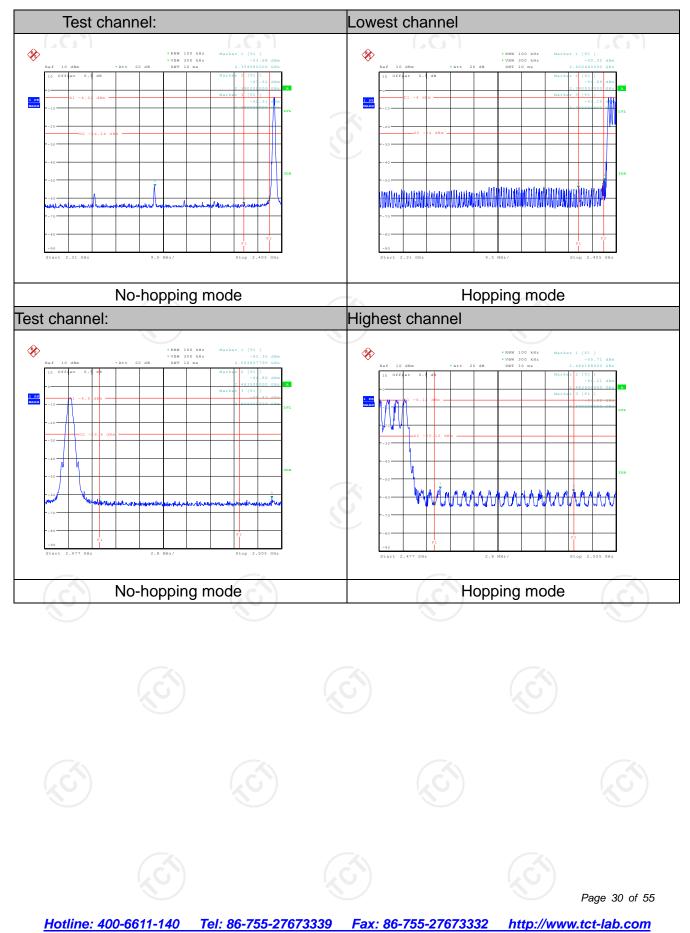
6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

