

SAR TEST REPORT

For

FUJIAN RUIVEN INFORMATION TECHNOLOGY CO.,LTD.

Kid GPS Watch

Model No.: 8601

Prepared for
Address

: FUJIAN RUIVEN INFORMATION TECHNOLOGY CO.,LTD.
: 4F PACIFIC PLAZA 258 WUSI AVE, GULOU DISTRICT,
FUZHOU , FUJIAN , CHINA

Prepared by
Address

: Shenzhen LCS Compliance Testing Laboratory Ltd.
: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,
Bao'an District, Shenzhen, Guangdong, China
: (86)755-82591330
: (86)755-82591332
: www.LCS-cert.com
: webmaster@LCS-cert.com

Date of receipt of test sample
Number of tested samples
Serial number
Date of Test
Date of Report

: September 17, 2015
: 1
: Prototype
: September 18, 2015 - September 22, 2015
: September 23, 2015

SAR TEST REPORT**Report Reference No.....: LCS1509170969E**

Date Of Issue.....: September 23, 2015

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address.....: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method **Applicant's Name.....: FUJIAN RUIVEN INFORMATION TECHNOLOGY CO.,LTD.**

Address.....: 4F PACIFIC PLAZA 258 WUSI AVE, GULOU DISTRICT, FUZHOU , FUJIAN , CHINA

Test Specification:

SAR Max. Values is.....: 2.130 W/Kg (10g) for Body, 0.193 W/Kg (1g) for Head.

Test Standard.....: ANSI/IEEE C95.1:2005/ANSI/IEEE C95.3 :2002
IEEE1528 :2003/47CFR § 2.1093

Test Report Form No.: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

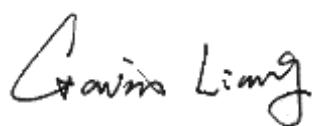
Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Kid GPS Watch

Trade Mark.....: Kudolo

Model/Type Reference.....: 8601


Ratings: DC 3.8V, 300 mAH ; Charging voltage: DC 5V

Result: Positive**Compiled by:**

Dick Su/ File administrators

Supervised by:

Glin Lu/ Technique principal

Approved by:

Gavin Liang/ Manager

SAR -- TEST REPORT

Test Report No. : LCS1509170969E	<u>September 23, 2015</u> Date of issue
--	--

Type / Model..... : 8601

EUT..... : Kid GPS Watch

Applicant..... : FUJIAN RUIVEN INFORMATION TECHNOLOGY CO.,LTD.

Address..... : 4F PACIFIC PLAZA 258 WUSI AVE, GULOU DISTRICT, FUZHOU , FUJIAN , CHINA

Telephone..... : +86-591-87830633

Fax..... : +86-591-83327893

Manufacturer..... : FUJIAN RUIVEN INFORMATION TECHNOLOGY CO.,LTD.

Address..... : 4F PACIFIC PLAZA 258 WUSI AVE, GULOU DISTRICT, FUZHOU , FUJIAN , CHINA

Telephone..... : +86-591-87830633

Fax..... : +86-591-83327893

Factory..... : FUJIAN RUIVEN INFORMATION TECHNOLOGY CO.,LTD.

Address..... : 4F PACIFIC PLAZA 258 WUSI AVE, GULOU DISTRICT, FUZHOU , FUJIAN , CHINA

Telephone..... : +86-591-87830633

Fax..... : +86-591-83327893

Test Result	Positive
--------------------	-----------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

1. TEST STANDARDS AND TEST DESCRIPTION.....	5
1.1. TEST STANDARDS	5
1.2. TEST DESCRIPTION	5
1.3. PRODUCT DESCRIPTION	5
2. SUMMARY SAR RESULTS	6
2.1. EUT OPERATION MODE.....	6
2.2. EUT CONFIGURATION.....	6
3. TEST ENVIRONMENT	7
3.1. TEST FACILITY.....	7
3.2. ENVIRONMENTAL CONDITIONS	7
3.3. SAR LIMITS	7
3.4. EQUIPMENTS USED DURING THE TEST	8
4. SAR MEASUREMENTS SYSTEM CONFIGURATION	9
4.1. SARMEASUREMENT SET-UP.....	9
4.2. OPENSAR E-FIELD PROBE SYSTEM.....	10
4.3. PHANTOMS.....	11
4.4. DEVICE HOLDER	11
4.5. SCANNING PROCEDURE	12
4.6. DATA STORAGE AND EVALUATION	12
4.7. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM.....	13
4.8. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY	15
4.9. DIELECTRIC PERFORMANCE.....	16
4.10. BASIC SAR SYSTEM VALIDATION REQUIREMENTS	17
4.11. SYSTEM SETUP	17
4.12. MEASUREMENT PROCEDURE	19
5. OUTPUT POWER VERIFICATION.....	20
5.1. TEST CONDITION:.....	20
5.2. TEST PROCEDURE:	20
5.3. CONDUCTED POWER MEASUREMENT	20
6. SAR TEST RESULT	22
6.1. TEST CONDITION:.....	22
6.2. OPERATION MODE	22
6.3. SAR SUMMARY TEST RESULT	23
6.4. TESTREDUCTION PROCEDURE	24
6.5. MEASUREMENT UNCERTAINTY (700MHz-3GHz)	26
6.6. SYSTEM CHECK RESULTS	27
6.7. SAR TEST GRAPH RESULTS.....	31
7. CALIBRATION CERTIFICATES	37
7.1. PROBE CALIBRATION CERITIFICATE	38
7.2. SID835DIPOLE CALIBRATION CERITIFICATE.....	56
7.3. SID1900 DIPOLE CALIBRATION CERITIFICATE	67
7. SAR SYSTEM PHOTOGRAPHS	78
8. SETUP PHOTOGRAPHS.....	79
9. EUTPHOTOGRAPHS	80

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

ANSI/IEEE C95.1: 2005:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields,3 kHz to 300 GHz.

ANSI/IEEE C95.3: 2002:IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz.

IEEE1528:2003:Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate.

KDB447498 D01v06:General RF Exposure Guidance.

KDB865664 D01v01r04:SAR measurement 100MHz to 6GHz.

KDB865664 D02v01r02:SAR Report.

KDB690783 D01v01r03:SAR lisitings on Grants.

KDB648474 D04v01r03:SAR Handsets Multi Xmitter and Ant.

FCC Part 2:2012: frequency allocations and radio treaty mat-ters; general rules and reg-ulations

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. Product Description

Product Name:	Kid GPS Watch
Trade Mark:	Kudolo
Model/Type reference:	8601
Listed Model(s):	8601
Software Version	/
Hardware Version	/
Power supply:	DC 3.8V, 300 mAH ; Charging voltage: DC 5V
2G	
Operation Band:	GSM850, PCS1900
Supported type:	GSM/GPRS
Power Class:	GSM850:Power Class 5 DCS1900:Power Class 0
Modulation Type:	GMSK for GSM/GPRS
GSM Release Version	R99
GPRS Multislot Class	12
EGPRS Multislot Class	N/A

2. SUMMARY SAR RESULTS

Table 1:Max. SAR Measured

〈Highest Reported standalone SAR Summary〉

Exposure Configuration	Technology Band	Highest Measured SAR (W/Kg)	limit
Next to mouth 1-g SAR (Separation Distance 10mm)	GSM850	0.149	1.6 1g(W/Kg)
	PCS1900	0.132	
Wrist-worn 10-g SAR (Separation Distance 0mm)	GSM850	1.646	4.0 10g(W/Kg)
	PCS1900	1.106	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 0mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

2.1. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.2. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- - supplied by the lab

<input type="radio"/>	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
<input type="radio"/>	Multimeter	Manufacturer :	/
		Model No. :	/

3. TEST ENVIRONMENT

3.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Site Description

EMC Lab.

- : CNAS Registration Number. is L4595.
- FCC Registration Number. is 899208.
- Industry Canada Registration Number. is 9642A-1.
- VCCI Registration Number. is C-4260 and R-3804.
- ESMD Registration Number. is ARCB0108.
- UL Registration Number. is 100571-492.
- TUV SUD Registration Number. is SCN1081.
- TUV RH Registration Number. is UA 50296516-001

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.3. SAR Limits

FCC Limit (1g Tissue)

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average(averaged over the whole body)	0.08	0.4
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0
Spatial Peak(hands/wrists/feet/anklesaveraged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.4. Equipments Used during the Test

Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration	
				Calibration Date	Calibration Due
PC	Lenovo	G5005	MY42081102	N/A	N/A
Signal Generator	Agilent	E4438C	MY42081396	09/25/2014	09/24/2015
Multimeter	Keithley	MiltiMeter 2000	4059164	10/01/2014	09/30/2015
S-parameter Network Analyzer	Agilent	8753ES	US38432944	09/25/2014	09/24/2015
Wireless Communication Test Set	R & S	CMU200	105988	06/18/2015	06/17/2016
Power Meter	R&S	NRVS	100444	06/18/2015	06/17/2016
Power Meter	R&S	NRVS	100469	06/18/2015	06/17/2016
Power Sensor	R&S	NRV-Z51	100458	06/18/2015	06/17/2016
Power Sensor	R&S	NRV-Z32	100657	06/18/2015	06/17/2016
E-Field PROBE	SATIMO	SSE5	SN 17/14 EP220	10/01/2014	09/30/2015
E-Field PROBE	SATIMO	SSE5	SN 17/14 EP221	09/01/2014	08/31/2015
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2014	09/30/2015
DIPOLE 1900	SATIMO	SID 1900	SN 30/14 DIP 1G900-333	09/01/2014	08/31/2015
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	10/01/2014	09/30/2015
Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	10/01/2014	09/30/2015
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
Simulated Tissue 900 MHzBody and Head	SATIMO	SAM-9-H	SN 21/14 HLD438	Each Time	N/A
Simulated Tissue 1900 MHz For Head	SATIMO	SAM-18-H	SN 21/14 HLF439	Each Time	N/A
PHANTOM TABLE	SATIMO	TABP98	SN 40/14 TABP98	N/A	N/A
6 AXIS ROBOT	KUKA	KR6-R900	501217	N/A	N/A
High Power Solid State Amplifier (80MHz~1000MHz)	Instruments for Industry	CMC150	M631-0627	09/25/2014	09/24/2015
Medium Power Solid State Amplifier (0.8~4.2GHz)	Instruments for Industry	S41-25	M629-0539	09/25/2014	09/24/2015
Wave Tube Amplifier 48 GHz at 20Watt	Hughes Aircraft Company	1277H02F000	102	09/25/2014	09/24/2015

4. SAR MEASUREMENTS SYSTEM CONFIGURATION

4.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

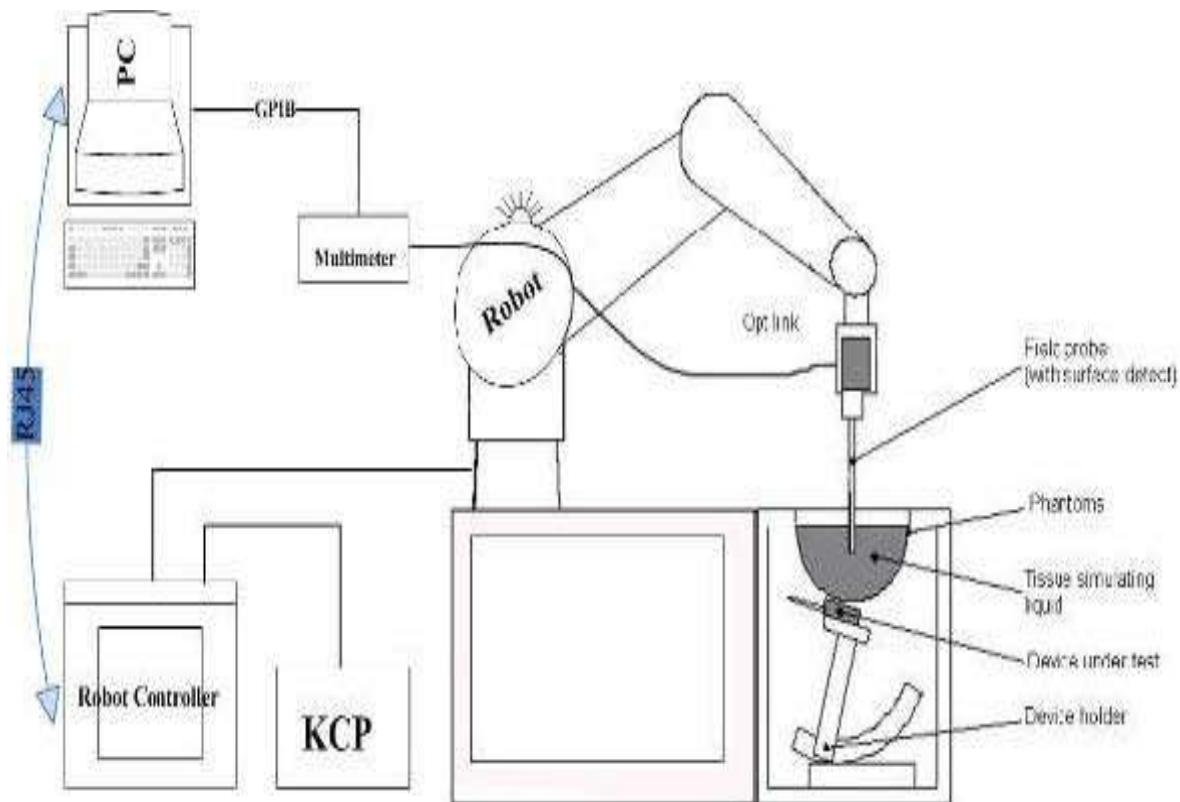
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch,It sends an “Emergency signal” to the robot controller that to stop robot’s moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

4.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EP220 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

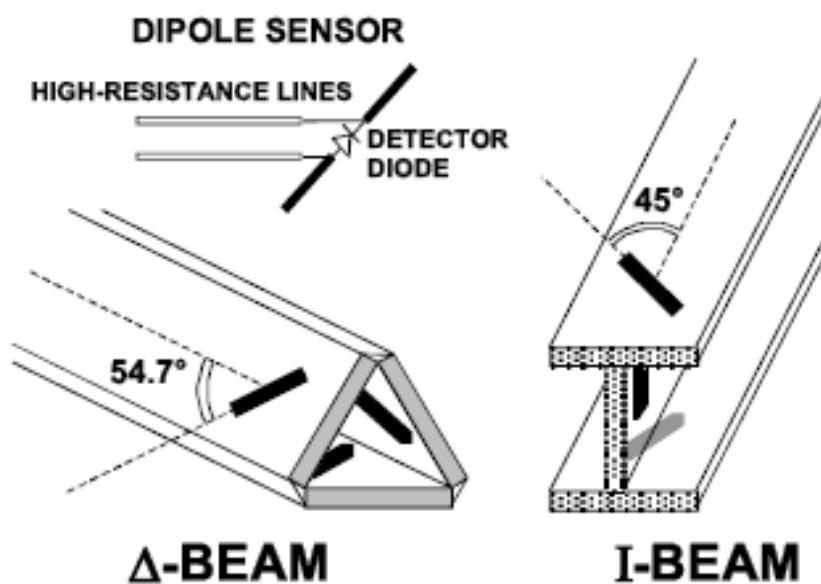
Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.


