

TEST REPORT FCC ID. : 2AFW2-B033-2 Test Report No.....: TCT220701E010 Date of issue.....: Jul. 20, 2022 Testing laboratory: SHENZHEN TONGCE TESTING LAB 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, Testing location/ address: People's Republic of China Applicant's name.....: : Shenzhen DZH Industrial Co., Ltd 3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D Address.....: zone, ShaJing, Shenzhen, China Manufacturer's name ...: Shenzhen DZH Industrial Co., Ltd 3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D Address..... zone, ShaJing, Shenzhen, China FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Standard(s): ANSI C63.10:2013 Product Name.....:: Bluetooth Keyboard Trade Mark: N/A Model/Type reference.....: B033 Rating(s).....: Rechargeable Li-ion Battery DC 3.7V Date of receipt of test item Jul. 01, 2022: Date (s) of performance of Jul. 01, 2022 - Jul. 20, 2022 test.....:: Onnado Tested by (+signature)... : Onnado YE Check by (+signature).... : Beryl ZHAO Approved by (+signature): Tomsin General disclaimer: This report shall not be reproduced except in full, without the written approval of SHENZHEN

TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information
1.1. EUT description
1.2. Model(s) list
1.3. Operation Frequency
2. Test Result Summary
3. General Information
3.1. Test environment and mode
3.2. Description of Support Units
4. Facilities and Accreditations
4.1. Facilities
4.2. Location
4.3. Measurement Uncertainty
5. Test Results and Measurement Data7
5.1. Antenna requirement7
5.2. Conducted Emission
5.3. Conducted Output Power12
5.4. 20dB Occupy Bandwidth13
5.5. Carrier Frequencies Separation14
5.6. Hopping Channel Number15
5.7. Dwell Time
5.8. Pseudorandom Frequency Hopping Sequence
5.9. Conducted Band Edge Measurement18
5.10.Conducted Spurious Emission Measurement
5.11.Radiated Spurious Emission Measurement
Appendix A: Test Result of Conducted Test
Appendix B: Photographs of Test Setup
Appendix C: Photographs of EUT

1. General Product Information

1.1. EUT description

Product Name:	Bluetooth Keyboard	(\mathbf{c}^{\prime})		
Model/Type reference:	B033			
Sample Number:	TCT220701E010-0101			
Bluetooth Version:	V5.1		No.	
Operation Frequency:	2402MHz~2480MHz			
Transfer Rate:	1 Mbits/s			
Number of Channel:	79			
Modulation Type:	GFSK			
Modulation Technology:	FHSS			
Antenna Type:	PCB Antenna			
Antenna Gain:	1.87dBi			
Rating(s):	Rechargeable Li-ion Battery DC	3.7V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	- 70	2472MHz
9 11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		()
Remark:	Channel 0, 3	39 & 78 ha	ave been te	sted for G	FSK modul	ation mod	le.

Report No.: TCT220701E010

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 63

3. General Information

3.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission		Radiated E	mission
Temperature:	25.3 °C	~	25 °C	
Humidity:	56 % RH	5	55 % RH	KC)
Atmospheric Pressure:	1010 mbar		1010 mbar	
Test Software:				
Software Information:	Broadcom BlueTool			Q
Power Level:	Default			
Test Mode:				
Engineer mode:	Keep the EUT in contin channel and modulatio		-	-
The sample was placed 0. above the ground plane of 3				

above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735	/	JD

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
7	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Test Results and Measurement Data 5.

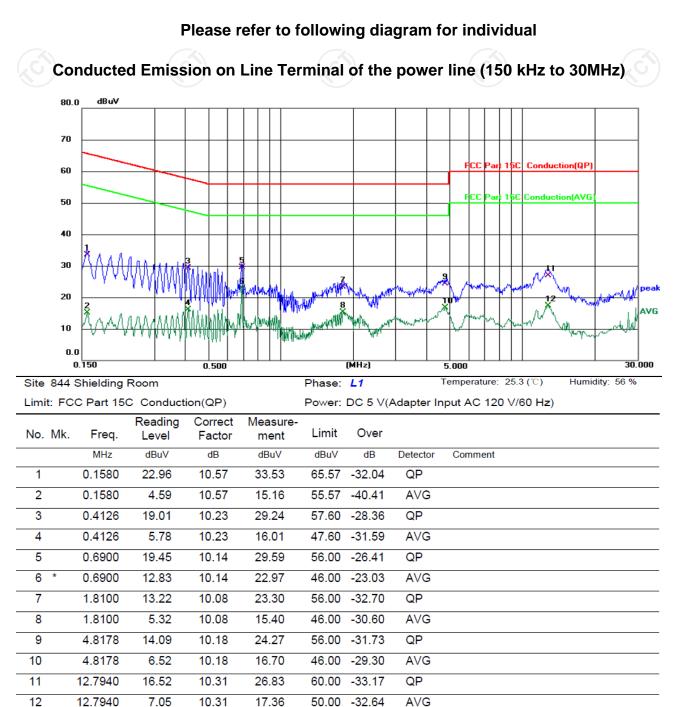
5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. E.U.T Antenna: The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 1.87dBi. Antenna

5.2. Conducted Emission

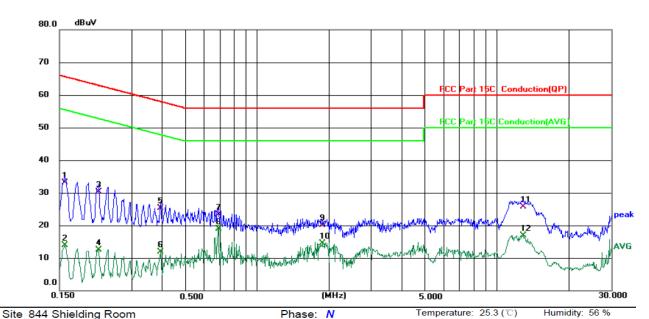
5.2.1. Test Specification

			(
Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013							
Frequency Range:	150 kHz to 30 MHz								
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
	Frequency range	Limit (dBuV)						
	(MHz)	Quasi-peak	Average						
Limits:	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	Referenc	e Plane							
Test Setup:	E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ni Test table height=0.8m	EMI Receiver	j── AC power						
Test Mode:	Charging + Transmittir	ng Mode							
	1. The E.U.T is conne impedance stabiliz provides a 500hm/s measuring equipme	zation network 50uH coupling im nt.	(L.I.S.N.). This pedance for the						
Test Procedure:	 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference mission, the relative the interface cables ANSI C63 10:2013 (2013) 	ISN that provides with 50ohm terr diagram of the line are checke nce. In order to fi re positions of equ must be changed	s a 50ohm/50uh nination. (Please test setup and ed for maximun nd the maximun lipment and all c l according to						
Test Procedure:	 power through a Ll coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference mission, the relative 	ISN that provides with 50ohm terr diagram of the line are checke nce. In order to fi re positions of equ must be changed	s a 50ohm/50uh nination. (Please test setup and ed for maximun nd the maximun lipment and all c l according to						


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)											
Equipment	Manufacturer	Model	Serial Number	Calibration Due							
EMI Test Receiver	R&S	ESCI3	100898	Jul. 04, 2023							
Line Impedance Stabilisation Newtork(LISN)		NSLK 8126	8126453	Feb. 24, 2023							
Line-5	ТСТ	CE-05	N/A	Jul. 04, 2023							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							

Page 9 of 63


5.2.3. Test data

Note:

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Limit ($dB\mu V$) = Limit stated in standard Margin (dB) = Measurement ($dB\mu V$) – Limits ($dB\mu V$) Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 10 of 63

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

TCT通测检测 TCT通测检测

							-	· · · · · · · · · · · · · · · · · · ·
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1580	22.53	10.49	33.02	65.57	-32.55	QP	
2	0.1580	3.44	10.49	13.93	55.57	-41.64	AVG	
3	0.2179	19.93	10.33	30.26	62.90	-32.64	QP	
4	0.2179	2.21	10.33	12.54	52.90	-40.36	AVG	
5	0.3940	15.09	10.24	25.33	57.98	-32.65	QP	
6	0.3940	1.60	10.24	11.84	47.98	-36.14	AVG	
7	0.6900	13.20	10.14	23.34	56.00	-32.66	QP	
8 *	0.6900	8.77	10.14	18.91	46.00	-27.09	AVG	
9	1.8700	9.95	10.17	20.12	56.00	-35.88	QP	
10	1.8700	4.31	10.17	14.48	46.00	-31.52	AVG	
11	12.8700	15.37	10.41	25.78	60.00	-34.22	QP	
12	12.8700	6.54	10.41	16.95	50.00	-33.05	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and the worst case Mode (Lowhest channel) was submitted only.