6.9.2. Test Instruments

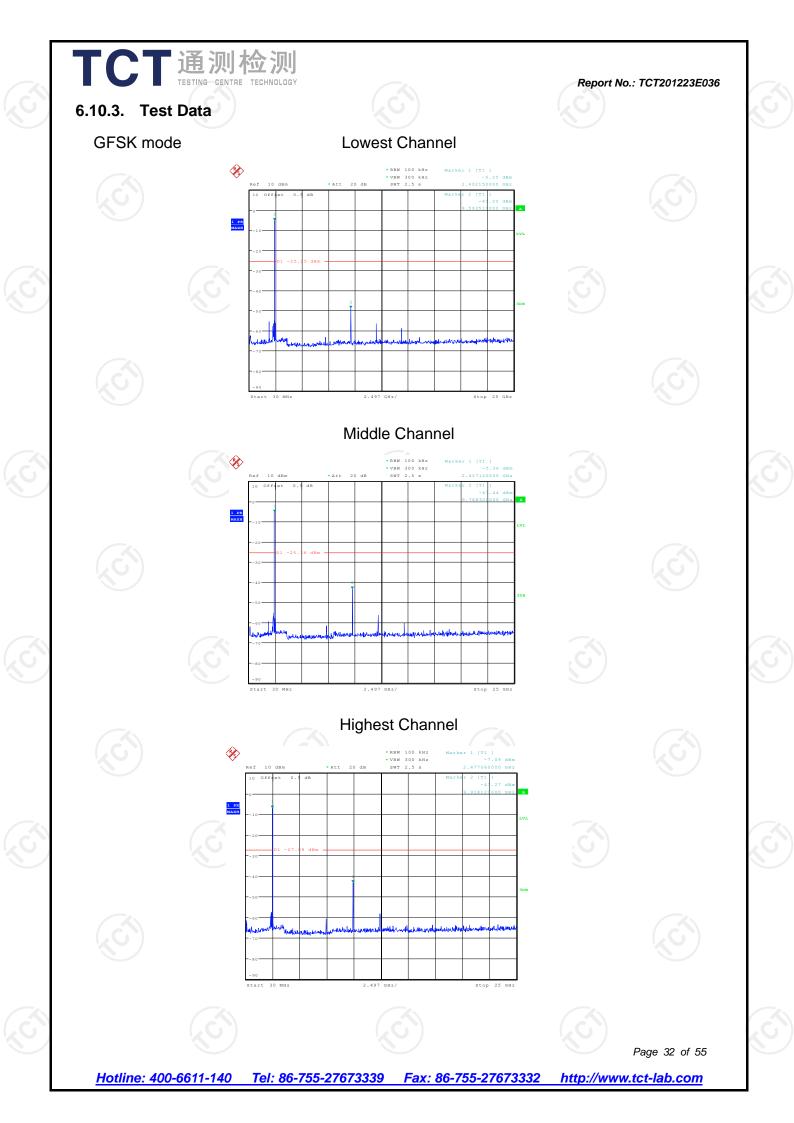

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2021
RF cable (9kHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2021
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

GFSK Modulation

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

6.10.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2021
Spectrum Analyzer	ROHDE&SCH WARZ	FSQ40	200061	Sep. 11, 2021
RF Cable (9KHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2021
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Sectior	n 15.209			$(\dot{\mathcal{O}})$
Test Method:	ANSI C63.10	0:2013				
Frequency Range:	9 kHz to 25 (GHz				
Measurement Distance:	3 m				6	
Antenna Polarization:	Horizontal &	Vertical		C		
	Frequency	Detector	RBW	VBW		Remark
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz	Quasi-pea Quasi-pea		1kHz 30kHz		<u>si-peak Value</u> si-peak Value
	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quas	i-peak Value
	Above 1GHz	Peak	1MHz	3MHz	P	eak Value
	Above TGHZ	Peak	1MHz	10Hz	Ave	erage Value
	Frequen	ісу	Field Stre (microvolts/	-		asurement nce (meters
	0.009-0.4	490	2400/F(ł			300
	0.490-1.7		24000/F(30	KHz)		30
		1.705-30			30	
	30-88		100		3	
imit:	88-216		150		3	
		216-960 200 Above 960 500			3	
	Frequency Field Strength (microvolts/meter) Measure	се	Detector			
	Above 1GHz	<u>z</u>	500 5000	3	/	Average Peak
Test setup:	For radiated emis	ssions below		Pre -	Compu	
	30MHz to 1GHz	Turn table	1m d Plane		teceiver]
	<u>+</u>]			_ [teceiver	
	<u>+</u>]				teceiver	Page 33 of

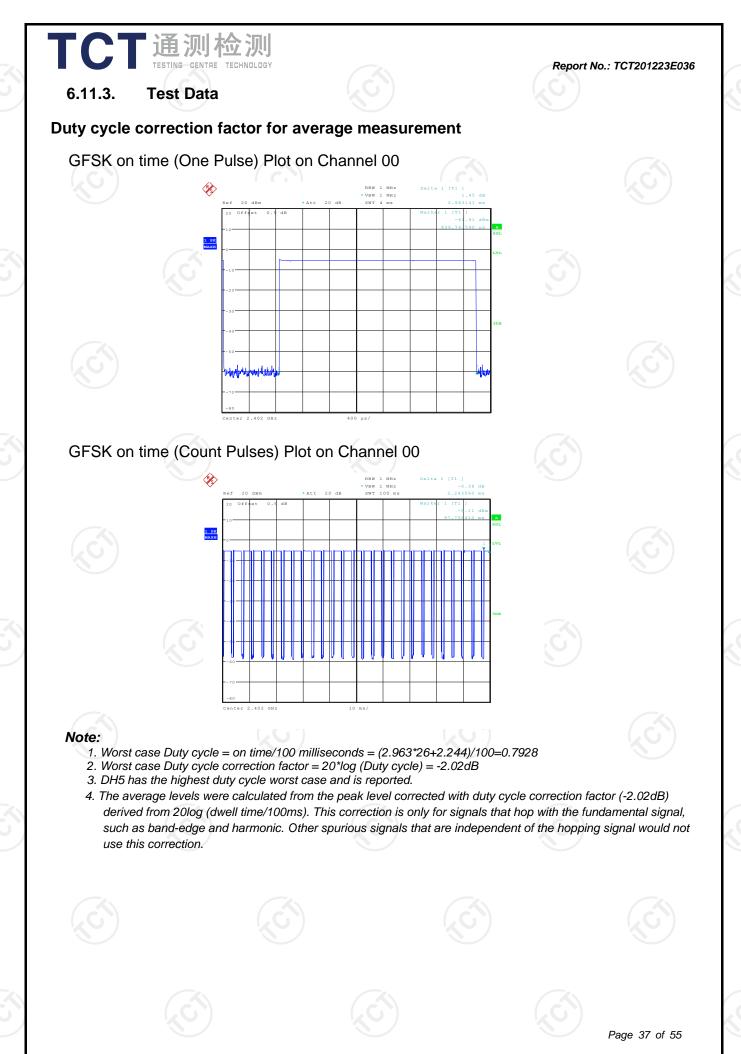
	Report No.: TCT201223E0
	EUT Antenna Tower EUT Antenna 4m Tum 0.8m Table 0.8m 4m 1m 1m 1m 1m 1m 1m 1m 1m 1m 1
	Ground Plane Above 1GHz
	Artenna Tower
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10:2013 Measurement Guidelines. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for