Frequency	700 MHz to 3 GHz; Linearity: 0.25dB (700 MHz to 3GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 3 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4. Device Holder

In combination with the Generic Twin Phantom SAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

4.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in OPENSAR software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures 7 x 7 x 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more than one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

4.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcp1
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcpi}$$

With V_i = compensated signal of channel i ($i = x, y, z$)

U_i = input signal of channel i ($i = x, y, z$)

cf = crest factor of exciting field

$dcpi$ = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

With V_i = compensated signal of channel i ($i = x, y, z$)

$Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)
[mV/(V/m)2] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

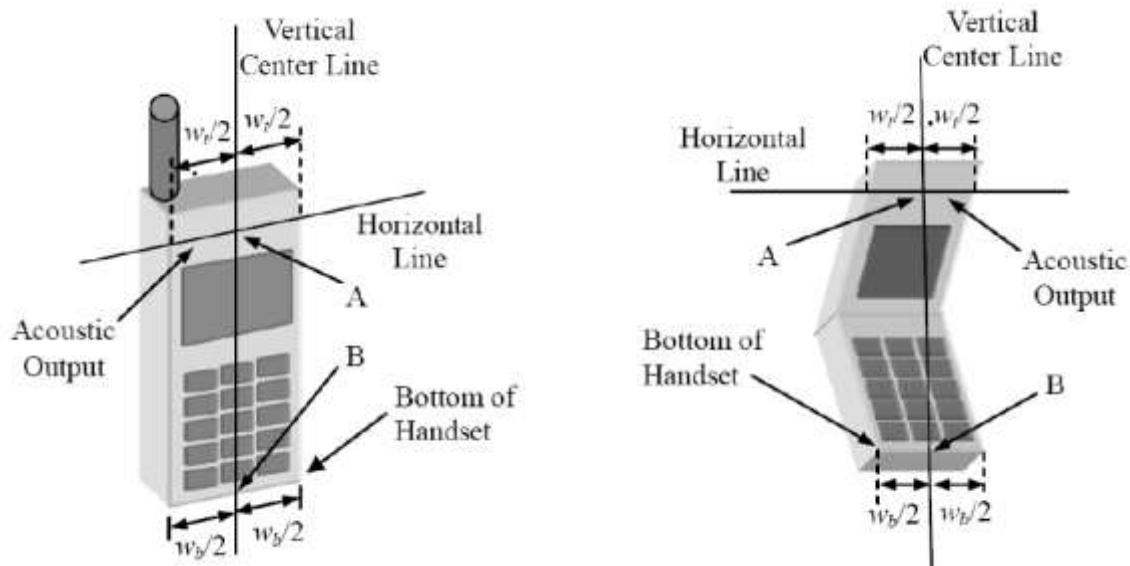
ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom – the “cheek” position and the “tilt” position.

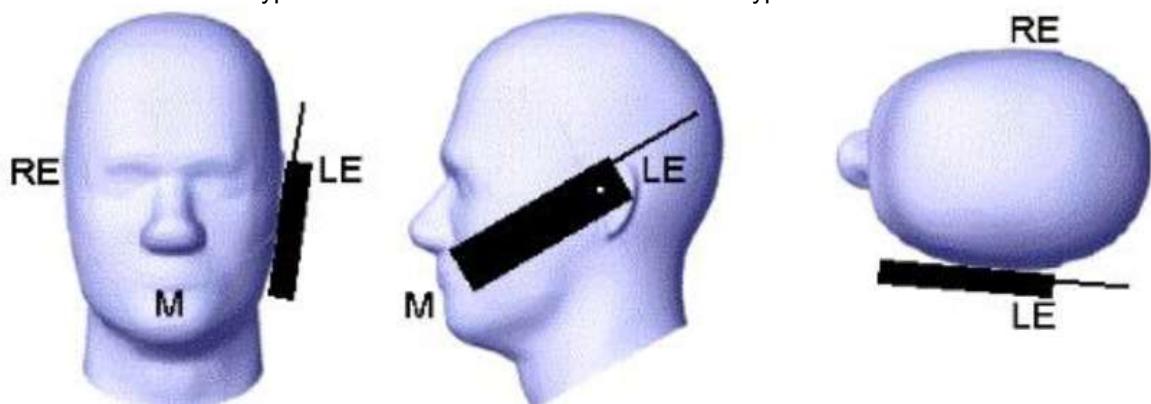

The power flow density is calculated assuming the excitation field as a free space field

$$P_{(pwe)} = \frac{E_{tot}^2}{3770} \quad \text{or} \quad P_{(pwe)} = H_{tot}^2 \cdot 37.7$$

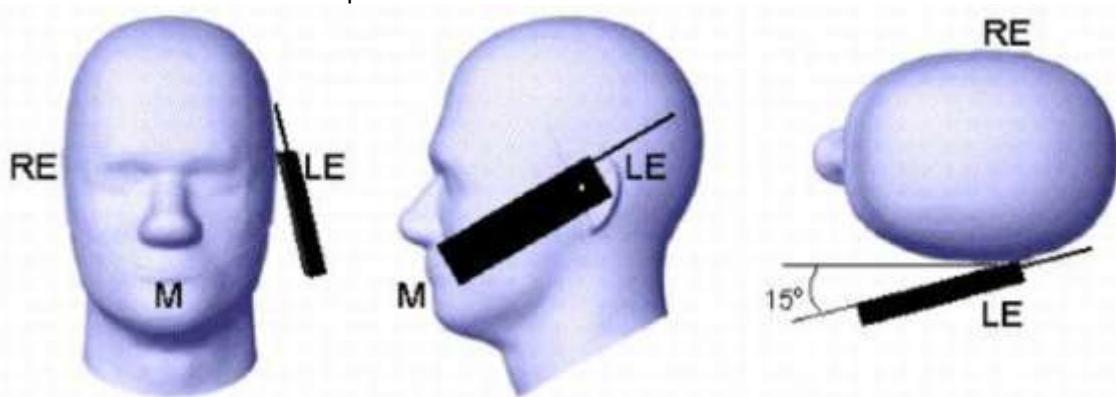
Where P_{pwe} = Equivalent power density of a plane wave in mW/cm2

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m


w_t Width of the handset at the level of the acoustic

w_b Width of the bottom of the handset


A Midpoint of the width w_t of the handset at the level of the acoustic output

B Midpoint of the width w_b of the bottom of the handset

Picture 1-a Typical "fixed" case handset Picture 1-b Typical "clam-shell" case handset

Picture 2 Cheek position of the wireless device on the left side of SAM

Picture 3 Tilt position of the wireless device on the left side of SAM

For body SAR test we applied to KDB447498 D01v06, KDB616217 D04v01r02.

4.8. Tissue Dielectric Parameters for Head and Body

The liquid used for the frequency range of 100MHz-6G consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The following Table shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

The following materials are used for producing the tissue-equivalent materials.

Table 2. Composition of the Head Tissue Equivalent Matter

Ingredients (% by weight)	Frequency (MHz)				
	835	900	1800	2000	2450
Water	41.45	40.92	16.33	54.89	46.70
Sugar	56.0	56.5	/	/	/
Salt	4.45	1.48	0.41	0.18	/
Preventol	0.19	0.1	/	/	/
Cellulose	0.1	0.4	/	/	/
Clycol Monobutyl	/	/	65.3	44.93	53.3
Dielectric Parameters Target Value	f=835MHz $\epsilon =41.5$ $\sigma =0.90$	f=900MHz $\epsilon =41.5$ $\sigma =0.97$	f=1800MHz $\epsilon =40.0$ $\sigma =1.40$	f=1950 MHz $\epsilon =40.0$ $\sigma =1.40$	f=2450 MHz $\epsilon =39.2$ $\sigma =1.80$

Table 3. Composition of the Body Tissue Equivalent Matter

Ingredients (% by weight)	Frequency (MHz)				
	835	1800	1900	2450	2600
Water	52.4	69.91	69.91	73.2	64.493
Sugar	45.0	0.0	0.0	0.0	0.0
Salt	1.4	0.13	0.13	0.04	0.024
HEC	1.0	0.0	0.0	0.0	0.0
Bactericide	0.1	0.0	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	29.96	29.96	26.7	32.252
Dielectric Parameters Target Value	f=835MHz $\epsilon =55.2$ $\sigma =0.97$	f=1800MHz $\epsilon =53.30$ $\sigma =1.52$	f=1900MHz $\epsilon =53.30$ $\sigma =1.52$	f=2450 MHz $\epsilon =52.7$ $\sigma =1.95$	f=2450 MHz $\epsilon =52.5$ $\sigma =2.16$

Table 4. Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Liquid Type (σ)	$\pm 5\%$ Range	Permittivity (ϵ)	$\pm 5\%$ Range
150	Head	0.76	0.72~0.80	52.3	49.69~54.92
300	Head	0.87	0.83~0.91	45.3	43.04~47.57
450	Head	0.87	0.83~0.91	43.5	41.33~45.68
835	Head	0.90	0.86~0.95	41.5	39.43~43.58
900	Head	0.97	0.92~1.02	41.5	39.43~43.58
915	Head	0.98	0.93~1.03	41.5	39.43~43.58
1450	Head	1.20	1.14~1.26	40.5	38.48~42.53
1610	Head	1.29	1.23~1.35	40.3	38.29~42.32
1800-2000	Head	1.40	1.33~1.47	40.0	38.00~42.00
2450	Head	1.80	1.71~1.89	39.2	37.24~41.16
3000	Head	2.40	2.28~2.52	38.5	36.58~40.43
5800	Head	5.27	5.01~5.53	35.3	33.54~37.07
150	Body	0.80	0.76~0.84	61.9	58.81~65.00
300	Body	0.92	0.87~0.97	58.2	55.29~61.11
450	Body	0.94	0.89~0.99	56.7	53.87~59.54
835	Body	0.97	0.92~1.02	55.2	52.44~57.96
900	Body	1.05	1.00~1.10	55.0	52.25~57.75
915	Body	1.06	1.01~1.11	55.0	52.25~57.75
1450	Body	1.30	1.24~1.37	54.0	51.30~56.70
1610	Body	1.40	1.33~1.47	53.8	51.11~56.49
1800-2000	Body	1.52	1.44~1.60	53.3	50.64~55.97
2450	Body	1.95	1.85~2.05	52.7	50.07~55.34
3000	Body	2.73	2.59~2.87	52.0	49.40~54.60
5800	Body	6.00	5.70~6.30	48.2	45.79~50.61

4.9. Dielectric Performance

Dielectric Performance of Head and Body Tissue Simulating Liquid

Measurement is made at temperature 22.0°C and relative humidity 52%.

Liquid temperature during the test: 22.0°C

Measurement Date: 835 MHz September 18, 2015; 1900 MHz September 21, 2015

Frequency (MHz)	Body Tissue		Head Tissue	
	σ (S/m)	ϵ_r	σ (S/m)	ϵ_r
835	0.98	55.19	0.92	41.26
1900	1.53	53.28	1.43	40.15

4.10. Basic SAR system validation requirements

The SAR system must be validated against its performance specifications before it is deployed. When SAR probe and system component or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such component. Reference dipoles are used with the required tissue-equivalent media for system validation.

The detailed system validation results are maintained by each test laboratory, which are normally not required for equipment approval. Only a tabulated summary of the system validation status, according to the validation date(s), measurement frequencies, SAR probe and tissue dielectric parameters is required in the SAR report.

LCS lab has performed the system validation at 10/28/2014, and all the measured results within $\pm 10\%$ of the system calibrated SAR targets.

4.11. System setup

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of component, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

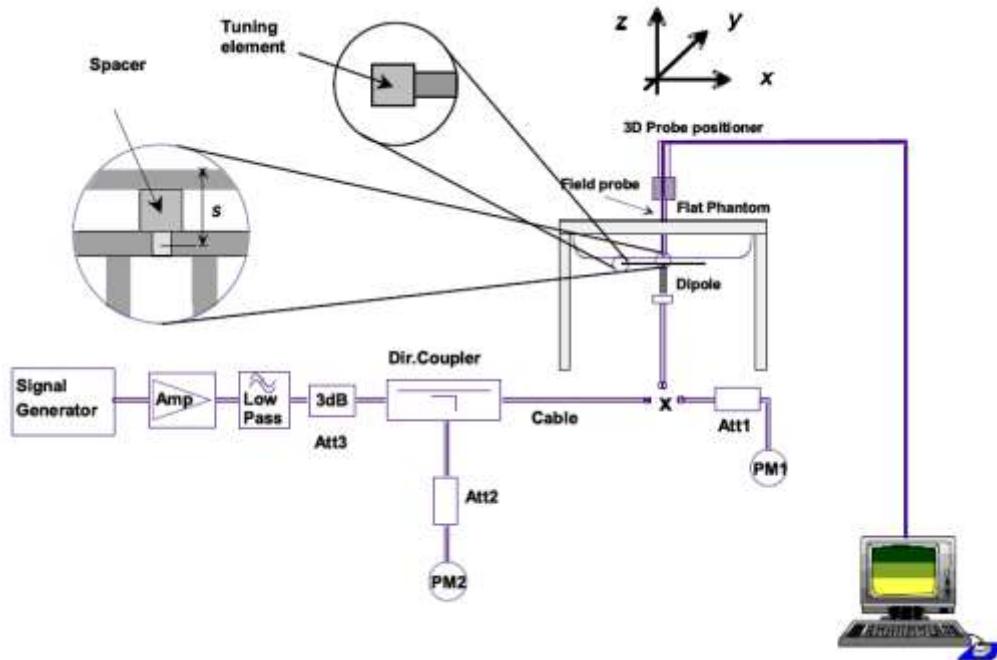


Photo of Dipole Setup

System Validation of Head

Measurement is made at temperature 22.0 °C and relative humidity 52%.

Measurement is made at temperature 22.0°C and relative humidity 54%.