Page 11 of 63

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 04, 2023

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	N/A				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 04, 2023

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	S N/A	Jul. 04, 2023

5.6. Hopping Channel Number

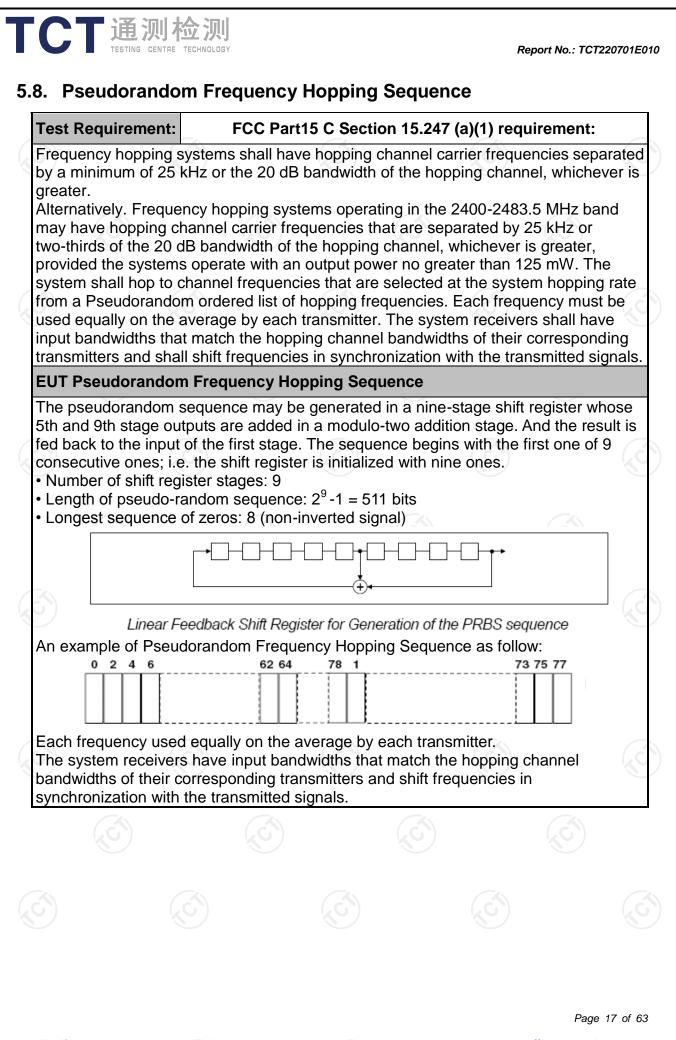
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.		
Test Setup:			
	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 		
Test Result:	PASS		
5.6.2 Tost Instruments			

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 04, 2023
(.c)	66		G	(\mathbf{G})

5.7. Dwell Time


5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 04, 2023
	Č.			

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 04, 2023
(\mathcal{S})) ()	.G`)	(\mathcal{G})

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				
Test Result:	PASS				

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 04, 2023

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

	FCC Partis	C Section	15.209			No.			
Test Method:	ANSI C63.10	0:2013							
Frequency Range:	9 kHz to 25 (9 kHz to 25 GHz							
Measurement Distance:	3 m								
Antenna Polarization:	Horizontal &	Vertical							
	Frequency	Detector	RBW	VBW		Remark			
	9kHz- 150kHz	Quasi-peak		1kHz		si-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-peak	k 9kHz	30kHz	Quas	si-peak Value			
	30MHz-1GHz	Quasi-peal		300KHz	1	si-peak Value			
	Above 1GHz	Peak	1MHz	3MHz		eak Value			
	Above TOTIZ	Peak	1MHz	10Hz	Ave	erage Value			
	Eroquor		Field Str	ength	Me	asurement			
	Frequen		(microvolts		Dista	nce (meters)			
	0.009-0.4		2400/F(300			
	0.490-1.7		24000/F	(KHz)		30			
	1.705-3		30	1		30			
	30-88	1	100		3				
Limit:	216-96		200		3				
	Above 9		500		3				
	Above 1GH:	(micro	ovolts/meter) 500	3		Detector Average			
	Above IGH.	2	5000	3		Peak			
Test setup:	For radiated emis	istance = 3m	30MHz		Compu Amplifier Receiver				
				\sim		1			

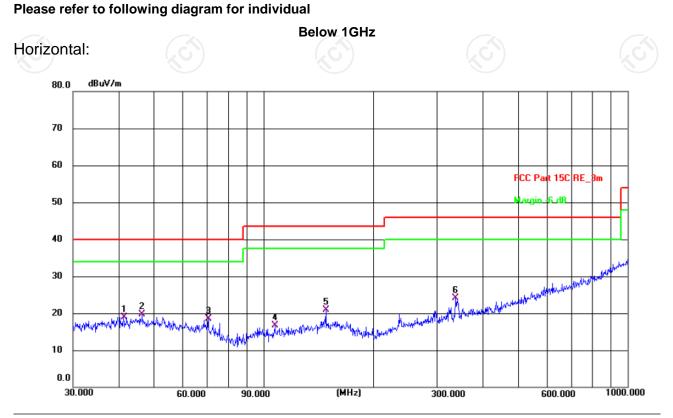
CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT220701E0
	EUT Antenna Tower EUT Antenna Tum 0.8m 1m Table 0.8m 1m
	Ground Plane Above 1GHz
	AE EUT AE EUT (Turntable) Ground Reference Plane Test Receiver
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10:2013 Measurement Guidelines. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission

	receiving the ma measurement an maximizes the en antenna elevatio restricted to a ran above the ground 3. Set to the maxin EUT transmit co 4. Use the following (1) Span shall w emission be (2) Set RBW=12 for f>1GHz ; Sweep = an = max hold (3) For average	ed at the emission source ximum signal. The final itenna elevation shall be missions. The measurer n for maximum emission nge of heights of from 1 d or reference ground p mum power setting and ntinuously. g spectrum analyzer set vide enough to fully cap ing measured; 20 kHz for f < 1 GHz, R VBW≥RBW; uto; Detector function =	e that which ment ns shall be m to 4 m lane. d enable the ttings: ture the BW=1MHz peak; Trace
	On time =N Where N1 length of ty Average Er Level + 20* Corrected R	1*L1+N2*L2++Nn-1*L is number of type 1 puls pe 1 pulses, etc. mission Level = Peak Er flog(Duty cycle) eading: Antenna Factor	Nn-1+Nn*Lr ses, L1 is mission · + Cable
Test results:	On time =N Where N1 length of ty Average Er Level + 20* Corrected R	1*L1+N2*L2++Nn-1*L is number of type 1 puls pe 1 pulses, etc. mission Level = Peak Er flog(Duty cycle)	Nn-1+Nn*Li ses, L1 is mission · + Cable
Test results:	On time =N Where N1 length of ty Average Er Level + 20* Corrected R Loss + Read	1*L1+N2*L2++Nn-1*L is number of type 1 puls pe 1 pulses, etc. mission Level = Peak Er flog(Duty cycle) eading: Antenna Factor	Nn-1+Nn*Li ses, L1 is mission · + Cable
Test results:	On time =N Where N1 length of ty Average Er Level + 20* Corrected R Loss + Read	1*L1+N2*L2++Nn-1*L is number of type 1 puls pe 1 pulses, etc. mission Level = Peak Er flog(Duty cycle) eading: Antenna Factor	Nn-1+Nn*Li ses, L1 is mission · + Cable
Test results:	On time =N Where N1 length of ty Average Er Level + 20* Corrected R Loss + Read	1*L1+N2*L2++Nn-1*L is number of type 1 puls pe 1 pulses, etc. mission Level = Peak Er flog(Duty cycle) eading: Antenna Factor	Nn-1+Nn*Li ses, L1 is mission · + Cable