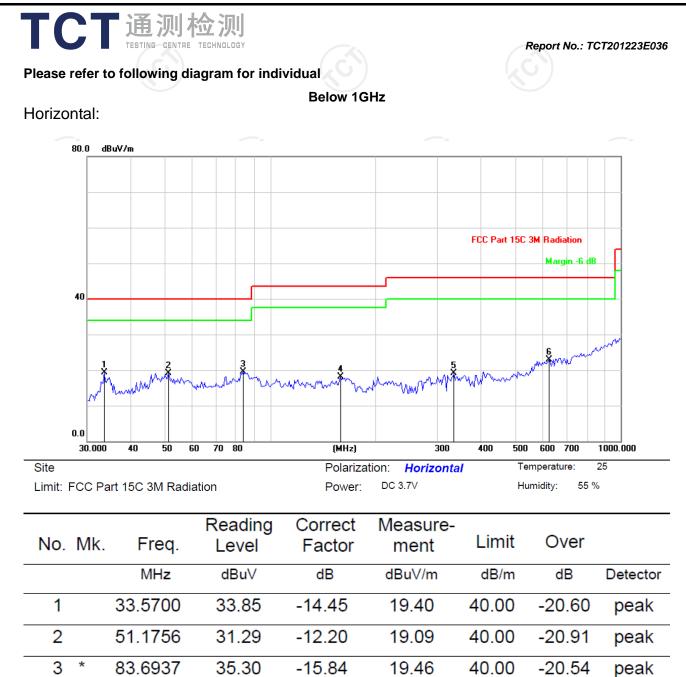
Page 34 of 55

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	receivin measur maximiz antenna restricte above t 3. Set to EUT tra 4. Use the (1) Spa em (2) Se for Sta = (3) Fo co 15. On W le Av Le Co	ying aimed at the em ig the maximum sign ement antenna eleva zes the emissions. T a elevation for maxim ed to a range of heigh he ground or referent the maximum powe ansmit continuously. e following spectrum an shall wide enough ission being measure t RBW=120 kHz for the f>1GHz; VBW≥RBW weep = auto; Detector max hold for peak or average measurer orrection factor methor 35(c). Duty cycle = 0 time =N1*L1+N2*L2 weep = 1 pulses verage Emission Leve evel + 20*log(Duty cy rrected Reading: Ant	hission source al. The final ation shall be the measurement of from 1 m ce ground pla r setting and analyzer setting to fully captured; $< 1 \text{ GHz}, \text{ RB}^{2}$ V; or function = p ment: use duty of per On time/100 m 2++Nn-1*LN of type 1 pulse s, etc. rel = Peak Em vcle) enna Factor +	that which ent s shall be n to 4 m ne. enable the ngs: re the W=1MHz eak; Trace v cycle illiseconds n-1+Nn*Ln s, L1 is ission - Cable
Fest results:	PASS	ss + Read Level - Pr		
				Page 35 of 55