Measurement Date: 835 MHz September 18, 2015; 1900 MHz September 21, 2015;

Verification Results	Frequency (MHz)	Target value (W/kg)		Measured value(W/kg)		Deviation	
		1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average
Body	835	9.90	6.39	9.87	6.43	0.303	0.625
	1900	43.33	21.59	42.16	20.75	2.70	3.890
Head	835	9.60	6.20	9.53	6.26	0.737	0.968
	1900	39.84	20.20	38.34	20.19	1.26	0.050

4.12. Measurement procedure

The following procedure shall be performed for each of the test conditions

1. Measure the local SAR at a test point within 4 mm or less in the normal direction from the inner surface of the phantom.
2. Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and $(60/f \text{ [GHz]})$ mm for frequencies of 3 GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional measurement distance to the phantom inner surface shorter than the probe diameter, additional
3. From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;
4. Measure the three-dimensional SAR distribution at the local maxima locations identified in step
5. The horizontal grid step shall be $(24 / f[\text{GHz}])$ mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be $(8 / f[\text{GHz}])$ mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be $(12 / f[\text{GHz}])$ mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved if the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5°. If this cannot be achieved an additional uncertainty evaluation is needed.
6. Use post processing (e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

5.OUTPUT POWER VERIFICATION

5.1. Test condition:

1. All test measurements carried out are traceable to national standard. The uncertainty of the measurement at a confidence level of approximately 95%(in the case where distributions are nomal),with a coverage factor of 2, In the range of 30MHz-40GHz is ± 1.5 dB.
2. Environment conditions:

Temperature	23°C
Relative Humidity	53%
Atmospheric Pressure	1019mbar
3. Test Date: September 18,2015~September 22,2015
Tested By:Dick

5.2. Test Procedure:

EUT radio output power measurement

1. The transmitter output port was connected to base station emulator.
2. Establish communication link between emulator and EUT and Set EUT to operate at maximum output power all the time.
3. Select lowest, middle, and highest channels for each band and different possible test mode.
4. Measure the conducted peak burst power and conducted average burst power from EUT antenna port.

5.3. Conducted Power Measurement

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU200) to ensure the maximum power transmission and proper modulation. Max Conducted power measurement results and power drift from the 2G report by Shenzhen LCS Compliance Testing Laboratory Ltd.

Note: CMU200 measures GSM peak and average output power for active timeslots. for SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

Source-based Time Averaged Bust Power calculation:

Number of Time slot	1	2	3	4
Duty cycle	1:8	1:4	1:2.66	1:2
Duty cycle factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB
Crest factor	8	4	2.66	2

Remark: $\text{Time slot duty cycle factor} = 10 \times \log(1/\text{Time slot Duty Cycle})$

Source based time averaged power=Maximum burst averaged power (1 Uplink)-9.03dB

Source based time averaged power=Maximum burst averaged power (2 Uplink)-6.02dB

Source based time averaged power=Maximum burst averaged power (3 Uplink)-4.26dB

Source based time averaged power=Maximum burst averaged power (4 Uplink)-3.01dB

The signalling modes differ as follows:

Mode	Code Scheme	Modulation	Mode	Code Scheme
GRPS	CS1 to CS4	GMSK	GRPS	CS1 to CS4

Conducted power measurement results for GSM850/PCS1900

GSM850	Conducted Power (dBm)		
	Channel 128 (824.2MHz)	Channel 190 (836.6MHz)	Channel 251 (848.8MHz)
	31.57	31.88	32.14
PCS1900	Conducted Power (dBm)		
	Channel 512 (1850.2MHz)	Channel 661 (1880.0MHz)	Channel 810 (1909.8MHz)
	30.96	31.03	28.59

Conducted power measurements of GSM 850

GPRS	Measured Power (dBm)			Calculation (dB)	Averaged Power (dBm)		
	824.2MHz	836.6MHz	848.8MHz		824.2MHz	836.6MHz	848.8MHz
1 Txslot	30.37	30.58	30.62	-9.03	21.34	21.55	21.59
2 Txslot	30.05	30.26	30.30	-6.02	24.03	24.24	24.28
3 Txslot	29.73	29.94	29.98	-4.26	25.47	25.68	25.72
4 Txslot	29.42	29.62	29.66	-3.01	26.41	26.61	26.65

Note:

1. The conducted power of GSM850 is measured with RMS detector.
2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
3. According the KDB941225 D03 ,the bolded GPRS 4TX mode was selected for SAR testing according to the highest frame-averaged output power table.

Conducted power measurements of PCS 1900

GPRS	Measured Power (dBm)			Calculation (dB)	Averaged Power (dBm)		
	1850.2MHz	1880.0MHz	1909.8MHz		1850.2MHz	1880.0MHz	1909.8MHz
1 Txslot	28.46	28.34	28.60	-9.03	19.43	19.31	19.57
2 Txslot	28.16	28.04	28.30	-6.02	22.14	22.02	22.28
3 Txslot	27.86	27.74	28.00	-4.26	23.60	23.48	23.74
4 Txslot	27.57	27.45	27.71	-3.01	24.56	24.44	24.70

Note:

1. The conducted power of GSM1900 is measured with RMS detector.
2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
3. According the KDB941225 D03 ,the bolded GPRS 4TX mode was selected for SAR testing according to the highest frame-averaged output power table.

6. SAR TEST RESULT

6.1. Test condition:

1. SAR Measurement

The distance between the EUT and the antenna of the emulator is more than 50cm and the output power radiated from the emulator antenna is at least 30dB less than the output power of EUT.

2. Measurement Uncertainty: See page 36 and 37 for detail

3. Environmental Conditions

Temperature	23°C
Relative Humidity	53%
Atmospheric Pressure	1019mbar

4. Test Date: September 18, 2015~September 22, 2015

Test By: Dick

6.2. Operation Mode

• According to KDB 447498 D01 v06, for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.

• Per KDB 865664 D01 v01r04, for each frequency band, if the measured SAR is ≥ 0.8 W/kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.

(1) When the original highest measured SAR is ≥ 0.8 W/kg, repeat that measurement once.

(2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg.

(3) Perform a third repeated measurement only if the original, first and second repeated measurement is \geq

1.5 W/kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20 .

• Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be tested.

(1) the procedures explained in footnote 11 of the standard may be applied to reduce SAR test requirements for (2) when multiple slots can be used, the device should be tested to account for the maximum source-based time-averaged output power.

(3) when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.

• Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

Maximum Scaling SAR = tested SAR (Max.) \times [maximum turn-up power (mw) / maximum measurement output power (mw)]

6.3. SAR summary Test result

Next to Mouth SAR Data

1-g SAR:

GSM Head SAR

Frequency		Test Position	Test Mode	SAR 1g(W/kg)	Power Drift (%)	Conducted Power (dBm)	Tune-up Power (dBm)	Scaled SAR 1g(W/kg)	Limit 1g(W/kg)
MHz	Channel								
836.6	190	Front(10mm)	GSM850/Voice	0.149	1.58	31.88	33.00	0.193	1.60
1880.0	661	Front(10mm)	GSM1900/Voice	0.132	4.93	31.03	31.00	0.131	1.60

Note:

1. Per KDB 447498 D01v06, for each exposure position , if the highest output channel Reported SAR $\leq 0.8\text{W/Kg}$, Other channel SAR testing is not necessary.
2. Per KDB 447498 D01v06,next to the mouth use is evaluated with the front of the device position at 10mm From a flat phantom filled with head tissue-equivalent medium.
3. Per KDB 447498 D01v06, Next to the mouth exposure requies 1-g SAR, and the wrist-wron condition requires 10-g extremity SAR

Wrist-Worn SAR Data

10-g SAR :

GSM Wrist-Worn SAR

Frequency		Test Position	Test Mode	SAR 10g(W/kg)	Power Drift (%)	Conducted Power (dBm)	Tune-up Power (dBm)	Scaled SAR 1g(W/kg)	Limit 10g(W/kg)
MHz	Channel								
836.6	190	Back(0mm)	GSM850/ Voice	1.646	-1.63	31.88	33.00	2.130	4.0
836.6	190	Back(0mm)	GSM850/ 2 Slots	1.378	-2.98	30.58	32.00	1.911	4.0
1880.0	661	Back(0mm)	GSM1900/ Voice	1.106	2.56	31.03	31.00	1.098	4.0
1880.0	661	Back(0mm)	GSM1900/ 2 Slots	0.829	3.37	28.34	30.00	1.215	4.0

Note:

- 1.Wrist-wron exposure conditions are intended to voice call operations, therefore GSM voice call is selected to be tested.
- 2.Per KDB 447498 D01v06, for each exposure position , if the highest output channel Reported SAR $\leq 2.0\text{W/Kg}$, Other channel SAR testing is not necessary.
3. Per KDB 447498 D01v06,next to the mouth use is evaluated with the front of the device position at 10mm From a flat phantom filled with head tissue-equivalent medium.
4. Per KDB 447498 D01v06, Next to the mouth exposure requies 1-g SAR, and the wrist-wron condition requires 10-g extremity SAR
- 5.The Multi-slot Classes of EUT is Class12 which has maximum 1 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+2UL is the worse case base on the out put power measurements above.

6.4. Test reduction procedure

Simultaneous multi-band transmission

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB447498 D01V06 General RF Exposure Guidance.

Figure 1: The diagonal dimension of the DUT

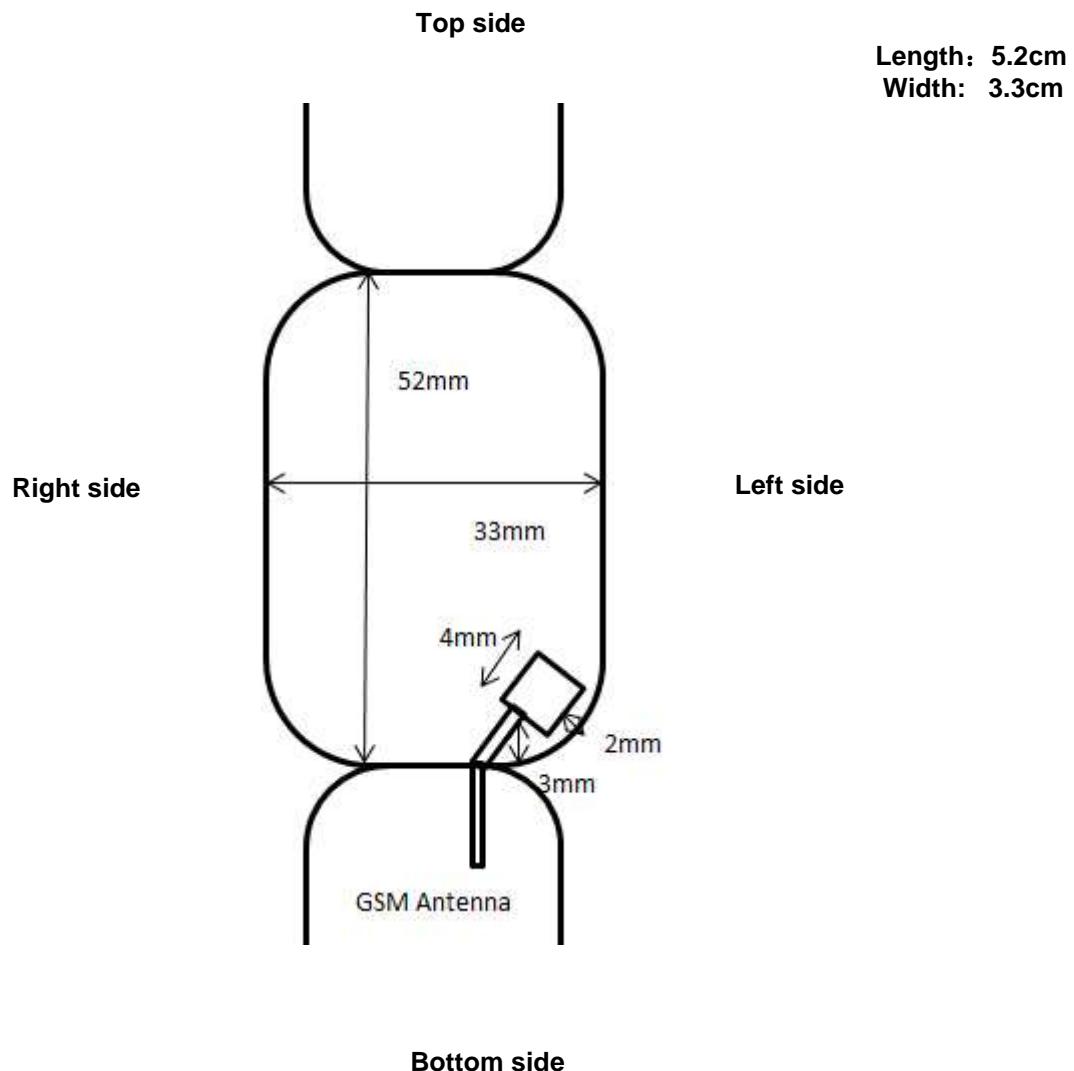


Figure 1: The antenna position of the DUT

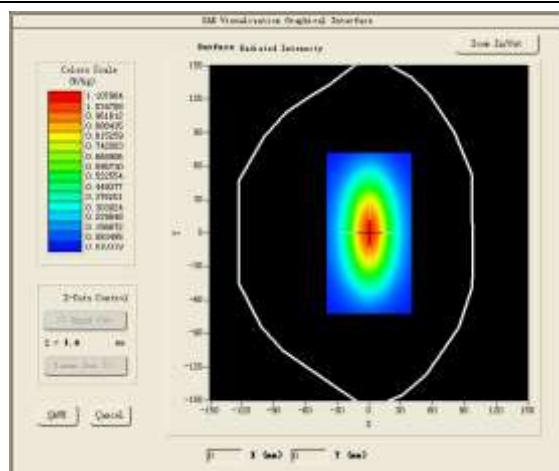
Simultaneous Transmission SAR Analysis

No	Applicable Simultaneous Transmission Combination
1.	GSM

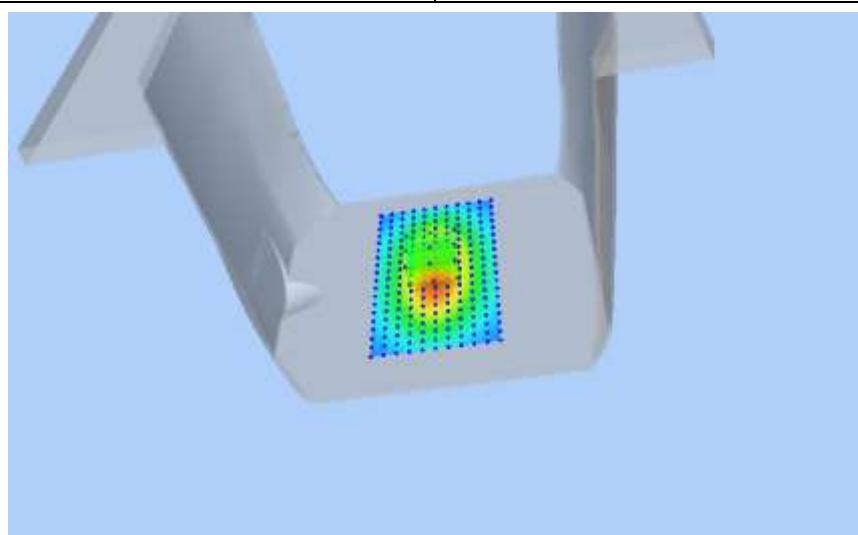
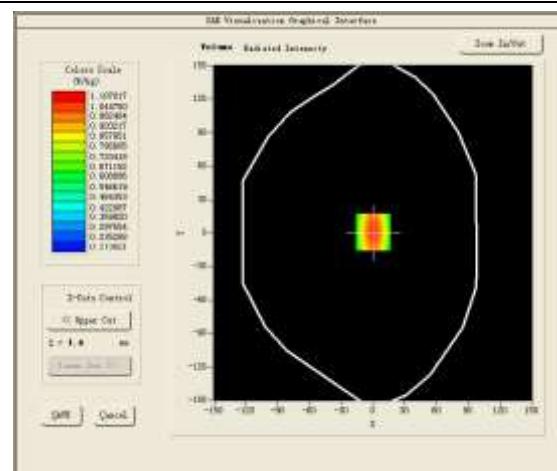
Note:

- 1) The Reported SAR summation is calculated based on the same configuration and test position.
- 2) Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - a) Scalar SAR summation $< 1.6\text{W/kg}$.
 - b) $\text{SPLSR} = (\text{SAR1} + \text{SAR2}) \cdot 1.5 / (\text{min. separation distance, mm})$, and the peak separation distance is determined from the square root of $\sqrt{[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]}$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan
 - c) If $\text{SPLSR} \leq 0.04$, simultaneously transmission SAR measurement is not necessary
 - d) Simultaneously transmission SAR measurement, and the reported multi-band SAR $< 1.6\text{W/kg}$
- 3) For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below.
 - a) $(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm}) \cdot [\sqrt{f(\text{GHz})} / x] \text{ W/kg}$ for test separation distances $\leq 50 \text{ mm}$; where $x = 7.5$ for 1-g SAR, and $x = 18.75$ for 10-g SAR.
 - b) When the minimum separation distance is $< 5\text{mm}$, the distance is used 5mm to determine SAR test exclusion.
 - c) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is $> 50 \text{ mm}$.