5.11.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

Radiated Emission Test Site (966)											
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due							
EMI Test Receiver	R&S	ESIB7	100197	Jul. 04, 2023							
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 04, 2023							
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023							
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023							
Pre-amplifier	HP	8447D	2727A05017	Jul. 04, 2023							
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022							
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022							
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023							
Antenna Mast	Keleto	RE-AM	N/A	N/A							
Coaxial cable	SKET	RC_DC18G-N	N/A	Feb. 24, 2023							
Coaxial cable	SKET	RC-DC18G-N	N/A	Feb. 24, 2023							
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 04, 2023							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							

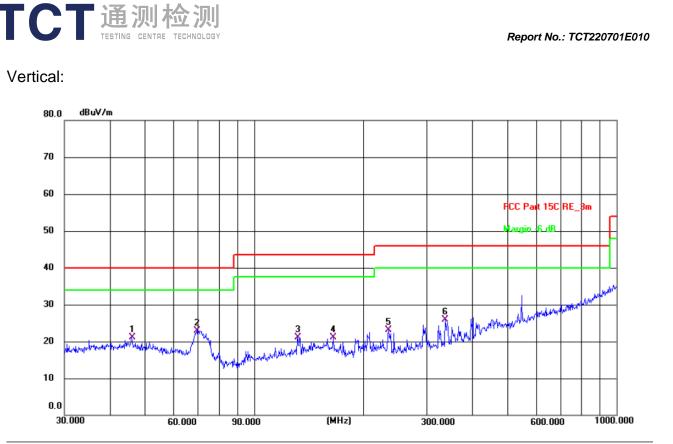

Page 23 of 63

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT 通测检测 TESTING CENTRE TECHNOLOGY

.

Site #1 3m Anechoic Chamber Limit: FCC Part 15C RE_3m Polarization: *Horizontal* Power: DC 3.7 V Temperature: 25(C)

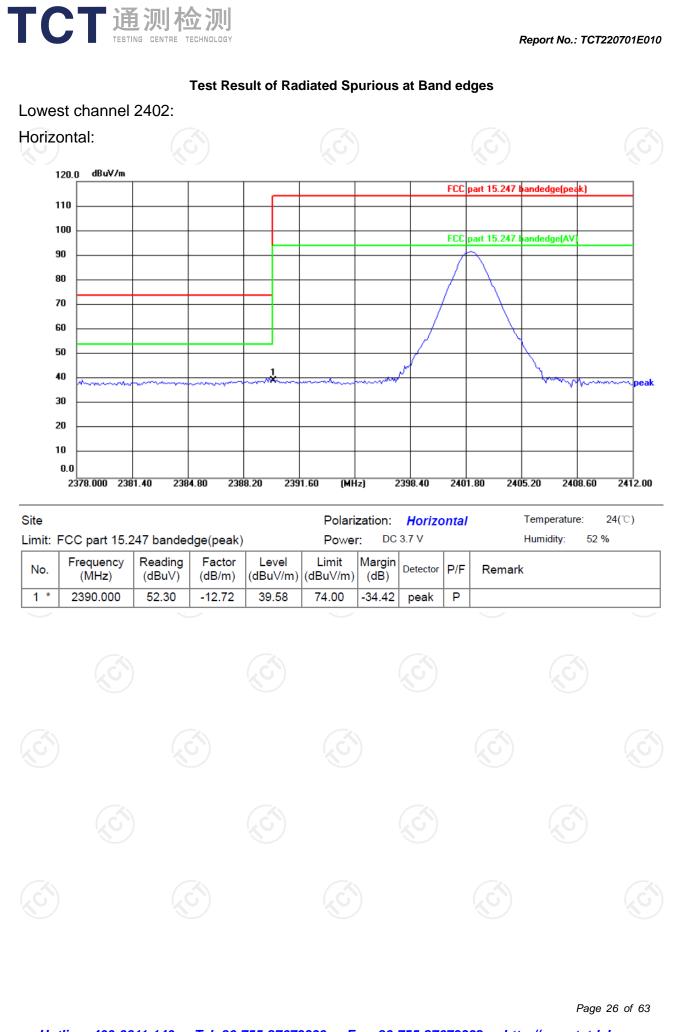

Humidity: 55 %

Report No.: TCT220701E010

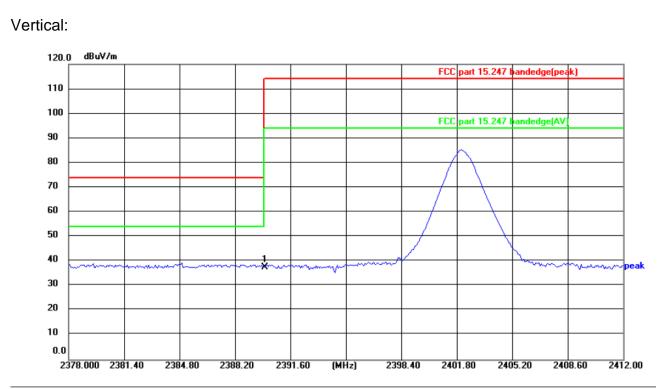
				-					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	41.2765	5.24	13.69	18.93	40.00	-21.07	QP	Р	
2 *	46.5030	6.07	13.55	19.62	40.00	-20.38	QP	Ρ	
3	70.5836	7.76	10.79	18.55	40.00	-21.45	QP	Ρ	
4	107.5101	6.20	10.52	16.72	43.50	-26.78	QP	Р	
5	148.4410	7.90	12.96	20.86	43.50	-22.64	QP	Ρ	
6	337.2155	9.70	14.45	24.15	46.00	-21.85	QP	Ρ	

Page 24 of 63

Site #	1 3m Anechoi	c Chambe	r	Polarization: Vertical					emperature: 25(C)	Humidity: 55 %
Limit:	FCC Part 150	RE_3m		Power	: DC 3.7 \	/				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	46.0164	7.59	13.57	21.16	40.00	-18.84	QP	Ρ		
2 *	69.6005	12.03	10.96	22.99	40.00	-17.01	QP	Ρ		
3	131.7577	8.96	12.22	21.18	43.50	-22.32	QP	Ρ		
4	165.4866	8.27	12.84	21.11	43.50	-22.39	QP	Ρ		
5	234.9909	11.13	11.88	23.01	46.00	-22.99	QP	Ρ		
6	337.2155	11.47	14.45	25.92	46.00	-20.08	QP	Ρ		


Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and the worst case Mode (Lowest channel) was submitted only.


- 3. Freq. = Emission frequency in MHz
- $\begin{array}{l} \textit{Measurement} \ (dB\mu V/m) = \textit{Reading level} \ (dB\mu V) + \textit{Corr. Factor} \ (dB) \\ \textit{Correction Factor} = \textit{Antenna Factor} + \textit{Cable loss} \textit{Pre-amplifier} \\ \end{array}$
- *Limit* ($dB\mu V/m$) = *Limit* stated in standard

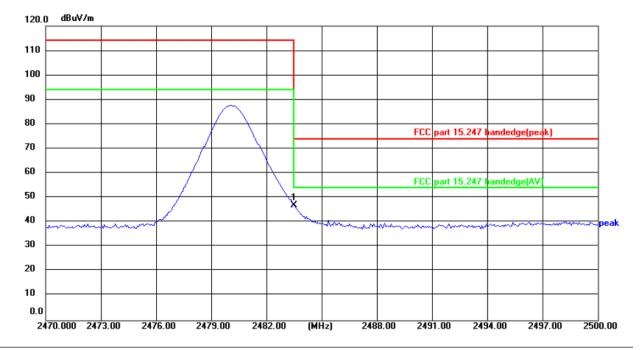
 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

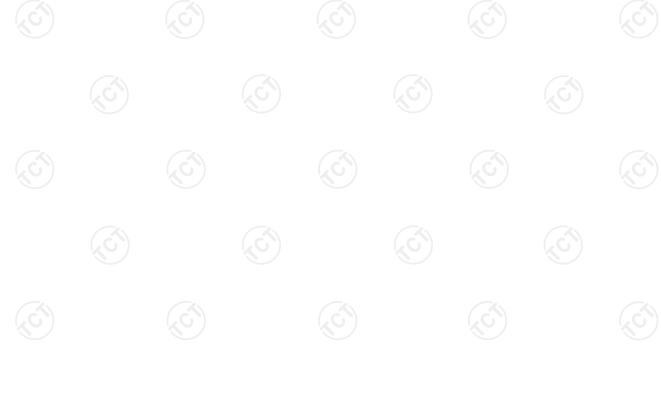
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT通测检测 TESTING CENTRE TECHNOLOGY