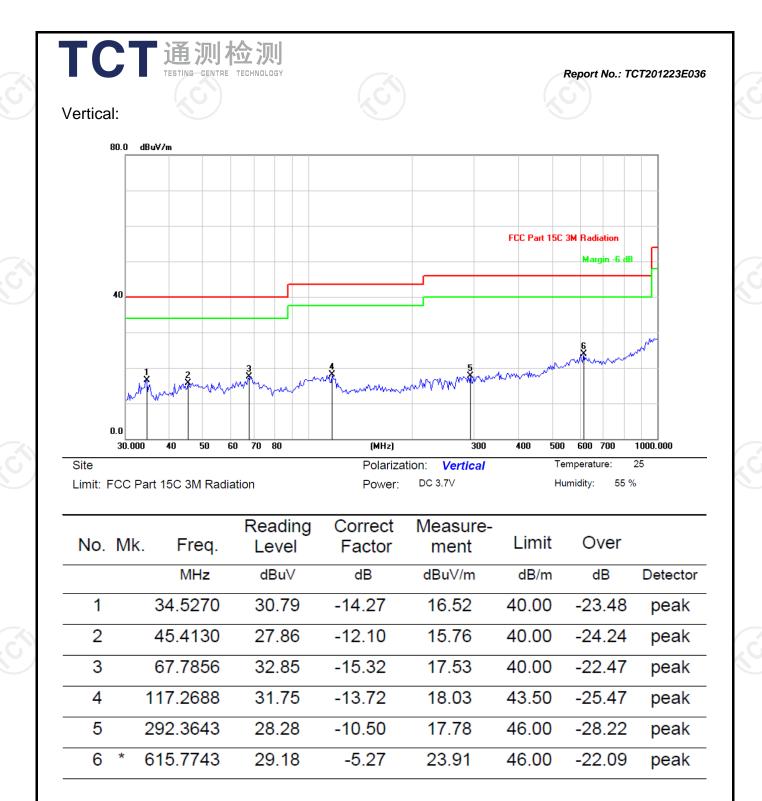
6.11.2. Test Instruments

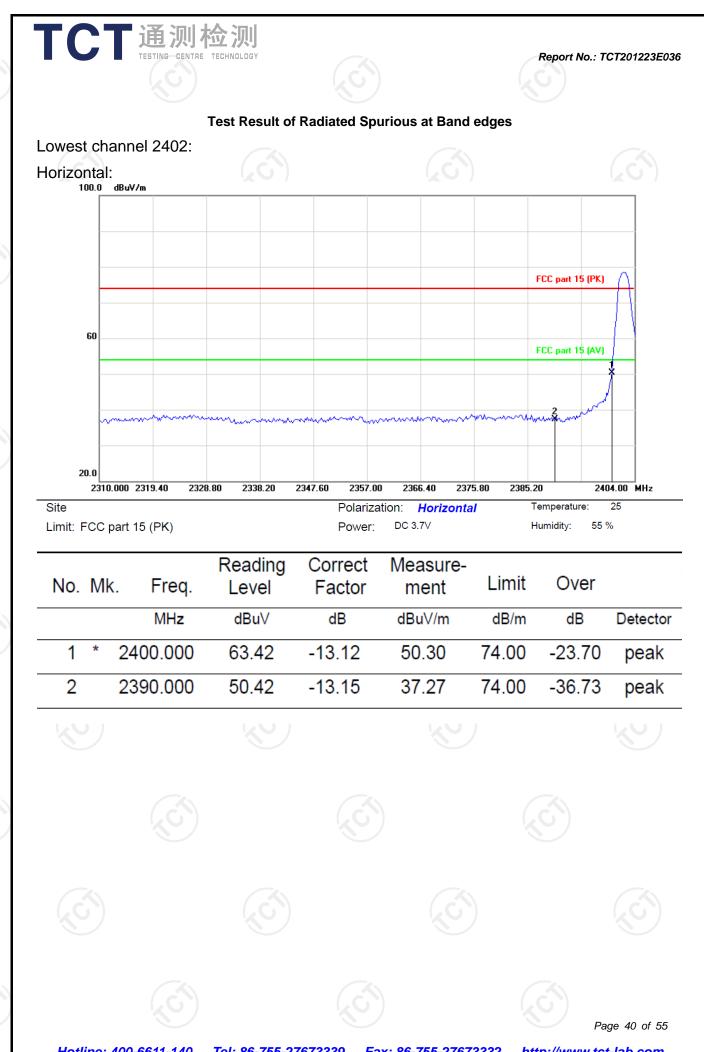

TC

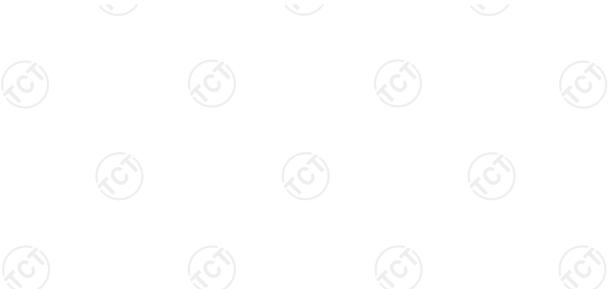

Radiated Emission Test Site (966)				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022
Antenna Mast	Keleto	RE-AM	N/A	N/A
Line-4	RE-high-04	тст	N/A	Sep. 02, 2021