6.5. Measurement Uncertainty (700MHz-3GHz)


Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System									
Probe calibration	7.2.1	5.8	N		1	1	5.80	5.80	∞
Axial Isotropy	7.2.1.1	3.5	R	$\sqrt{3}$	$(1 - C_p)^{1/2}$	$(1 - C_p)^{1/2}$	1.43	1.43	∞
Hemispherical Isotropy	7.2.1.1	5.9	R	$\sqrt{3}$	$(C_p)^{1/2}$	$(C_p)^{1/2}$	2.41	2.41	∞
Boundary effect	7.2.1.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	7.2.1.2	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	7.2.1.2	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	7.2.1.3	3.00	N		1	1	3.00	3.00	∞
Readout Electronics	7.2.1.5	0.50	N		1	1	0.50	0.50	∞
Reponse Time	7.2.1.6	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	7.2.1.7	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient Conditions - Noise	7.2.3.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	7.2.3.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	7.2.2.1	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	7.2.2.3	1.40	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	7.2.4	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related									
Test sample positioning	7.2.2.4.4	2.60	N		1	1	2.60	2.60	
Device Holder Uncertainty	7.2.2.4.2 7.2.2.4.3	3.00	N		1	1	3.00	3.00	
Output power Variation - SAR drift measurement	7.2.3.6	5.00	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	7.2.5	2.00	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and thickness tolerances)	7.2.2.2	4.00	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviation (in permittivity and conductivity)	7.2.6	2.00	N		1	0.84	2.00	1.68	∞
Liquid conductivity (temperature uncertainty)	7.2.3.5	2.50	N		0.78	0.71	1.95	1.78	
Liquid conductivity - measurement uncertainty	7.2.3.3	4.00	N		0.23	0.26	0.92	1.04	
Liquid permittivity (temperature uncertainty)	7.2.3.5	2.50	N		0.78	0.71	1.95	1.78	∞
Liquid permittivity - measurement uncertainty	7.2.3.4	5.00	N		0.23	0.26	1.15	1.30	∞
Combined Standard Uncertainty			RSS				10.63	10.54	
Expanded Uncertainty (95% Confidence interval)			k				21.26	21.08	

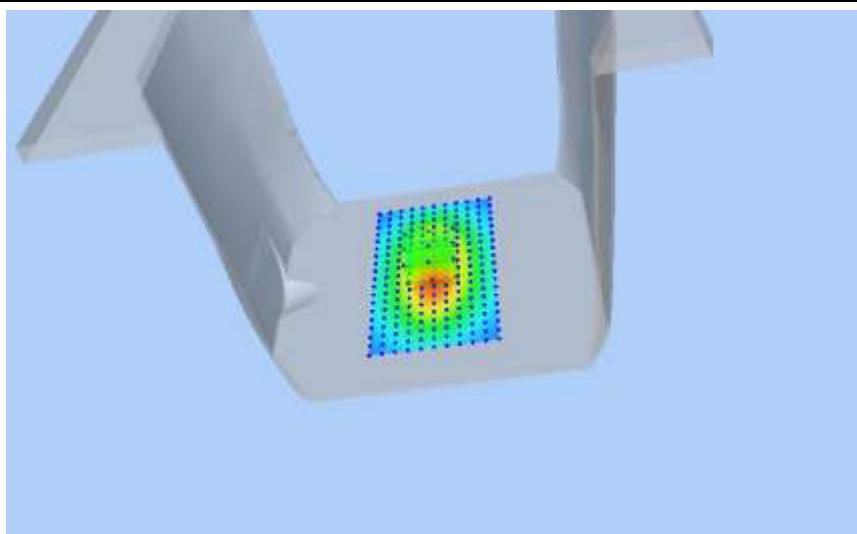
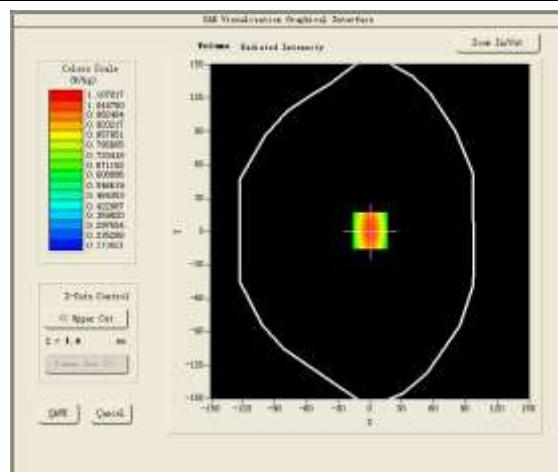
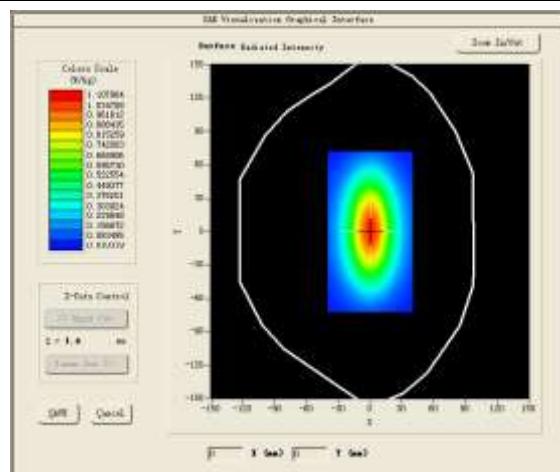
6.6. System Check Results



Test mode:835MHz(Head)
 Product Description:Validation
 Model:Dipole SID835
 E-Field Probe:SSE5(SN17/14 EP220)
 Test Date: September 18, 2015

Medium(liquid type)	HSL_900
Frequency (MHz)	835.0000
Relative permittivity (real part)	41.26
Conductivity (S/m)	0.92
Input power	100mW
Crest Factor	1.0
Conversion Factor	4.86
Variation (%)	-0.010000
SAR 10g (W/Kg)	0.626382
SAR 1g (W/Kg)	0.953343

SURFACE SAR

VOLUME SAR

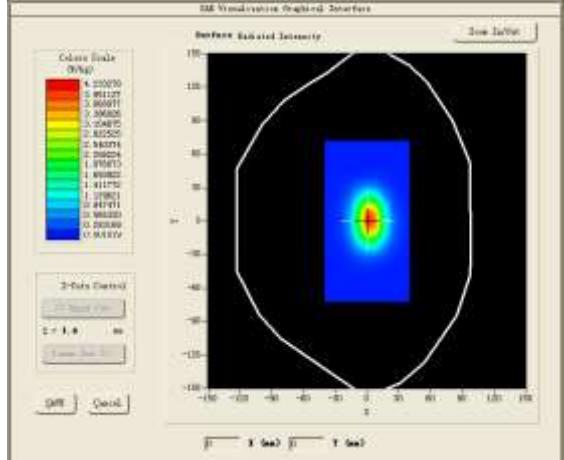
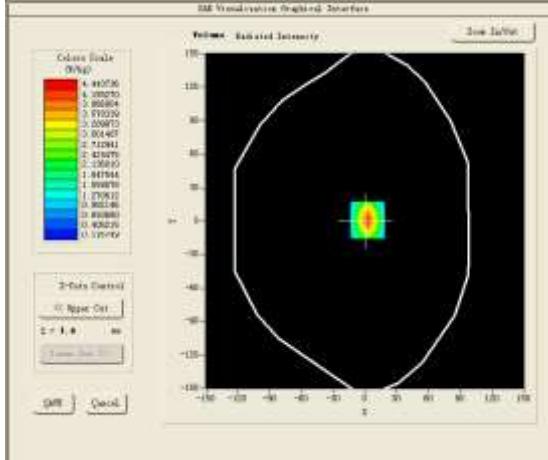
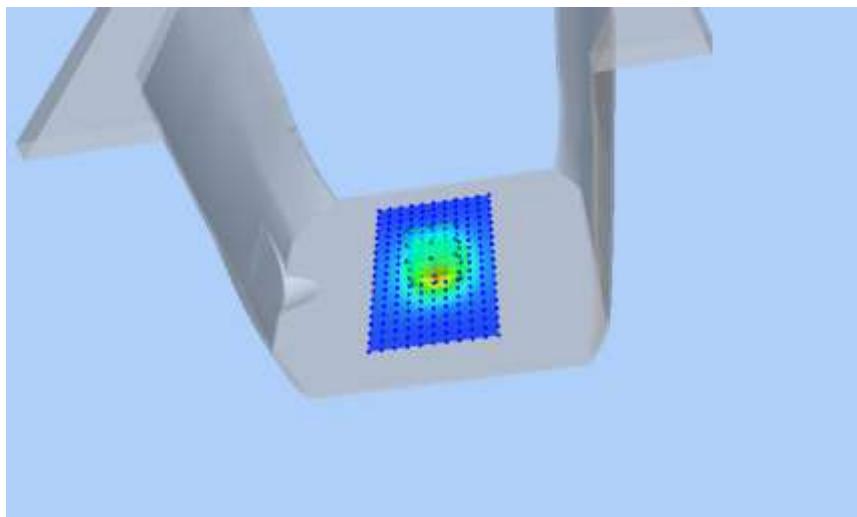




Test mode:835MHz(Body)
 Product Description:Validation
 Model:Dipole SID835
 E-Field Probe:SSE5(SN17/14 EP220)
 Test Date:September 18, 2015

Medium(liquid type)	BSL_900
Frequency (MHz)	835.0000
Relative permittivity (real part)	55.19
Conductivity (S/m)	0.98
Input power	100mW
Crest Factor	1.0
Conversion Factor	5.04
Variation (%)	-0.010000
SAR 10g (W/Kg)	0.643381
SAR 1g (W/Kg)	0.987156

SURFACE SAR

VOLUME SAR




Test mode:1900MHz(Head)

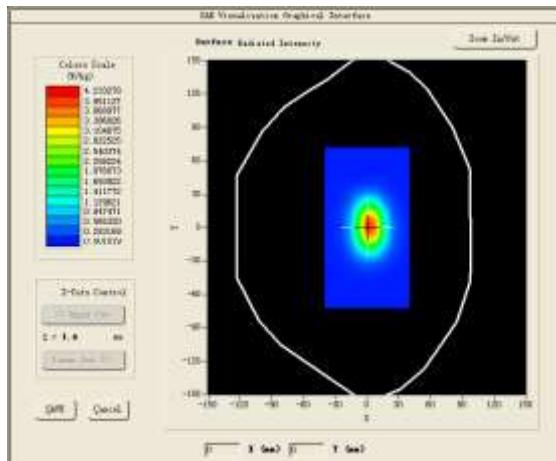
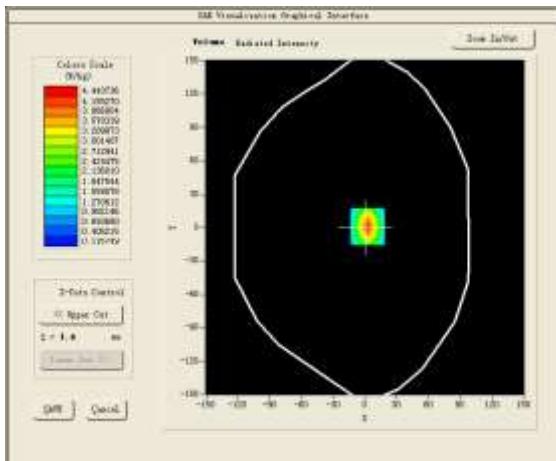
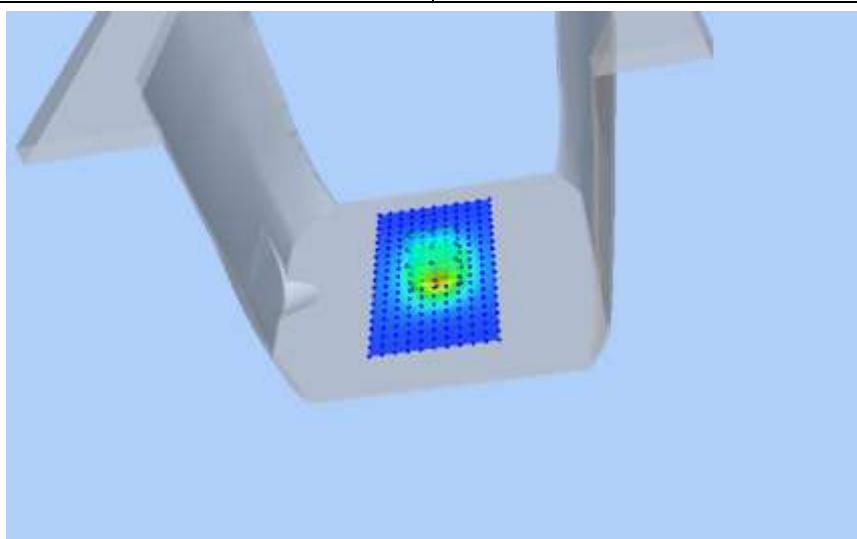
Product Description:Validation