Site			a/	Temperature: 24(°C)					
Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V									Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector	P/F	Remark
1 *	2390.000	50.48	-12.72	37.76	74.00	-36.24	peak	Ρ	

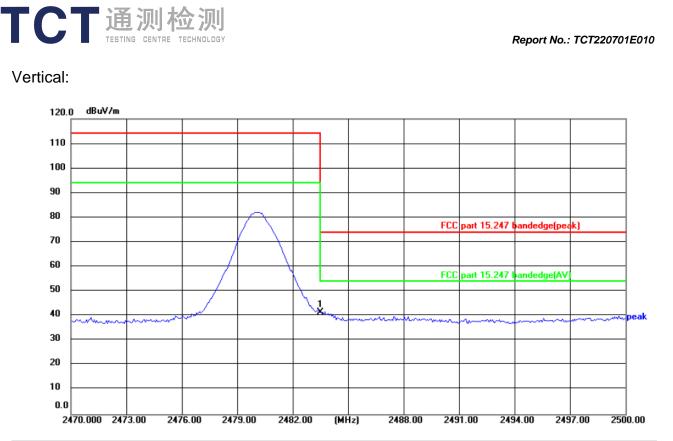


Page 27 of 63

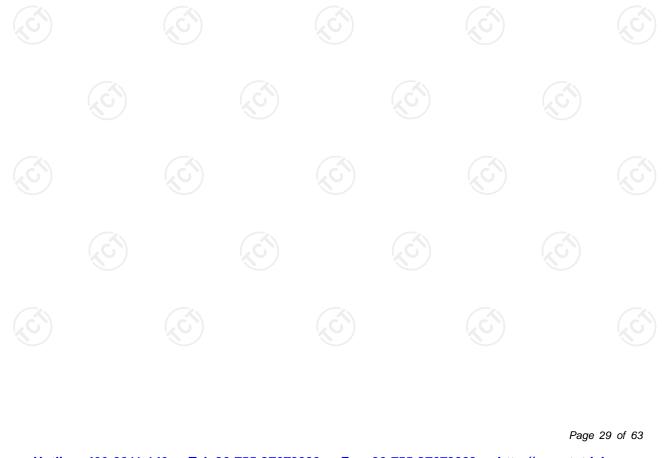

Report No.: TCT220701E010

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Horizontal:



Site					Polariz	zation:	Horizo	ntal	Temperature: 24(℃)
Limit: FCC part 15.247 bandedge(peak) Power: DC 3									Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2483.500	59.19	-12.32	46.87	74.00	-27.13	peak	Ρ	



Report No.: TCT220701E010

Page 28 of 63

Site					Polari	zation:	Vertica	al	Temperature: 24(°C)
Limit:	Humidity: 52 %								
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2483.500	53.79	-12.32	41.47	74.00	-32.53	peak	Ρ	

Above 1GHz

Modulation	Type: GF	SK							
Low channe	el: 2402 N	lHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4804	Н	46.71		0.66	47.37		74	54	-6.63
7206	Н	35.63		9.50	45.13		74	54	-8.87
	Н								
((.C)		((\mathbf{G})		(C)	
4804	V	45.49		0.66	46.15	<u> </u>	74	54	-7.85
7206	V	35.71		9.50	45.21		74	54	-8.79
	V								

Middle cha	nnel: 2441	MHz		KC KC))				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	45.73		0.99	46.72	×	74	54	-7.28
7323	KOĤ)	34.25	- KO	9.87	44.12	51	74	54	-9.88
	Ĥ					\sim			
4882	V	45.87		0.99	46.86		74	54	-7.14
7323	V	35.69		9.87	45.56		74	54	-8.44
<u> </u>	V			(2 /				

High chann	nel: 2480 N	/IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	44.50		1.33	45.83		74	54	-8.17
7440	Н	34.61		10.22	44.83		74	54	-9.17
	Н								
G)				(.0			(\mathbf{G})		
4960	V	45.28		1.33 🔪	46.61		74	54	-7.39
7440	V	35.14		10.22	45.36		74	54	-8.64
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

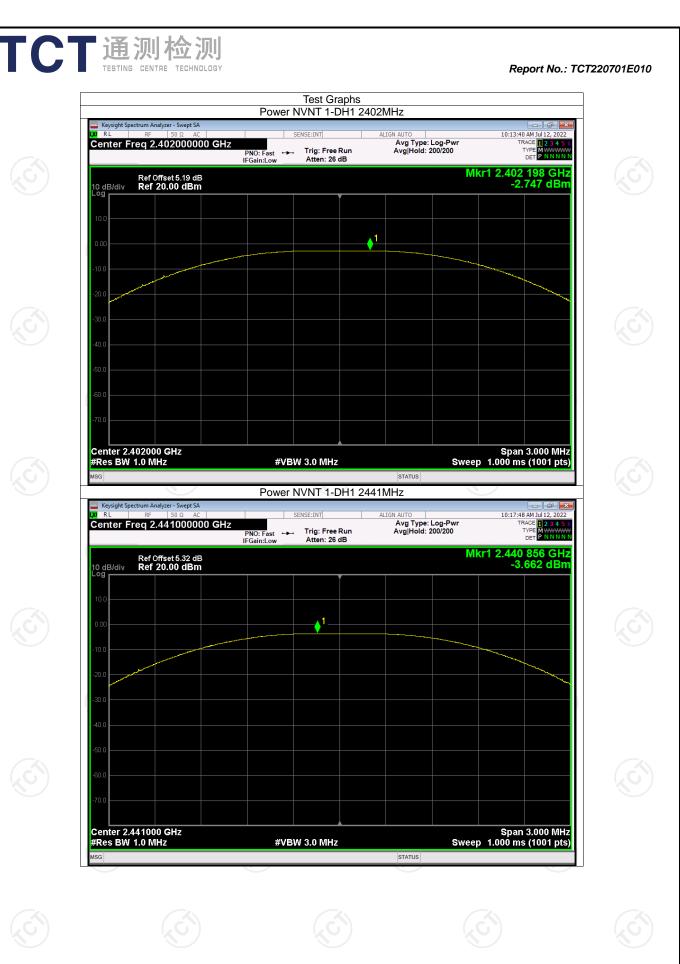
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.


6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

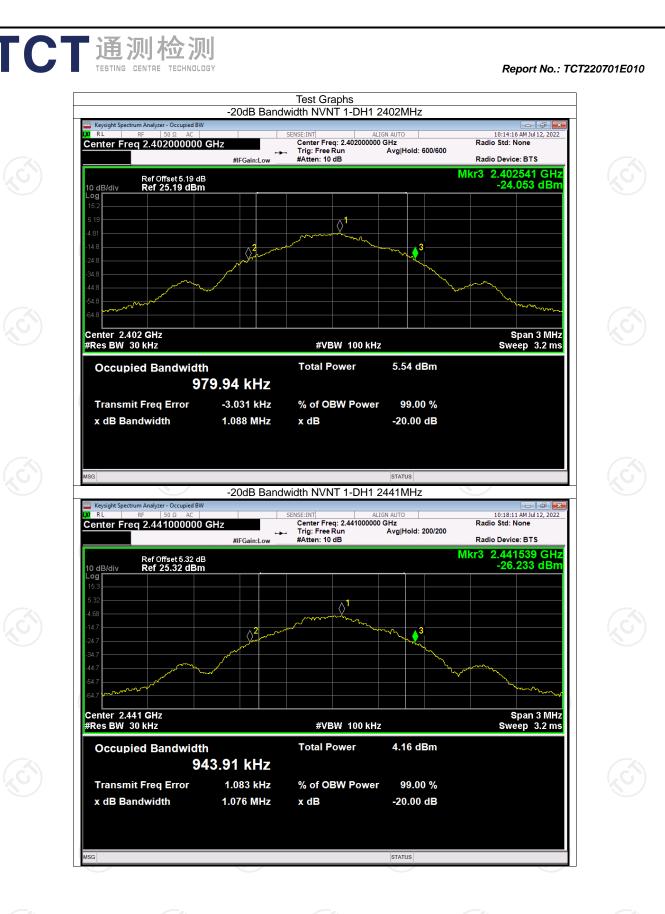
TCT通测检测 TESTING CENTRE TECHNOLOGY

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict	
NVNT	1-DH1	2402	-2.75	21	Pass	
NVNT	1-DH1	2441	-3.66	21	Pass	
NVNT	1-DH1	2480	-4.41	21	Pass	