Line-8	RE-01	тст	N/A	Jul. 27, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

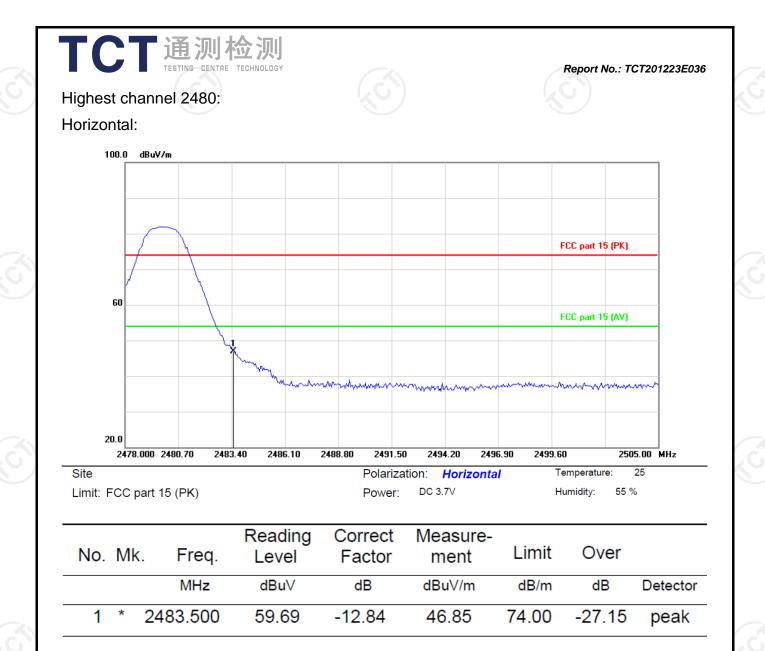

Page 36 of 55



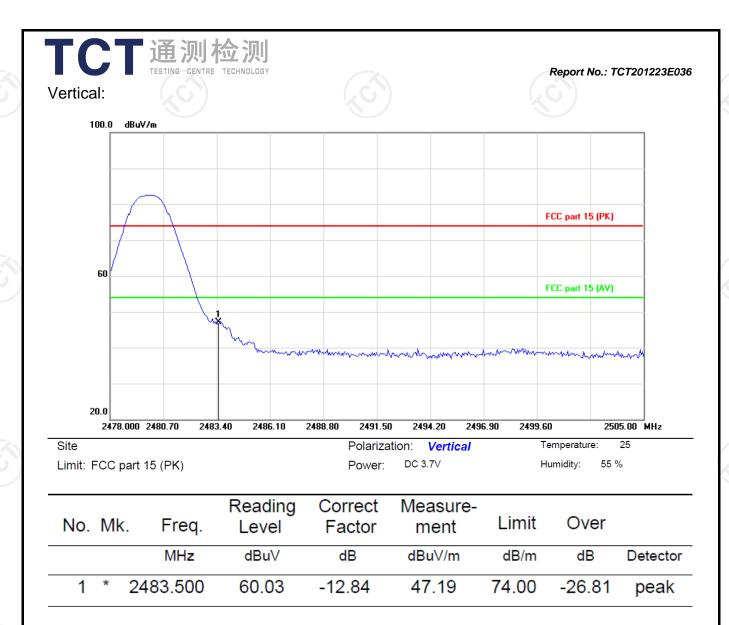


- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Measurements were conducted in all three channels (high, middle, low) and the worst case Mode (lowest channel) was submitted only.