Model :Dipole SID1900

E-Field Probe:SSE5(SN17/14 EP221)

Test Date: September 21, 2015

Medium(liquid type)	HSL_1800
Frequency (MHz)	1900.0000
Relative permittivity (real part)	40.15
Conductivity (S/m)	1.43
Input power	100mW
Crest Factor	1.0
Conversion Factor	4.71
Variation (%)	-0.240000
SAR 10g (W/Kg)	2.192452
SAR 1g (W/Kg)	3.834373
SURFACE SAR	VOLUME SAR




Test mode:1900MHz(Body)

Product Description:Validation

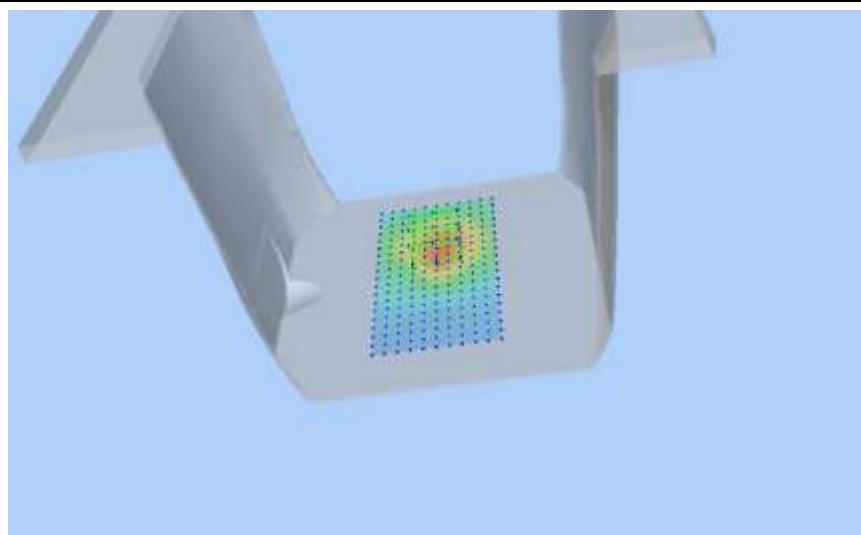
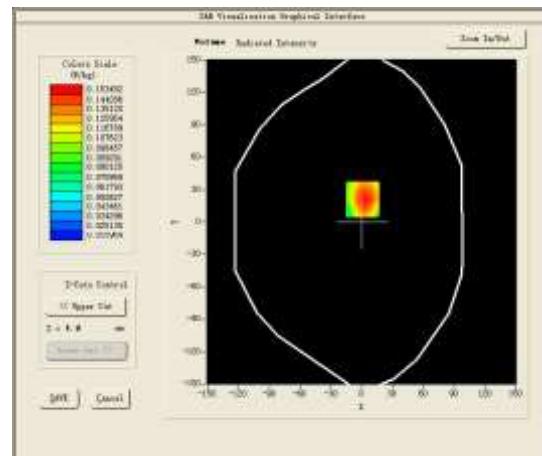
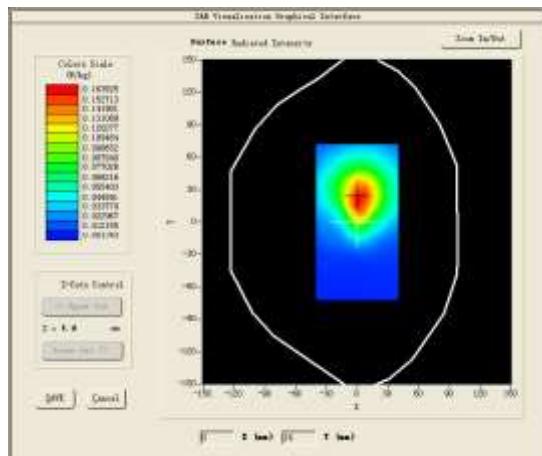
Model :Dipole SID1900

E-Field Probe:SSE5(SN17/14 EP221)

Test Date:September 21, 2015

Medium(liquid type)	BSL_1800
Frequency (MHz)	1900.0000
Relative permittivity (real part)	53.28
Conductivity (S/m)	1.53
Input power	100mW
Crest Factor	1.0
Conversion Factor	4.85
Variation (%)	-0.240000
SAR 10g (W/Kg)	2.075454
SAR 1g (W/Kg)	4.2164373
SURFACE SAR	VOLUME SAR

6.7. SAR Test Graph Results

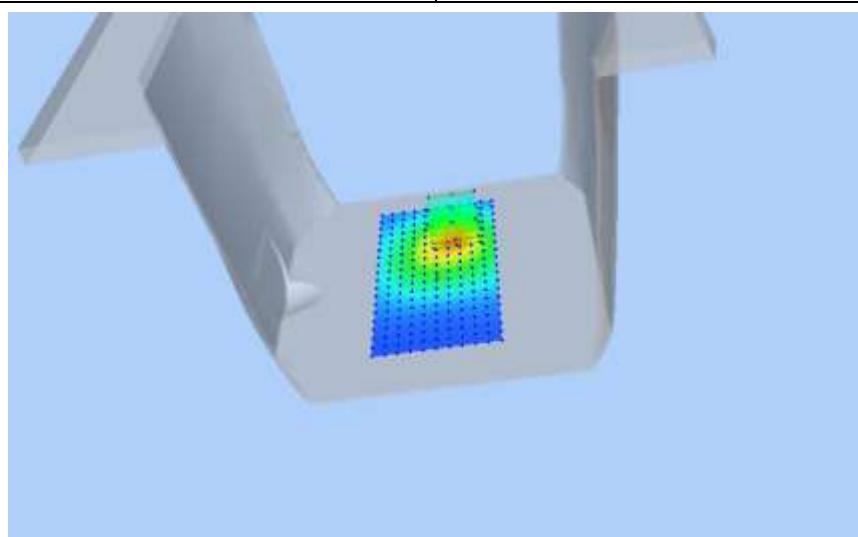
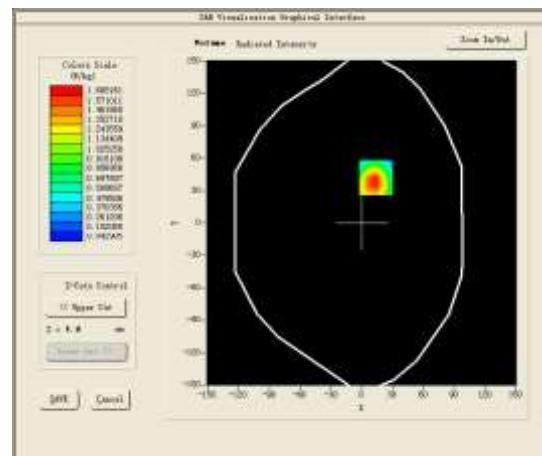
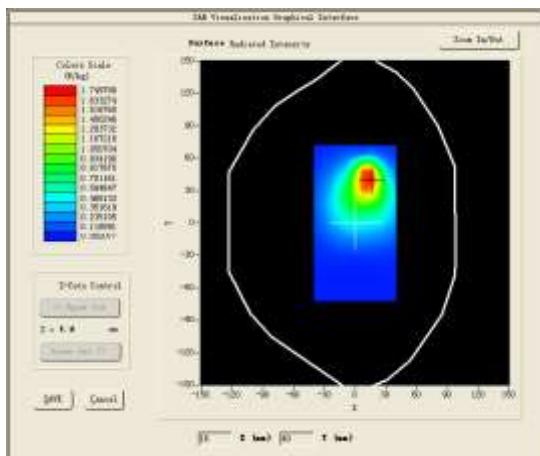



Test Mode:GSM 850MHz, Mid channel(Front Next to Mouth)

Product Description: Kid GPS Watch

Model: 8601

Test Date:September 18, 2015

Medium(liquid type)	HSL_900
Frequency (MHz)	836.400024
Relative permittivity (real part)	41.26
Conductivity (S/m)	0.92
E-Field Probe	SN 17/14 EP220
Crest Factor	2.0
Conversion Factor	4.86
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	1.580000
SAR 10g (W/Kg)	0.096795
SAR 1g (W/Kg)	0.149172
SURFACE SAR	VOLUME SAR

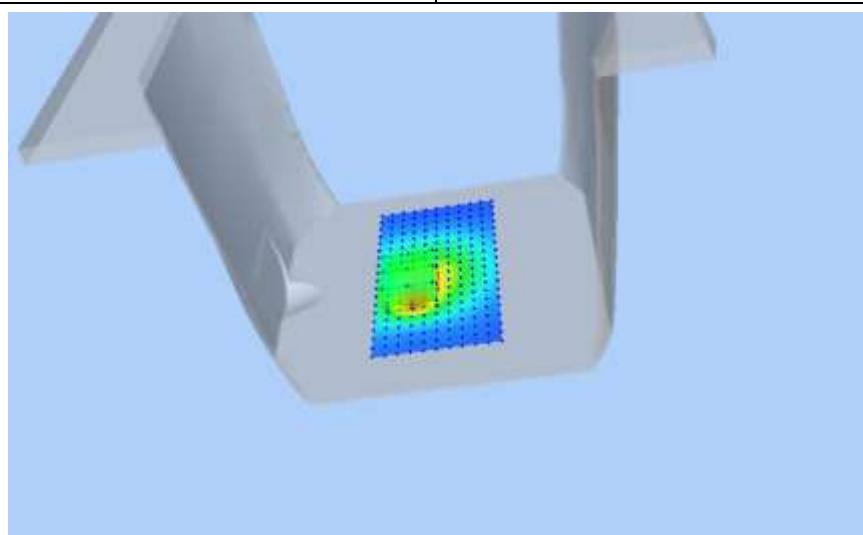
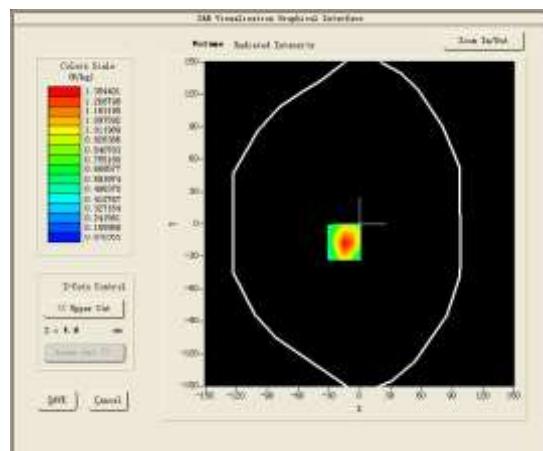
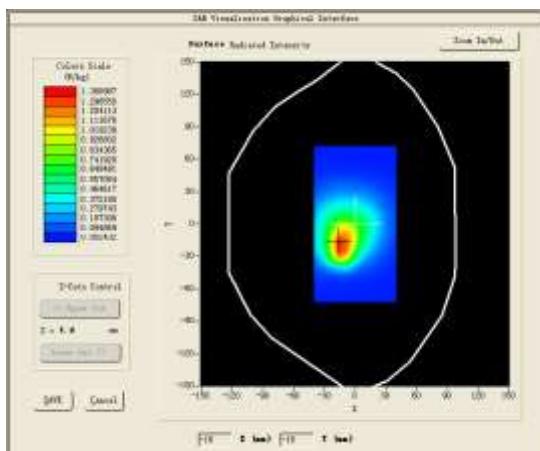



Test Mode:GSM 850 MHz, Mid channel(Back Wrist-Wron)

Product Description: Kid GPS Watch

Model: 8601

Test Date: September 18, 2015

Medium(liquid type)	BSL_900
Frequency (MHz)	836.400024
Relative permittivity (real part)	55.19
Conductivity (S/m)	0.98
E-Field Probe	SN 17/14 EP220
Crest Factor	2.0
Conversion Factor	5.04
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.630000
SAR 10g (W/Kg)	0.904571
SAR 1g (W/Kg)	1.645507
SURFACE SAR	VOLUME SAR

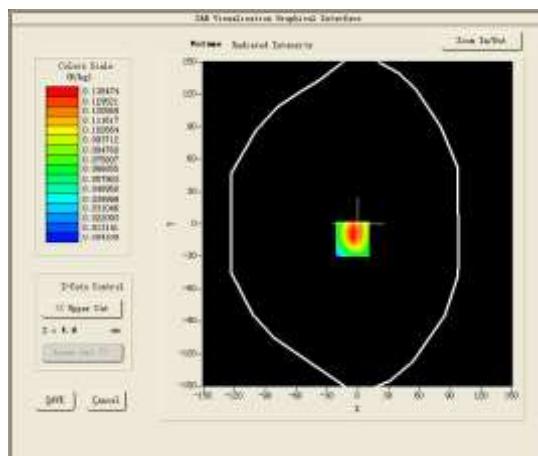
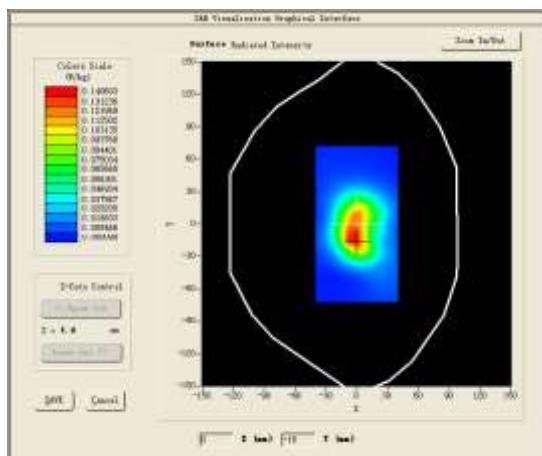



Test Mode:GPRS 850 MHz, Mid channel(Back Wrist-Wron)

Product Description: Kid GPS Watch

Model: 8601

Test Date: September 18, 2015

Medium(liquid type)	BSL_900
Frequency (MHz)	836.400024
Relative permittivity (real part)	55.19
Conductivity (S/m)	0.98
E-Field Probe	SN 17/14 EP220
Crest Factor	2.0
Conversion Factor	5.04
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.980000
SAR 10g (W/Kg)	0.823488
SAR 1g (W/Kg)	1.377731
SURFACE SAR	VOLUME SAR



Test Mode:GSM 1900MHz, Mid channel(Front Next to Mouth)