Page 32 of 63

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


	ESTING CENTRE TECHNOLOGY Report No.: TCT220701E010 Power NVNT 1-DH1 2480MHz Keysight Spectrum Analyzer - Swept SA							
LXI RL	RF 50 Ω AC q 2.480000000 G	Hz PNO: Fast ↔ IFGain:Low	SENSE:INT Trig: Free Run Atten: 26 dB	ALIGN AUTO Avg Type: Log Avg Hold: 100	g-Pwr 0/1000	3:57 AM Jul 12, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N		
10 dB/div	Ref Offset 5.41 dB Ref 20.00 dBm				Mkr1 2.47	'9 997 GHz 4.408 dBm		
0.00			1					
-10.0	and the second s							
-20.0 -30.0	and a second							
-40.0								
-60.0								
-70.0 Center 2.48	0000 GHz				Spa Sweep 1.000 r	an 3.000 MHz		
#Res BW 1.	o MHz	#VE	BW 3.0 MHz	STATUS	Sweep 1.000 r	ns (1001 pts)		

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict					
NVNT	1-DH1	2402	1.088	Pass					
NVNT	1-DH1	2441	1.076	Pass					
NVNT	1-DH1	2480	1.055	Pass					
	((c)					

-20dB Bandwidth

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

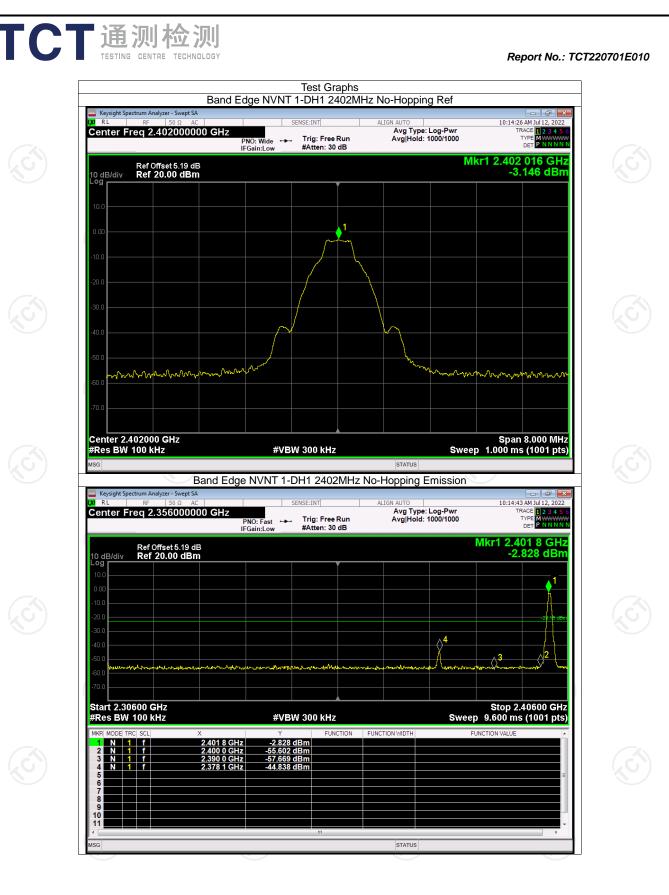
Page 35 of 63

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

XIRL R	Analyzer - Occupied BW F 50 Ω AC 2.4800000000	GHz →		ALIGN AUTO	Radio Std: 00		
10 dB/div Log 15.4 -4.59 -14.6 -24.6 -24.6	Ref Offset 5.41 dB Ref 25.41 dBm	#FGain:Low	#Atten: 10 dB	3	Radio Devi		
-54.6 -54.6 Center 2.48 #Res BW 30			#VBW 100 Total Power	kHz 3.69 dBm	Sw	Span 3 MHz eep 3.2 ms	
	93 Freq Error	9.83 kHz 3.244 kHz 1.055 MHz	% of OBW Pov x dB	ver 99.00 % -20.00 dB			
ISG	No.		No.	STATUS	No.		

Verdic	Limit (MHz)	HFS (MHz)		Hopping (MH	g Freq1 Hz)		Mode	Condition
Pass Pass Pass	0.725 0.725 0.725	0.998 0.998 0.998	996 000	2402.9 2442.0 2480.0	1.998 1.002 9.008	240 ² 244 ²	1-DH1 1-DH1 1-DH1	NVNT NVNT NVNT

Report No.: TCT220701E010


TCT通测检测 TESTING CENTRE TECHNOLOGY

	则检测 ENTRE TECHNOLOG		NVNT 1-DH1 24	30MHz	R	eport No.: TCT	220701E010
LXI RL	n Analyzer - Swept SA RF 50 Ω AC 2.479500000 C	PNO: Wide	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log Avg Hold:>100	10:45 j-Pwr /100	46 AM Jul 12, 2022 TRACE 123456 TYPE MWWWWW DET PNNNN	
10 dB/div R Log 10.0 -10.0 -20.0 -30.0 -40.0	ef Offset 5.41 dB ef 20.00 dBm	IFGain:Low			Mkr1 2.47		
50.0 -60.0 -70.0 Center 2.479 #Res BW 100 MKR MODE TRC S 1 N 1 1 2 N 1 1 3 4 5 6 7	0 kHz cl X f 2.479 (Y 008 GHz -4.485	BW 300 kHz FUNCTION I dBm	FUNCTION WIDTH	Spa Sweep 1.000 m		
8 9 10 11 MSG	No.			STATUS	No.	· ·	
						-	39 of 63

TC		刂检测	Y				Report No.: TC	T 220701E010
Condition	Mode 1-DH1 1-DH1	(M) 24	Jency Hz) 02 80	Band Edge Hopping Mode No-Hoppin No-Hoppin	Max (d g -4	Value Bc) 1.68 9.96	Limit (dBc) -20 -20	Verdict Pass Pass
					Ś		Ś	
<u>Hotline:</u>	<u>400-6611-1</u>	40 Tel: 8	8 <u>6-755-2767</u>	7 <u>3339 Fax: 8</u>	<u>86-755-2767;</u>	<u>3332 ht</u> t	Page t <mark>p://www.tct-</mark> l	e 40 of 63 l <mark>ab.com</mark>

Page 41 of 63

	通测检测 TESTING CENTRE TECHNOLOGY Band Keysight Spectrum Analyzer - Swept SA	d Edge NVNT 1-DH1 2480M	Hz No-Hopping Ref	Report No.: TCT2	220701E010
	RL RF 50 Q AC enter Freq 2.480000000 GHz		ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	10:10:38 AM Jul 12, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	
		PNO: Wide ↔ Trig: Free Run IFGain:Low #Atten: 30 dB		1 2.480 200 GHz	
1 1	Ref Offset 5.41 dB dB/div Ref 20.00 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0			-4.669 dBm	
-3 -4 -5	10 10 10 10 10 10 10	mm		mmm, mm, mm, mm, mm, mm, mm, mm, mm, mm	
		#VEW 300 KHz dge NVNT 1-DH1 2480MHz SENSE:INT PN0: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	STATUS No-Hopping Emission ALIGN AUTO Avg Type: Log-Pwr Avg[Hold: 200/200	Span 8.000 MHz 1.000 ms (1001 pts)	
1 (1) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Ref Offset 5.41 dB dB/div Ref 20.00 dBm	a Are unless oher my stratement after a st		kr1 2:479 9 GHz -4.805 dBm -24.87 dBm	
s #	xart 2.47600 GHz Res BW 100 kHz R MODE TRC SCL X N 1 f 2.479 9 2 N 1 f 2.479 9 3 N 1 f 2.433 5 3 N 1 f 2.430 0 4 N 1 f 2.434 0 5 7 7 7 7 8 9 9 1 1 1 1 2.494 0	GHz -57.642 dBm GHz -56.493 dBm		Stop 2.57600 GHz 9.600 ms (1001 pts) TION VALUE	
us		(J)	STATUS		