Page 39 of 55



Vertica	d:		则 检 CENTRE TECH	顶川 NOLOGY			3)				(Re	port No.: T	СТ20	1223E036
11	0.0 dl	3uV/m													
												FCC	part 15 (PK)	A	
	60														
												FCC	part 15 (AV)		
								Advance and			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	and mark	ž	
		monderander		-	LM MM	munum									
20		0 2319.40	2328.80	2338.20	23/	17.60 2	357.00	236	6.40	2375	80 239	35.20	240	4.00	MH2
Site	2010.00	2010.40	2320.00	2000.20	25		arizat		Vertica					25	
	CC pa	rt 15 (PK)					wer:	DC 3.				Humi		6	
			F	Readir	ig	Corre	ct	Me	asur	e-					
No.	Mk.	Fre	q.	Level	-	Facto	or	m	nent		Limi	it	Over		
		MH	z	dBu∨		dB		dB	uV/m		dB/r	n	dB	De	etector
1		2390.00	00	52.54		-13.1	5	39	9.39		74.00	0	-34.61	F	eak
2	*	2400.00	00	61.81		-13.1	2	48	8.69		74.00	0	-25.31	r	eak



Page 41 of 55

Note: Measurements were conducted in all three channels (high, middle, low), and the worst case channel (lowest channel) was submitted only.

Above 1GHz

Modulation	Type: GF	SK							
Low chann	el: 2402 N	1Hz							
Frequency (MHz)			AV reading (dBuV)				Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.39		0.66	46.05		74	54	-7.95
7206	Н	36.51		9.5	46.01		74	54	-7.99
	Н								
		-			-			-	
4804	V	44.42		0.66	45.08		74	54	-8.92
7206	V	37.87		9.5	47.37		74	54	-6.63
	V	/		2	/				
				•			•		

TCT通测检测

Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor			Peak limit		Margin
	Π/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(ubµ v/m)	(dB)
4882	Н	47.66		0.99	48.65		74	54	-5.35
7323	Н	38.91		9.87	48.78		74	54	-5.22
	H								
					-1.			- <u>.</u> .	
4882	V	46.45		0.99	47.44		74	54	-6.56
7323	V	38.73		9.87	48.60		74	54	-5.40
	V			1	/				