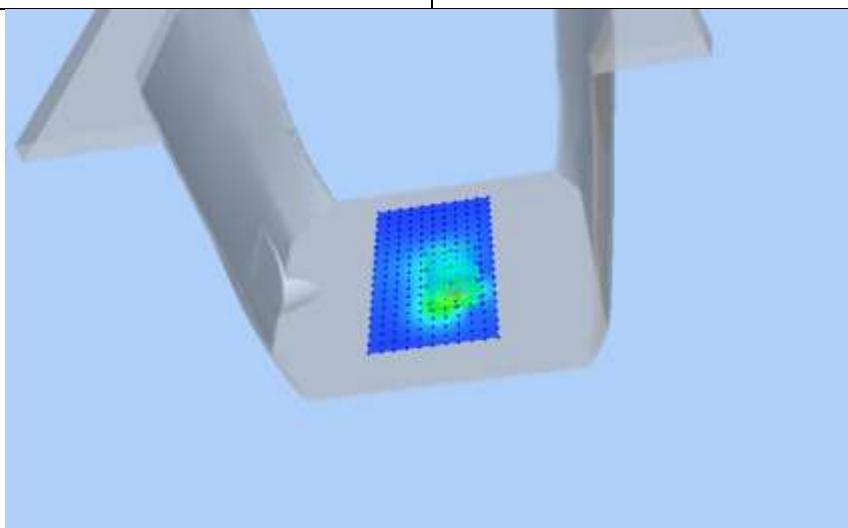
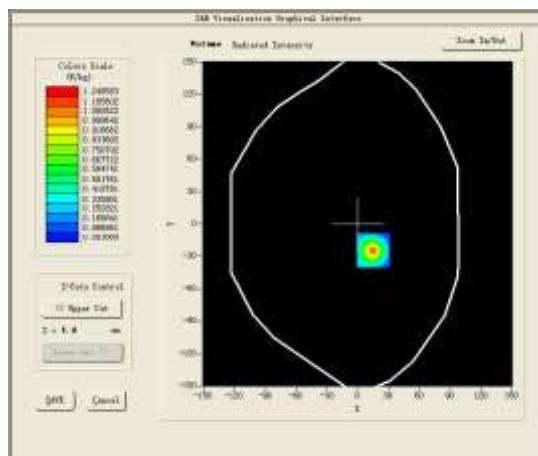
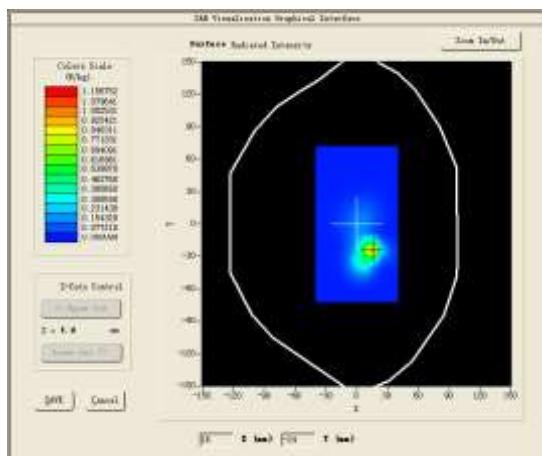
Product Description: Kid GPS Watch

Model: 8601

Test Date: September 21, 2015

Medium(liquid type)	MSL_1800
Frequency (MHz)	1909.599976
Relative permittivity (real part)	40.15
Conductivity (S/m)	1.43
E-Field Probe	SN 17/14 EP221
Crest Factor	2.0
Conversion Factor	4.71
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	4.930000
SAR 10g (W/Kg)	0.078616
SAR 1g (W/Kg)	0.131859

SURFACE SAR**VOLUME SAR**




Test Mode:GSM 1900MHz, Mid channel(Back Wrist-Wron)

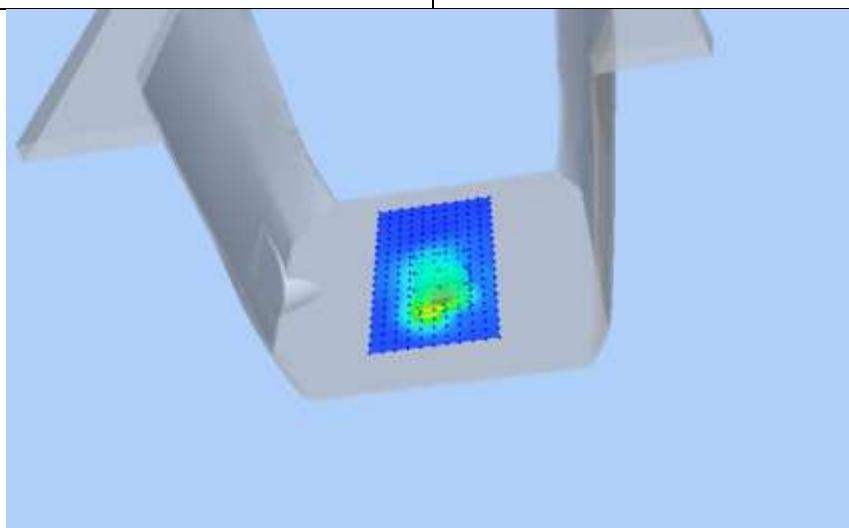
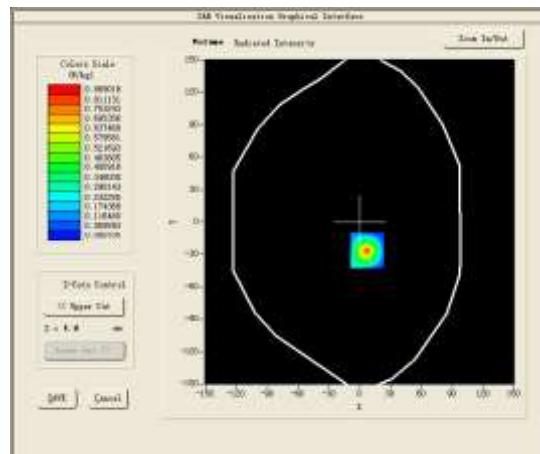
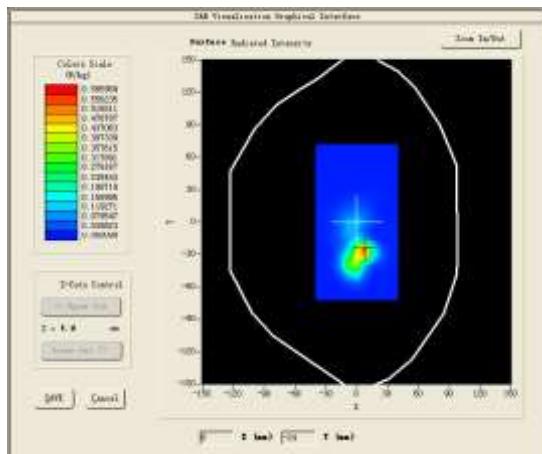
Product Description: Kid GPS Watch

Model: 8601

Test Date:September 21, 2015

Medium(liquid type)	MSL_1800
Frequency (MHz)	1909.599976
Relative permittivity (real part)	53.28
Conductivity (S/m)	1.53
E-Field Probe	SN 17/14 EP221
Crest Factor	2.0
Conversion Factor	4.85
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	2.560000
SAR 10g (W/Kg)	0.418494
SAR 1g (W/Kg)	1.105733

SURFACE SAR**VOLUME SAR**




Test Mode:GPRS 1900MHz, Mid channel(Back Wrist-Wron)

Product Description: Kid GPS Watch

Model: 8601

Test Date:September 21, 2015

Medium(liquid type)	MSL_1800
Frequency (MHz)	1909.599976
Relative permittivity (real part)	53.28
Conductivity (S/m)	1.53
E-Field Probe	SN 17/14 EP221
Crest Factor	2.0
Conversion Factor	4.85
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	3.370000
SAR 10g (W/Kg)	0.317532
SAR 1g (W/Kg)	0.829135
SURFACE SAR	VOLUME SAR

7.CALIBRATION CERTIFICATES

SARTIMO Calibration Certificate-Extended Dipole Calibrations

According to KDB 450824 D02, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for extended 3-year calibration interval.

- 1) When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification
- 2) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement

Summary Result:

SID835			
Frquency	Return Loss(dB)	Requirement(dB)	Impedence
835	-24.46	-20	$55.4\Omega+2.4j\Omega$

SID1900			
Frquency	Return Loss(dB)	Requirement(dB)	Impedence
1900	-23.68	-20	$51.2\Omega+6.4j\Omega$

7.1. Probe Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref : ACR.287.1.14.SATU.A

**SHENZHEN LCS COMPLIANCE TESTING
LABORATORY LTD.**
**1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD,
BAO'AN BLVD**
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE
SERIAL NO.: SN 17/14 EP220

Calibrated at SATIMO US
2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2014

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.287.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2014	
Checked by :	Jérôme LUC	Product Manager	10/14/2014	
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2014	

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	10/14/2014	Initial release

Page: 2/9

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*

TABLE OF CONTENTS

1	Device Under Test	4
2	Product Description	4
2.1	General Information	4
3	Measurement Method	4
3.1	Linearity	4
3.2	Sensitivity	5
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.5	Boundary Effect	5
4	Measurement Uncertainty	5
5	Calibration Measurement Results	6
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	7
5.4	Isotropy	8
6	List of Equipment	9

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.287.1.14.SATU.A

1 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	Satimo
Model	SSE5
Serial Number	SN 17/14 EP220
Product Condition (new / used)	New
Frequency Range of Probe	0.7 GHz-3GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ Dipole 2: R2=0.175 MΩ Dipole 3: R3=0.180 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*

COMOSAR E-FIELD PROBE CALIBRATION REPORT

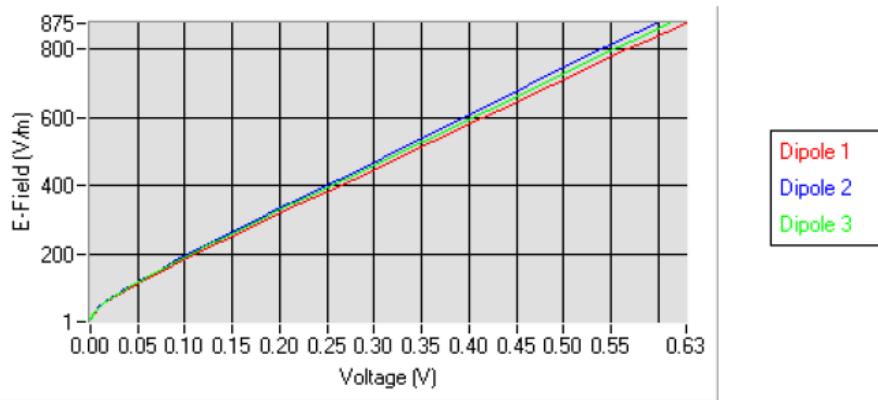
Ref: ACR.287.1.14.SATU.A

Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

5.1 SENSITIVITY IN AIR

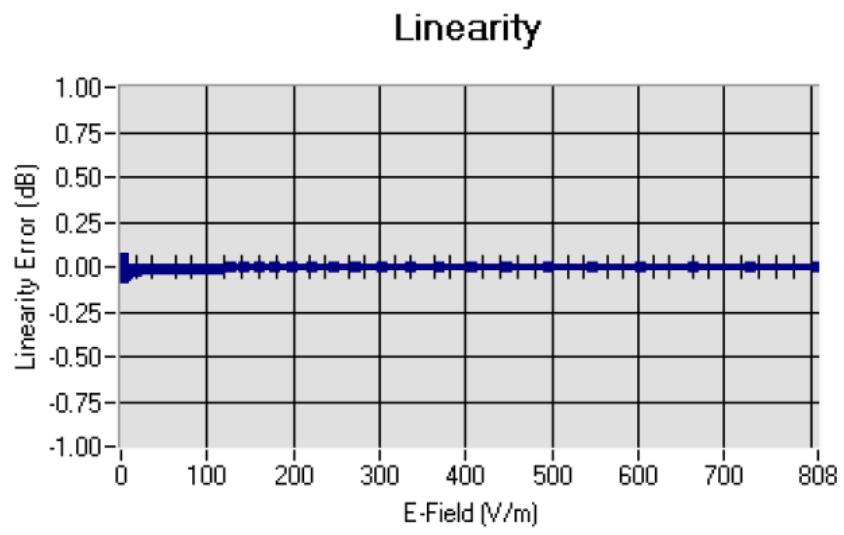

Normx dipole 1 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normy dipole 2 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normz dipole 3 ($\mu\text{V}/(\text{V}/\text{m})^2$)
6.02	5.52	5.72

DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
99	98	99

Calibration curves $e_i=f(V)$ ($i=1,2,3$) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Calibration curves


Page: 6/9

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.287.1.14.SATU.A

5.2 LINEARITY

Linearity: +/- 1.47% (+/- 0.06dB)

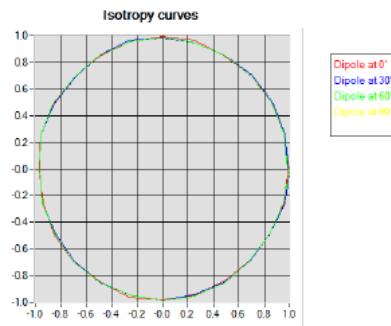
5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL750	750	42.06	0.89	4.58
BL750	750	56.57	0.99	4.71
HL850	835	42.81	0.89	4.86
BL850	835	53.46	0.96	5.04
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.92
HL1800	1800	41.31	1.38	4.16
BL1800	1800	53.27	1.51	4.29
HL2000	2000	39.72	1.43	4.19
BL2000	2000	53.91	1.53	4.28
HL2450	2450	39.05	1.77	3.94
BL2450	2450	52.97	1.93	4.05

LOWER DETECTION LIMIT: 7mW/kg

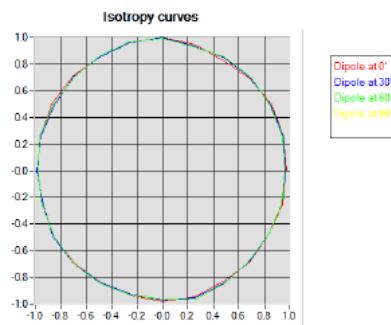
Page: 7/9

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.287.1.14.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB
- Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.06 dB
- Hemispherical isotropy: 0.08 dB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.287.1.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 9/9

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
 The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*

COMOSAR E-Field Probe Calibration Report

Ref : ACR.262.1.14.SATU.A

**SHENZHEN LCS COMPLIANCE TESTING
LABORATORY LTD.**
**1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD,
BAO'AN BLVD**
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE
SERIAL NO.: SN 17/14 EP221

Calibrated at SATIMO US
2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	
Checked by :	Jérôme LUC	Product Manager	9/19/2014	
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	9/19/2014	Initial release

Page: 2/9

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of SATIMO.*

TABLE OF CONTENTS

1	Device Under Test	4
2	Product Description	4
2.1	General Information	4
3	Measurement Method	4
3.1	Linearity	4
3.2	Sensitivity	5
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.5	Boundary Effect	5
4	Measurement Uncertainty	5
5	Calibration Measurement Results	6
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	7
5.4	Isotropy	8
6	List of Equipment	9