Condition	Mode 1-DH1	(M)	Band Jency Hz) 02	Edge(Hop Hopping Mode	Max (d	Value IBc) 2.41	Limit (dBc)	Verdic Pass
NVNT	1-DH1		80	Hopping Hopping		4.49	-20 -20	Pass

TC	通测检测 TESTING CENTRE TECHNOLOGY Report No.: TC	T220701E010
	Band Edge(Hopping) NVNT 1-DH1 2480MHz Hopping Ref ✓ Keysight Spectrum Analyzer - Swept SA ✓ Center Freq 2.480000000 GHz ALIGN AUTO 10:47:50 AM Jul 12, 2022 Center Freq 2.480000000 GHz PNO: Wide ← Trig: Free Run IFGain:Low Avg Type: Log-Pwr #Atten: 30 dB Trace 2.3 4 5 6	
	Ref Offset 5.41 dB 10 dB/div Ref 20.00 dBm 10 0 10	
	Center 2.480000 GHz Span 8.000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) Msg status Band Edge(Hopping) NVNT 1-DH1 2480MHz Hopping Emission Keysight Spectrum Analyzer - Swept SA Msg RL RF 50 Ω AC PN0: Fast Aug Type: Log-Pwr IFGain:Low Avg Type: Log-Pwr Avg Type: Log-Pwr Avg Type: Log-Pwr Trace 1 2 34 5 0 Trace 1 34	
	10 dB/div Ref 20.00 dBm -4.565 dBm 10 dB/div 1 1 1 10 dB/div 1	
	Start 2.47600 GHz Stop 2.57600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 2 N 1 f 2.479 0 GHz -4.565 dBm -5.595 dBm -5.395 dBm -5.395 dBm -5.395 dBm -5.595 dBm -5.595 dBm -5.595 dBm -5.595 dBm -4.565 dBm -4.565 dBm -5.595 dBm -6.595 dBm </td <td></td>	

Page 45 of 63

Condition	Mode	Frec	luency (Mi	ous Emis x Value (dE	Bc) Lim	it (dBc)	Verdic
NVNT NVNT	1-DH1 1-DH1		2402 2441	-39.67 -37.91		-20 -20	Pass Pass
NVNT	1-DH1		2480	-37.42		-20	Pass

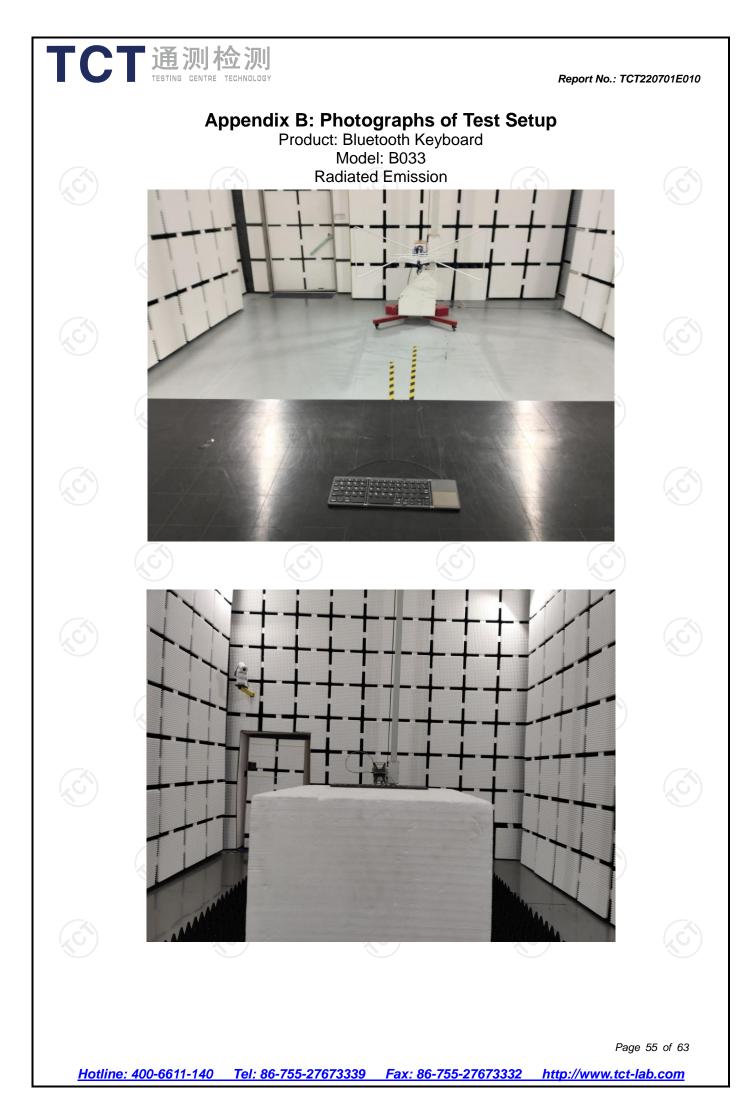
Page 47 of 63

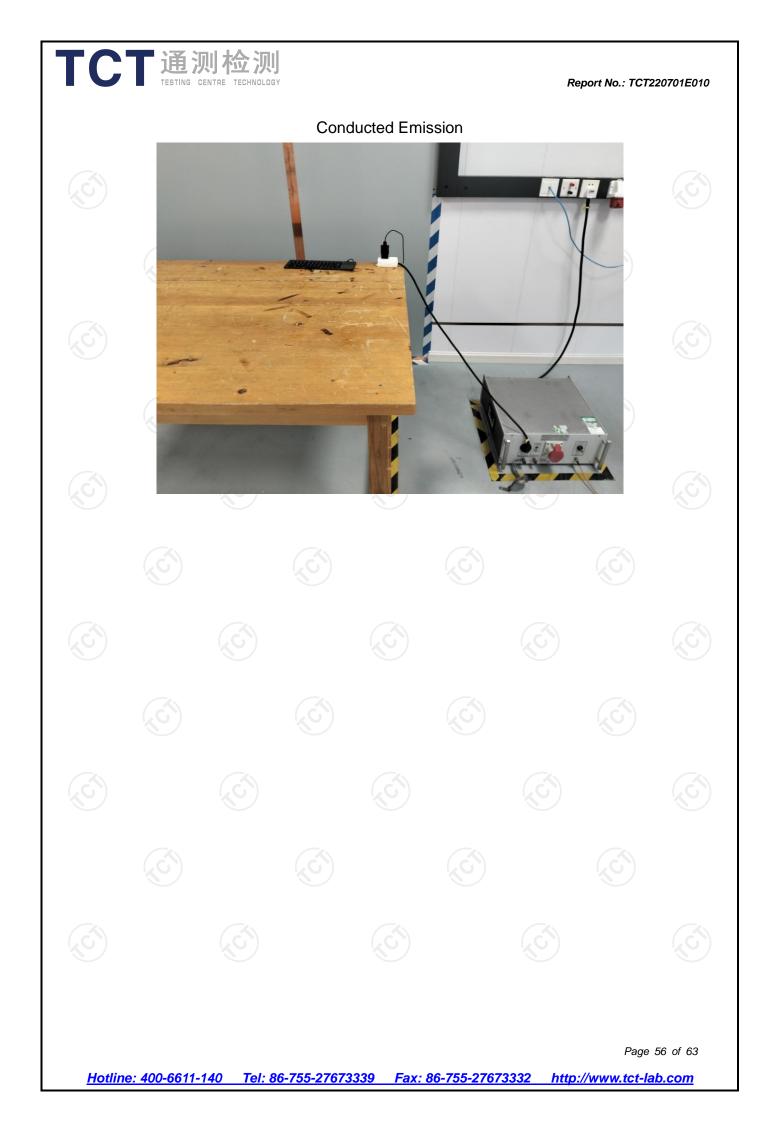
	Keysight Spectrum Analyzer - Swept SA R.L RF 50 Ω AC	Tx. Spurious NVNT 1-DH1			
	RL RF 50 Ω AC enter Freq 2.441000000 GH	Z PNO: Wide IFGain:Low KAtten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	10:19:39 AM Jul 12, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET PNNNN	
	Ref Offset 5.32 dB dB/div Ref 20.00 dBm		Mkr1 2	2.440 813 80 GHz -3.923 dBm	
0	00	1			
	0.0				
-20				and the second s	
-50					
-60	.0				
	enter 2.4410000 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 1.500 MHz 2.000 ms (30001 pts)	
6)		x. Spurious NVNT 1-DH1 24			
LXI	RL RF 50 Ω AC enter Freq 13.265000000 GI	PNO: Fast ++++ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	10:20:08 AM Jul 12, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
10	Ref Offset 5.32 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Ν	/kr1 2.441 4 GHz -4.554 dBm	
L.c 11	09 0.0 00				
	1.0			-23.92 dBm	
-4	1.0 A3				
-6					
St	art 0.03 GHz Res BW 100 kHz	#VBW 300 kHz	Sween	Stop 26.50 GHz 2.530 s (30001 pts)	
	R MODE TRC SCL X I N 1 f 2.441.4 2 N 1 f 24.795.3	Y FUNCTION		ICTION VALUE	
	3 N 1 f 4.9481 4 N 1 f 7.3234 5 N 1 f 9.7630	I GHz -52.790 dBm I GHz -49.697 dBm		=	
	B B				
1 1 4 MS(STATUS		
	9			NC I	