High channel: 2480 MHz

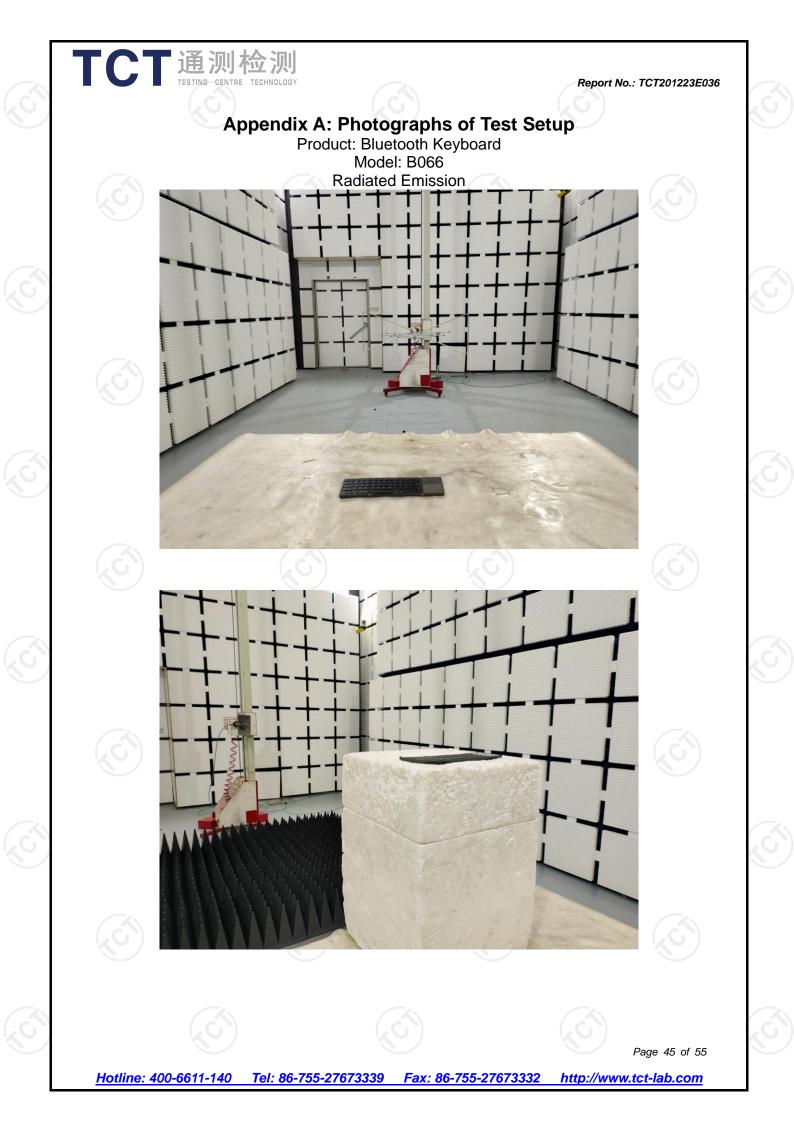
Ant Pol	Peak	AV	Correction	Emissic	on Level	Poak limit		Margin (dB)
H/V	reading (dBμV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV			
Н	46.11		1.33	47.44		74	54	-6.56
Н	36.45		10.22	46.67		74	54	-7.33
Н								
V	48.95		1.33	50.28		74	54	-3.72
V	36.88		10.22	47.10		74	54	-6.90
V								
I	Ant. Pol. H/V H H H V V	Ant. Pol. H/V Peak reading (dBμV) H 46.11 H 36.45 H V 48.95 V 36.88	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) H 46.11 H 36.45 H V 48.95 V 36.88	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) H 46.11 1.33 H 36.45 10.22 H V 48.95 1.33 V 36.88 10.22	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Peak (dBµV/m) H 46.11 1.33 47.44 H 36.45 10.22 46.67 H V 48.95 1.33 50.28 V 36.88 10.22 47.10	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) H 46.11 1.33 47.44 H 36.45 10.22 46.67 H V 48.95 1.33 50.28 V 36.88 10.22 47.10	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dBµW) Emission Level Peak (dBµV/m) Peak limit (dBµV/m) H 46.11 1.33 47.44 74 H 36.45 10.22 46.67 74 H 74 V 48.95 1.33 50.28 74 V 36.88 10.22 47.10 74	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

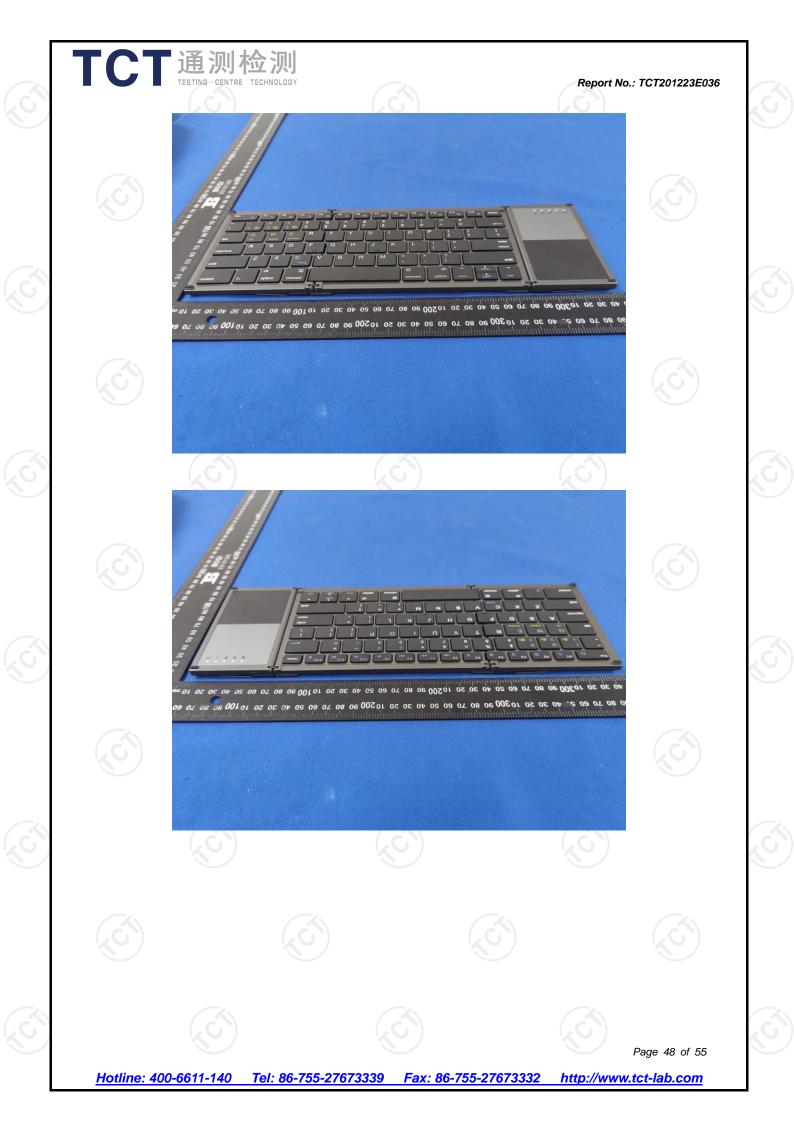
2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