Page: 3/9

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of SATIMO.*

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

1 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	Satimo
Model	SSE5
Serial Number	SN 17/14 EP221
Product Condition (new / used)	New
Frequency Range of Probe	0.4 GHz- 6 GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ Dipole 2: R2=0.167 MΩ Dipole 3: R3=0.178 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION**2.1 GENERAL INFORMATION**

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

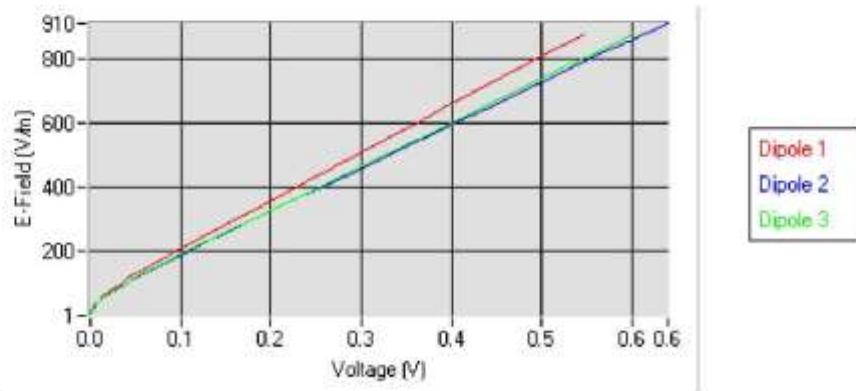
Ref. ACR.262.1.14.SATU.A

Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR


Normx dipole 1 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normy dipole 2 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normz dipole 3 ($\mu\text{V}/(\text{V}/\text{m})^2$)
4.81	6.15	6.02

DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
95	100	90

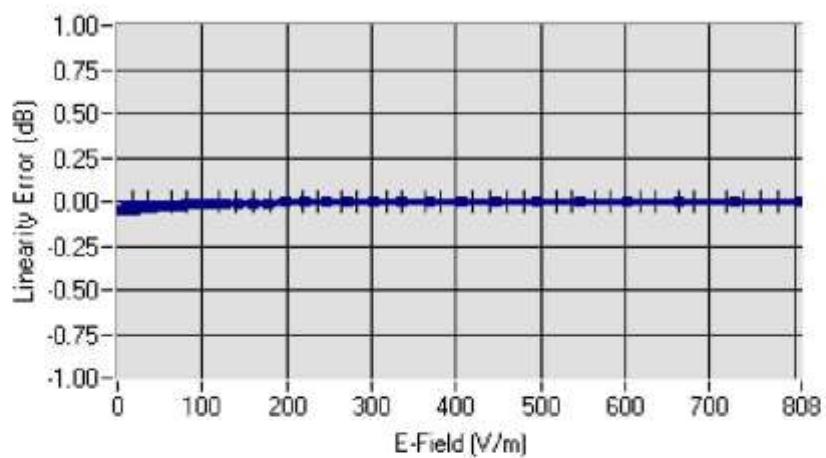
Calibration curves $e_i=f(V)$ ($i=1,2,3$) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Calibration curves

Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

5.2 LINEARITY

Linearity

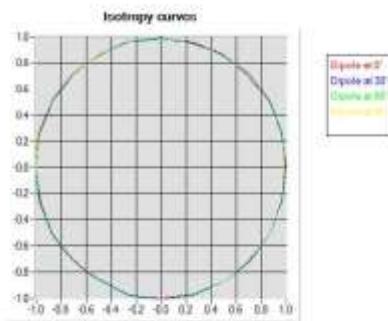
Linearity: +/-1.16% (+/-0.05dB)5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43.90	0.87	4.84
BL450	450	58.63	0.98	4.98
HL750	750	42.06	0.89	4.53
BL750	750	56.57	0.99	4.70
HL850	835	42.81	0.89	4.83
BL850	835	53.46	0.96	5.02
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.89
HL1800	1800	41.31	1.38	4.25
BL1800	1800	53.27	1.51	4.34
HL1900	1900	41.09	1.42	4.71
BL1900	1900	54.20	1.54	4.85
HL2000	2000	39.72	1.43	4.27
BL2000	2000	53.91	1.53	4.44
HL2450	2450	39.05	1.77	4.11
BL2450	2450	52.97	1.93	4.25
HL2600	2600	38.35	1.92	4.20
BL2600	2600	51.81	2.19	4.32

LOWER DETECTION LIMIT: 7mW/kg

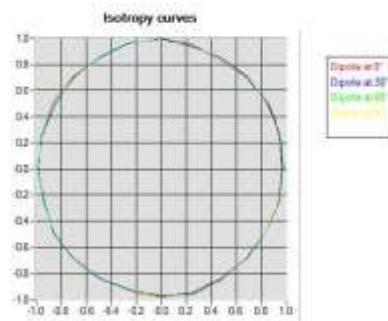
Page: 7/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB
- Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.05 dB
- Hemispherical isotropy: 0.08 dB

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

7.2. SID835Dipole Calibration Ceritificate

SAR Reference Dipole Calibration Report

Ref : ACR.287.4.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD,
BAO'AN BLVD
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 07/14 DIP 0G835-303

10/01/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2014	
Checked by :	Jérôme LUC	Product Manager	10/14/2014	
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2014	Kim RUTKOWSKI

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	10/14/2014	Initial release

Page: 2/11

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of SATIMO.*

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
5	Measurement Uncertainty.....	5
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
6	Calibration Measurement Results.....	6
6.1	Return Loss and Impedance	6
6.2	Mechanical Dimensions	6
7	Validation measurement	7
7.1	Head Liquid Measurement	7
7.2	SAR Measurement Result With Head Liquid.....	7
7.3	Body Liquid Measurement	9
7.4	SAR Measurement Result With Body Liquid	9
8	List of Equipment	11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID835
Serial Number	SN 07/14 DIP 0G835-303
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

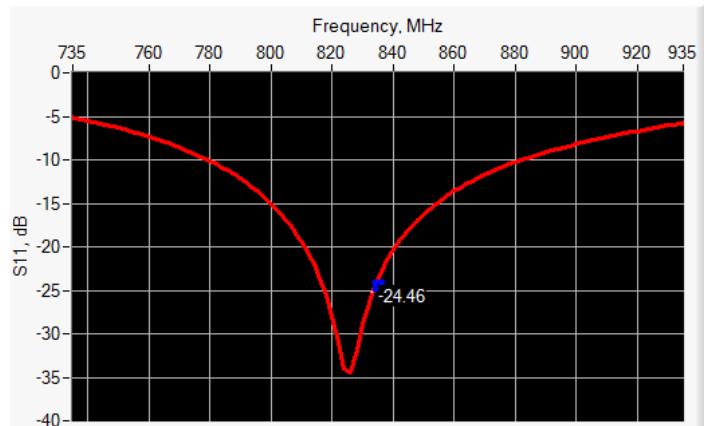
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-24.46	-20	$55.4 \Omega + 2.4 j\Omega$

6.2 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	$420.0 \pm 1\%$.		$250.0 \pm 1\%$.		$6.35 \pm 1\%$.	
450	$290.0 \pm 1\%$.		$166.7 \pm 1\%$.		$6.35 \pm 1\%$.	
750	$176.0 \pm 1\%$.		$100.0 \pm 1\%$.		$6.35 \pm 1\%$.	
835	$161.0 \pm 1\%$.	PASS	$89.8 \pm 1\%$.		$3.6 \pm 1\%$.	PASS
900	$149.0 \pm 1\%$.		$83.3 \pm 1\%$.		$3.6 \pm 1\%$.	
1450	$89.1 \pm 1\%$.		$51.7 \pm 1\%$.		$3.6 \pm 1\%$.	
1500	$80.5 \pm 1\%$.		$50.0 \pm 1\%$.		$3.6 \pm 1\%$.	
1640	$79.0 \pm 1\%$.		$45.7 \pm 1\%$.		$3.6 \pm 1\%$.	
1750	$75.2 \pm 1\%$.		$42.9 \pm 1\%$.		$3.6 \pm 1\%$.	
1800	$72.0 \pm 1\%$.		$41.7 \pm 1\%$.		$3.6 \pm 1\%$.	
1900	$68.0 \pm 1\%$.		$39.5 \pm 1\%$.		$3.6 \pm 1\%$.	
1950	$66.3 \pm 1\%$.		$38.5 \pm 1\%$.		$3.6 \pm 1\%$.	
2000	$64.5 \pm 1\%$.		$37.5 \pm 1\%$.		$3.6 \pm 1\%$.	
2100	$61.0 \pm 1\%$.		$35.7 \pm 1\%$.		$3.6 \pm 1\%$.	
2300	$55.5 \pm 1\%$.		$32.6 \pm 1\%$.		$3.6 \pm 1\%$.	
2450	$51.5 \pm 1\%$.		$30.4 \pm 1\%$.		$3.6 \pm 1\%$.	
2600	$48.5 \pm 1\%$.		$28.8 \pm 1\%$.		$3.6 \pm 1\%$.	
3000	$41.5 \pm 1\%$.		$25.0 \pm 1\%$.		$3.6 \pm 1\%$.	
3500	$37.0 \pm 1\%$.		$26.4 \pm 1\%$.		$3.6 \pm 1\%$.	
3700	$34.7 \pm 1\%$.		$26.4 \pm 1\%$.		$3.6 \pm 1\%$.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
 The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.287.4.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 \pm 5 %		0.87 \pm 5 %	
450	43.5 \pm 5 %		0.87 \pm 5 %	
750	41.9 \pm 5 %		0.89 \pm 5 %	
835	41.5 \pm 5 %	PASS	0.90 \pm 5 %	PASS
900	41.5 \pm 5 %		0.97 \pm 5 %	
1450	40.5 \pm 5 %		1.20 \pm 5 %	
1500	40.4 \pm 5 %		1.23 \pm 5 %	
1640	40.2 \pm 5 %		1.31 \pm 5 %	
1750	40.1 \pm 5 %		1.37 \pm 5 %	
1800	40.0 \pm 5 %		1.40 \pm 5 %	
1900	40.0 \pm 5 %		1.40 \pm 5 %	
1950	40.0 \pm 5 %		1.40 \pm 5 %	
2000	40.0 \pm 5 %		1.40 \pm 5 %	
2100	39.8 \pm 5 %		1.49 \pm 5 %	
2300	39.5 \pm 5 %		1.67 \pm 5 %	
2450	39.2 \pm 5 %		1.80 \pm 5 %	
2600	39.0 \pm 5 %		1.96 \pm 5 %	
3000	38.5 \pm 5 %		2.40 \pm 5 %	
3500	37.9 \pm 5 %		2.91 \pm 5 %	

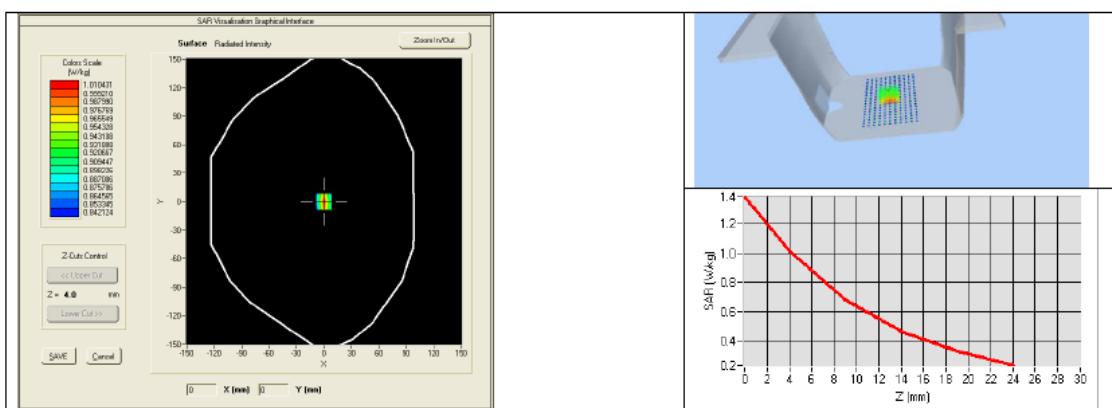
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: ϵ_r' : 42.3 sigma : 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.4.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.60 (0.96)	6.22	6.20 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.4.14.SATU.A

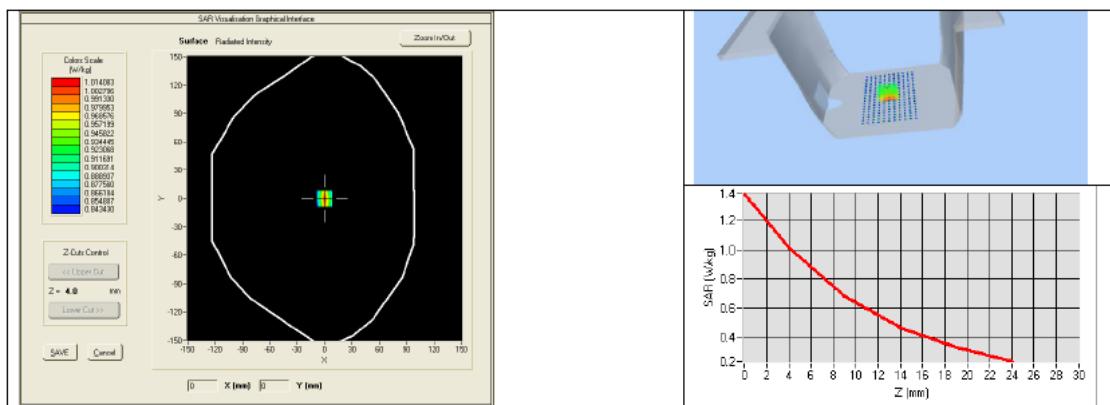
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 \pm 5 %		0.80 \pm 5 %	
300	58.2 \pm 5 %		0.92 \pm 5 %	
450	56.7 \pm 5 %		0.94 \pm 5 %	
750	55.5 \pm 5 %		0.96 \pm 5 %	
835	55.2 \pm 5 %	PASS	0.97 \pm 5 %	PASS
900	55.0 \pm 5 %		1.05 \pm 5 %	
915	55.0 \pm 5 %		1.06 \pm 5 %	
1450	54.0 \pm 5 %		1.30 \pm 5 %	
1610	53.8 \pm 5 %		1.40 \pm 5 %	
1800	53.3 \pm 5 %		1.52 \pm 5 %	
1900	53.3 \pm 5 %		1.52 \pm 5 %	
2000	53.3 \pm 5 %		1.52 \pm 5 %	
2100	53.2 \pm 5 %		1.62 \pm 5 %	
2450	52.7 \pm 5 %		1.95 \pm 5 %	
2600	52.5 \pm 5 %		2.16 \pm 5 %	
3000	52.0 \pm 5 %		2.73 \pm 5 %	
3500	51.3 \pm 5 %		3.31 \pm 5 %	
5200	49.0 \pm 10 %		5.30 \pm 10 %	
5300	48.9 \pm 10 %		5.42 \pm 10 %	
5400	48.7 \pm 10 %		5.53 \pm 10 %	
5500	48.6 \pm 10 %		5.65 \pm 10 %	
5600	48.5 \pm 10 %		5.77 \pm 10 %	
5800	48.2 \pm 10 %		6.00 \pm 10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: ϵ_r' : 54.1 sigma : 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Page: 9/11