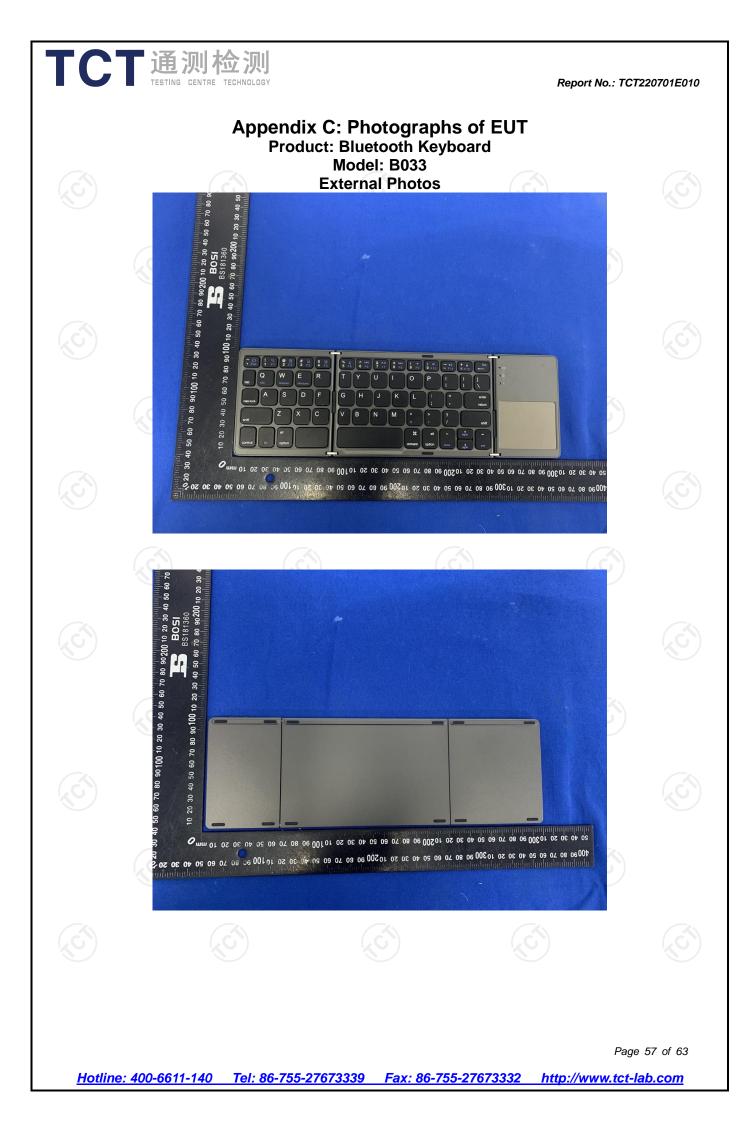
TCT	通测检测 TESTING CENTRE TECHNOLOGY			Report No.: TCT	220701E010
		Tx. Spurious NVNT 1-DH1 2	480MHz Ref		
	Keysight Spectrum Analyzer - Swept SA RL RF 50.Q. AC Center Freq 2.480000000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	10:11:01 AM Jul 12, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNN	
	Ref Offset 5.41 dB 10 dB/div Ref 20.00 dBm		Mkr1 2.	480 193 85 GHz -4.709 dBm	
	-10.0				
	-20.0				
	-50.0				
	Center 2.4800000 GHz #Res BW 100 kHz	#VBW 300 kHz	STATUS	Span 1.500 MHz 000 ms (30001 pts)	
	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 13.265000000 GHz Ref Offset 5.41 dB	Spurious NVNT 1-DH1 248(SENSE:INT PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	10:11:30 AM Jul 12, 2022 TRACE 12 34 5 6 TRACE 12 34 5 7 TRACE	
	10 dB/div Ref 20.00 dBm 100 0.00 -100			-5.815 dBm	
	-20 0 -30 0 -40 0 -60 0 -60 0 -60 0				
(70.0	iHz -5.815 dBm		Stop 26.50 GHz 2.530 s (30001 pts)	
	3 N 1 f 5.054.9 cg 4 N 1 f 7.440.7 G 5 N 1 f 9.921 0 G 6 - - - 7 - - - 8 - - - 9 - - - 10 - - -	Hz -52.757 dBm Hz -46.082 dBm		E	
	11 MSG		STATUS		
				Pana	49 of 63

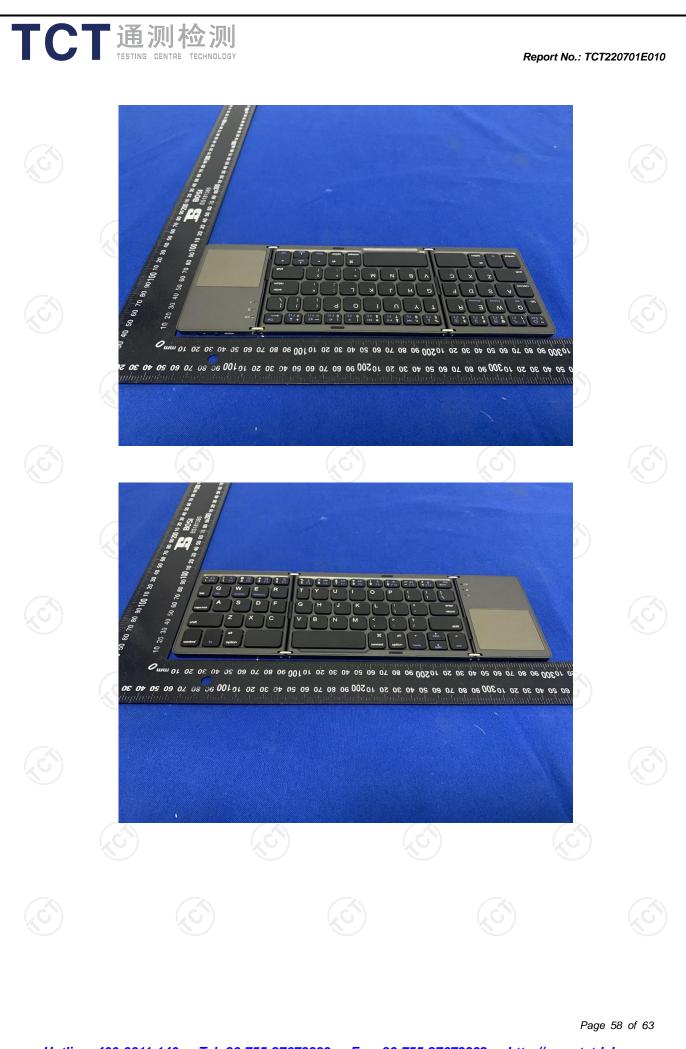
	Dwell Time										
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict			
NVNT	1-DH1	2441	0.44	42.68	97	31600	400	Pass			
NVNT	1-DH3	2441	1.69	153.79	91	31600	400	Pass			
NVNT	1-DH5	2441	2.94	302.82	103	31600	400	Pass			