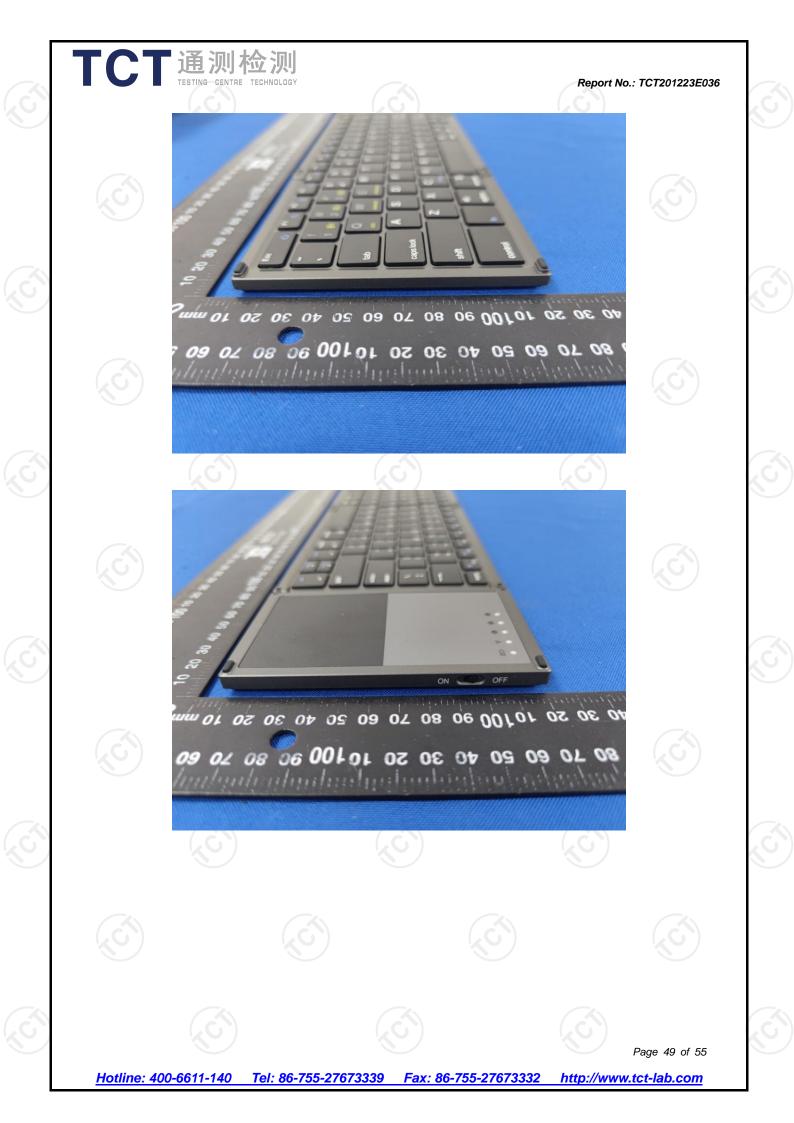
3. The emission levels of other frequencies are very lower than the limit and not show in test report.


4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three channels (high, middle, low), and the worst case channel (lowest channel) was submitted only.


7. All the restriction bands are compliance with the limit of 15.209.


Page 44 of 55