This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
 The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.4.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.90 (0.99)	6.39 (0.64)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

7.3. SID1900 Dipole Calibration Cerificate

SAR Reference Dipole Calibration Report

Ref : ACR.262.8.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD,
BAO'AN BLVD
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 30/14 DIP1G900-333

Calibrated at SATIMO US

2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	
Checked by :	Jérôme LUC	Product Manager	9/19/2014	
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	9/19/2014	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
5	Measurement Uncertainty.....	5
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
6	Calibration Measurement Results.....	6
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	6
7	Validation measurement	7
7.1	Head Liquid Measurement	7
7.2	SAR Measurement Result With Head Liquid	8
7.3	Body Liquid Measurement	9
7.4	SAR Measurement Result With Body Liquid	10
8	List of Equipment	11

Page: 3/11

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID1900
Serial Number	SN 30/14 DIP1G900-333
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

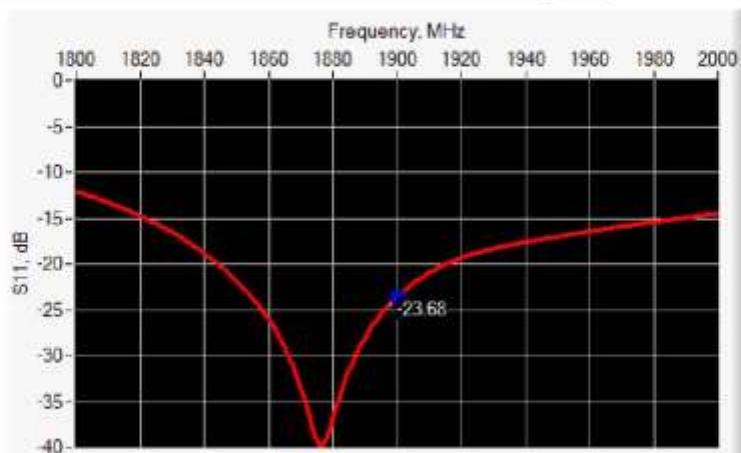
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

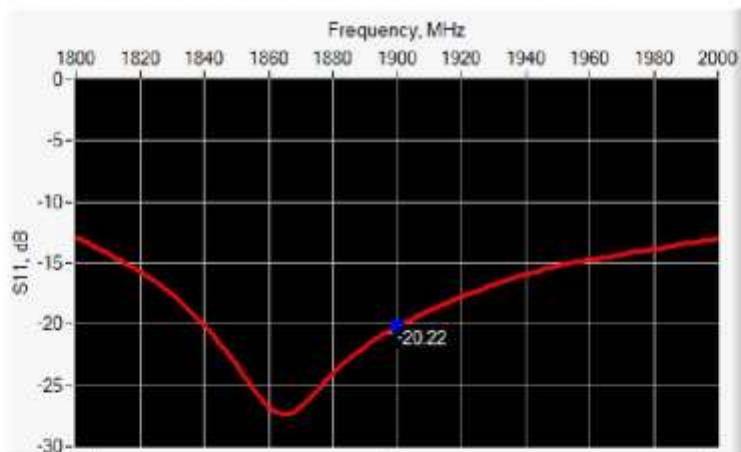
Page: 5/11

*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-23.68	-20	$51.2 \Omega + 6.4 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-20.22	-20	$48.8 \Omega + 9.6 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	$420.0 \pm 1\%$		$250.0 \pm 1\%$		$6.35 \pm 1\%$	
450	$290.0 \pm 1\%$		$166.7 \pm 1\%$		$6.35 \pm 1\%$	
750	$176.0 \pm 1\%$		$100.0 \pm 1\%$		$6.35 \pm 1\%$	
835	$161.0 \pm 1\%$		$89.8 \pm 1\%$		$3.6 \pm 1\%$	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
 The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

900	149.0 \pm 1 %.		83.3 \pm 1 %.		3.6 \pm 1 %.	
1450	89.1 \pm 1 %.		51.7 \pm 1 %.		3.6 \pm 1 %.	
1500	80.5 \pm 1 %.		50.0 \pm 1 %.		3.6 \pm 1 %.	
1640	79.0 \pm 1 %.		45.7 \pm 1 %.		3.6 \pm 1 %.	
1750	75.2 \pm 1 %.		42.9 \pm 1 %.		3.6 \pm 1 %.	
1800	72.0 \pm 1 %.		41.7 \pm 1 %.		3.6 \pm 1 %.	
1900	68.0 \pm 1 %.	PASS	39.5 \pm 1 %.	PASS	3.6 \pm 1 %.	PASS
1950	66.3 \pm 1 %.		38.5 \pm 1 %.		3.6 \pm 1 %.	
2000	64.5 \pm 1 %.		37.5 \pm 1 %.		3.6 \pm 1 %.	
2100	61.0 \pm 1 %.		35.7 \pm 1 %.		3.6 \pm 1 %.	
2300	55.5 \pm 1 %.		32.6 \pm 1 %.		3.6 \pm 1 %.	
2450	51.5 \pm 1 %.		30.4 \pm 1 %.		3.6 \pm 1 %.	
2600	48.5 \pm 1 %.		28.8 \pm 1 %.		3.6 \pm 1 %.	
3000	41.5 \pm 1 %.		25.0 \pm 1 %.		3.6 \pm 1 %.	
3500	37.0 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3700	34.7 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 \pm 5 %		0.87 \pm 5 %	
450	43.5 \pm 5 %		0.87 \pm 5 %	
750	41.9 \pm 5 %		0.89 \pm 5 %	
835	41.5 \pm 5 %		0.90 \pm 5 %	
900	41.5 \pm 5 %		0.97 \pm 5 %	
1450	40.5 \pm 5 %		1.20 \pm 5 %	
1500	40.4 \pm 5 %		1.23 \pm 5 %	
1640	40.2 \pm 5 %		1.31 \pm 5 %	
1750	40.1 \pm 5 %		1.37 \pm 5 %	
1800	40.0 \pm 5 %		1.40 \pm 5 %	
1900	40.0 \pm 5 %	PASS	1.40 \pm 5 %	PASS
1950	40.0 \pm 5 %		1.40 \pm 5 %	
2000	40.0 \pm 5 %		1.40 \pm 5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

2100	39.8 ± 5 %		1.49 ± 5 %	
2300	39.5 ± 5 %		1.67 ± 5 %	
2450	39.2 ± 5 %		1.80 ± 5 %	
2600	39.0 ± 5 %		1.96 ± 5 %	
3000	38.5 ± 5 %		2.40 ± 5 %	
3500	37.9 ± 5 %		2.91 ± 5 %	

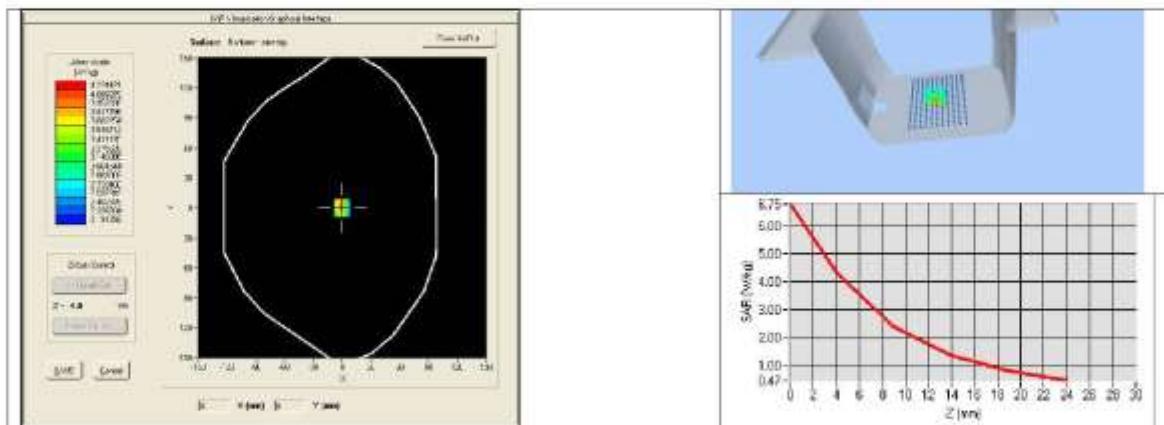
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 41.1 sigma : 1.42
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	39.84 (3.98)	20.5	20.20 (2.02)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11


This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

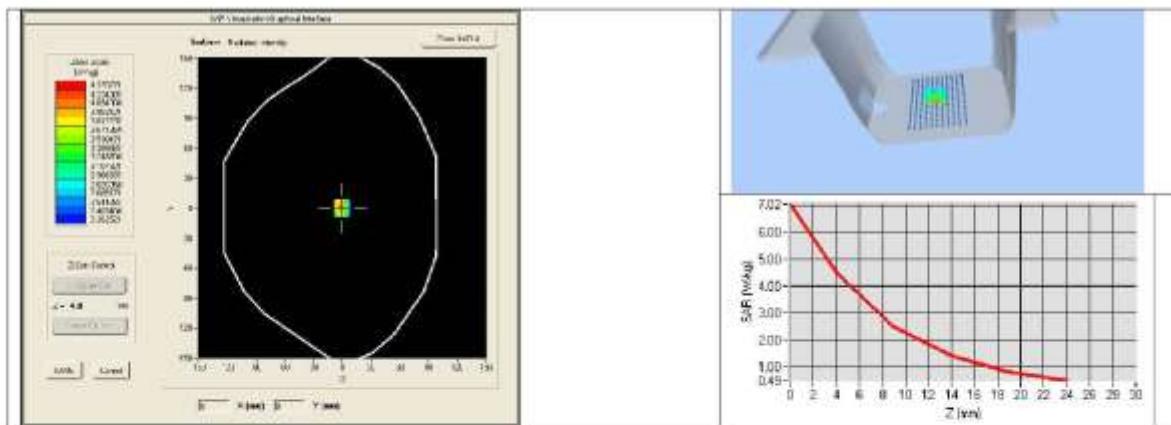
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 \pm 5 %		0.80 \pm 5 %	
300	58.2 \pm 5 %		0.92 \pm 5 %	
450	56.7 \pm 5 %		0.94 \pm 5 %	
750	55.5 \pm 5 %		0.96 \pm 5 %	
835	55.2 \pm 5 %		0.97 \pm 5 %	
900	55.0 \pm 5 %		1.05 \pm 5 %	
915	55.0 \pm 5 %		1.06 \pm 5 %	
1450	54.0 \pm 5 %		1.30 \pm 5 %	
1610	53.8 \pm 5 %		1.40 \pm 5 %	
1800	53.3 \pm 5 %		1.52 \pm 5 %	
1900	53.3 \pm 5 %	PASS	1.52 \pm 5 %	PASS
2000	53.3 \pm 5 %		1.52 \pm 5 %	
2100	53.2 \pm 5 %		1.62 \pm 5 %	
2450	52.7 \pm 5 %		1.95 \pm 5 %	
2600	52.5 \pm 5 %		2.16 \pm 5 %	
3000	52.0 \pm 5 %		2.73 \pm 5 %	
3500	51.3 \pm 5 %		3.31 \pm 5 %	
5200	49.0 \pm 10 %		5.30 \pm 10 %	
5300	48.9 \pm 10 %		5.42 \pm 10 %	
5400	48.7 \pm 10 %		5.53 \pm 10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
 The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.262.8.14.SATU.A

5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: $\epsilon_r = 54.2$ sigma = 1.54
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	43.33 (4.33)	21.59 (2.16)

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 11/11

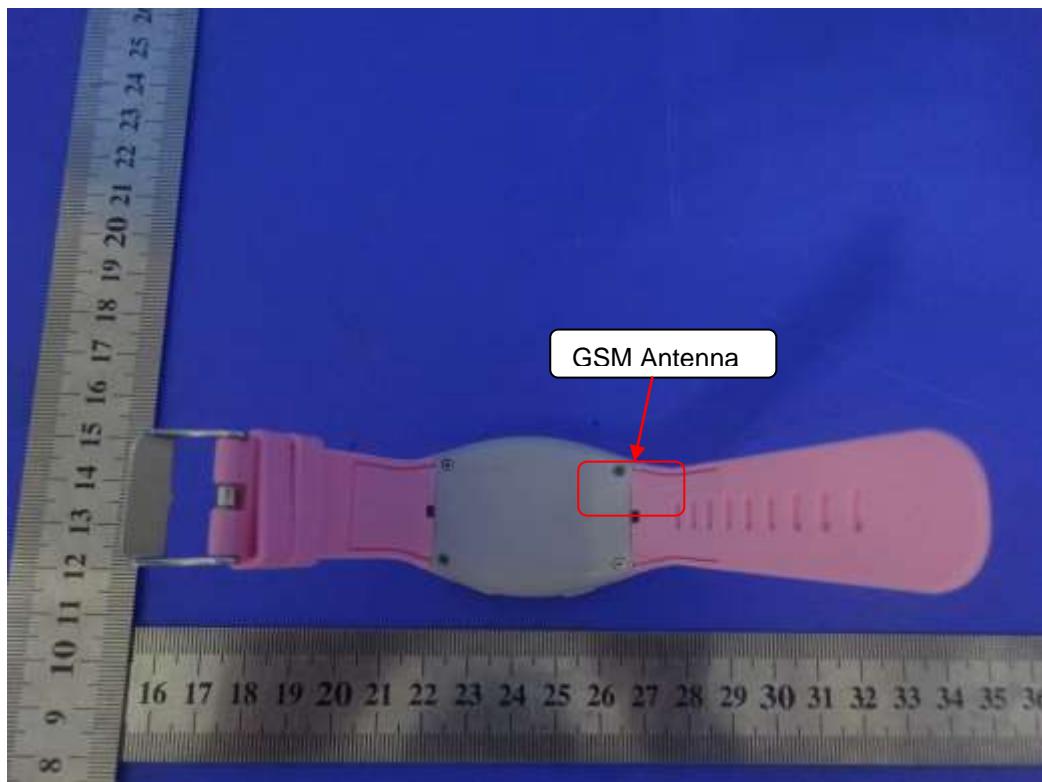
*This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.*

7. SAR System PHOTOGRAPHS

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE1528-2003

8. SETUP PHOTOGRAPHS


10mm Next to Mouth Front Side Setup Photo

0mm Wrist-Worn Back Side Setup Photo

9. EUT PHOTOGRAPHS

.....The End of Test Report.....