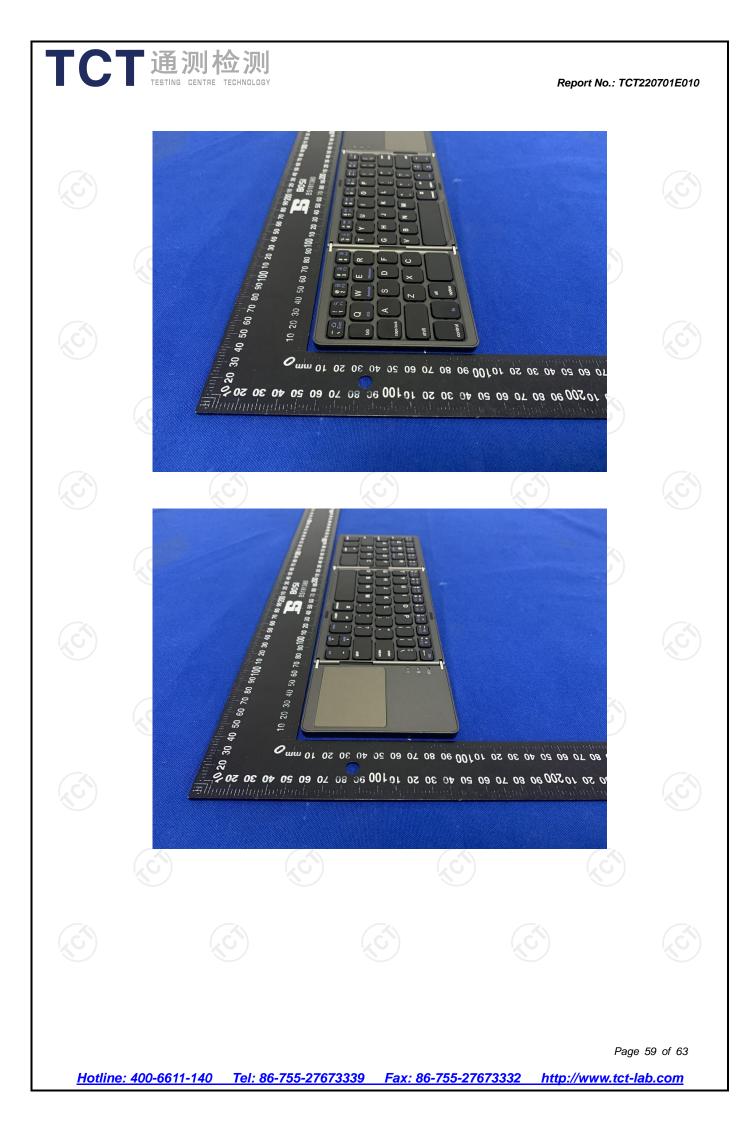
Page	51	Of	63




TC	通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT	7220701E010
	Test Graphs Dwell NVNT 1-DH1 2441MHz One Burst	
	Keysight Spectrum Analyzer - Swept SA □	
	Ref Offset 5.32 dB ΔMkr1 440.0 μs 10 dB/div Ref 20.00 dBm Logy 2.09 dB	
	Center 2.441000000 GHz Span 0 Hz	
	Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.00 ms (10001 pts) MKR MODEL TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 4 Δ2 1 t (Δ) 2.09 dB FUNCTION VALUE A 2 F 1 t 497.0 μs -10.06 dBm FUNCTION VALUE A	
	3 3 <td></td>	
	MSG STATUS Dwell NVNT 1-DH1 2441MHz Accumulated	
	Keysight Spectrum Analyzer - Swept SA Constraint ALIGN AUTO 11:46:54 AM Jul 12, 2022 OW RL RF 50 Ω AC SENSE:INT ALIGN AUTO 11:46:54 AM Jul 12, 2022 Center Freq 2.441000000 GHz PNO: Fast + Trig: Free Run #Atten: 30 dB Trig: Prove Run DET PNO: Fast + Trig: Free Run DET PNO: Fast + Trig: Free Run DET PNO: Fast + Trig: Free Run Trig: Free Run	
	Ref Offset 5.32 dB	
	-200	
	-60.0	
	70.0	
	Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 31.60 s (10001 pts)	


Page 52 of 63


_	DUISI TO 11:45:20 AM Jul 12, 2022 g Type: Log-Pwr TRACE 12, 3.4 - 5 TYPE WINNIN DET PNNNNN		Keysight Spectrum Analyzer - Swept SA K RF 50 Ω AC Center Freq 2.44100000
	<u>۵</u> ۳۴ ۵.690 ms -3.76 dB	IFGain:Low #Atten: 30 dB	Ref Offset 5.32 dB 10 dB/div Ref 20.00 dBm
	TRIG LVL		-10.0 X2
	it is not your the many lattices of parts in the institution of the lattice is the institution of the lattice is th	- Logik pijner tvi koljen i zaklad goritski na vritorik tradoval state tra	-30.0 -40.0 -50.0 de.dhyste
	a na tanàna amin'ny sora amin'ny Ny faritr'o amin'ny sora amin'ny s	y is a development, and a standing work of the sector of t	-60.0 <mark>1440 440</mark> -70.0
	Span 0 Hz Sweep 10.00 ms (10001 pts)	#VBW 3.0 MHz	Center 2.441000000 GHz Res BW 1.0 MHz
	DTH FUNCTION VALUE	Υ FUNCTION FU 1.690 ms (Δ) -3.76 dB 497.0 μs -10.05 dBm	MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 2 F 1 t 3
	=		4 5 6 7
			8 9 10 11
	ATUS	" Dwell NVNT 1-DH3 2441MHz /	MSG
-	TO 11:45:53 AM Jul 12, 2022	0 GHz	Keysight Spectrum Analyzer - Swept SA μ RF 50 Ω AC Center Freq 2.441000000
Ń	g Type: Log-Pwr TRACE 1 2 3 4 5 6 Type WWWWWW DET P NNNN	PN0: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Ref Offset 5.32 dB
			10 dB/div Ref 20.00 dBm
			-10.0
			-30.0
			-40.0
			-60.0
			-70.0
	Span 0 Hz Sweep 31.60 s (10001 pts)	#VBW 3.0 MHz	Center 2.441000000 GHz Res BW 1.0 MHz
	ATUS		MSG


Keysight Spectrum Analyzer - Swept SA RL RF S0 Ω AC Center Freq 2.441000000 GHz	SENSE:INT ALIGN Trig Delay-500.0 µs	AUTO 11:44:19 AM Jul 12, 2022 Avg Type: Log-Pwr TRACE 12 3 4 5	2
	PNO: Fast Trig: Video IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr TRACE 12345 Type WWWWW Det PNNNN AMkr1 2.940 ms	_
Ref Offset 5.32 dB 10 dB/div Ref 20.00 dBm		-6.66 dE	
0.00 -10.0	102	TRISLV	
-20.0			
-40.0 -50.0 <mark>118 (6.4)</mark>		i na <mark>da and bi sa kang da na na mina yang na kang na k</mark>	
-60.0 4 4 4 4 4 7	. <mark>ng ti_ng in ga na shuk pila si A</mark> nja ya ni li min tan nika ili nika si na shuka di pilay nika na 	nauna 18 mile per calebra li per a la anti-a stranta en alla calebra de la calebra de la calebra de la calebra Nava	
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 10.00 ms (10001 pts	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Υ FUNCTION FUNCTION 0 ms (Δ) -6.66 dB	WIDTH FUNCTION VALUE	
2 F 1 t 496. 3 4 5 5	0 µs -12.22 dBm		=
6 7 8			
9 10 11			-
MSG		status	
Keysight Spectrum Analyzer - Swept SA	Dwell NVNT 1-DH5 2441MHz Accur	AUTO	
Center Freq 2.441000000 GHz	PNO: Fast ↔→ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr TRACE 12345 TYPE WWWWW DET PNNNN	6 ₩ N
Ref Offset 5.32 dB 10 dB/div Ref 20.00 dBm			
Log			
0.00			
-10.0			
-20.0			
-30.0			
-40.0			
-50.0	al da desentation fons koleda (f. de Berry office of Berry Office of a court i location and de dotter on the de Internet and the second seco	it a transcontine with a 2 x out does diverse time of the Mith Review Liber on a solid finite de source 2 yet d	
-60.0			
-70.0			
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 H Sweep 31.60 s (10001 pts	z 5)
MSG	1201 V	STATUS	

