

FCC Test Report

Part 15 subpart C

Client Information:

Applicant:	Guangzhou Maipai Electronics Co.,Ltd.				
Applicant add.:	Room 202,No.94,Shinan Road,Xianchong Village,Qiaonan Street,				
	Panyu District of Guangzhou.				
Product Information:					
Product Name:	wireless keyboard				
Model No.:	KM-224W				
Derivative model No.:	N/A				
Brand Name:	N/A				
Standards:	CFR 47 FCC PART 15 SUBPART C:2013 section 249				
Prepared By:					
I	Dongguan Yaxu (AiT) Technology Limited				
	, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan, dong, China.				
Cuarge	Changdong, Onnia.				
Date of Receipt: Aug. 24,	2015 Date of Test: Aug. 24~ 28, 2015				

Date of Issue: Aug. 28, 2015 Test Result: Pass

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

ATT SZ commissioned AiT(Dongguan) to test the device described above, and then AiT(Dongguan) use the UTL(Dongguan)'s test site do this case.

This test report must not be used by the client to claim product endorsement by any agency of the U.S. government.

Seal-Chen

Reviewed by:

June

Approved by:

1 Contents

	COVE	ER PAGE	
1	CC	ONTENTS	2
2	TE	ST SUMMARY	3
	2.1 2.2	COMPLIANCE WITH FCC PART 15 SUBPART C MEASUREMENT UNCERTAINTY	
3	TE	ST FACILITY	5
	3.1 3.2	DEVIATION FROM STANDARD	
4	GE	ENERAL INFORMATION	5
	4.1 4.2	GENERAL DESCRIPTION OF EUT	
5	DE	ESCRIPTION OF TEST CONDITIONS	8
	5.1 5.2 5.3	E.U.T. OPERATION EUT PERIPHERAL LIST TEST PERIPHERAL LIST	9
6	EG	QUIPMENTS LIST FOR ALL TEST ITEMS	10
7	TE	ST RESULT	11
	7.1 7.2 7.2		12 17
	7.2		
	7.2 7.2 7.2	2.4 Band Edge Measurement:2.5 Restricted Bands Measurement:	22 23
	7.3 7.4	OCCUPIED BANDWIDTH CONDUCTED EMISSIONS AT MAINS TERMINALS 150 KHZ TO 30 MHZ	
8		IOTOGRAPHS	
0	8.1	RADIATED EMISSION TEST SETUP	
9	EU	JT CONSTRUCTIONAL DETAILS	28

2 Test Summary

2.1 Compliance with FCC Part 15 subpart C

Test	Test Requirement	Requirement Standard Paragraph		
Field Strength of	FCC PART 15 C	ANSI C63.10:	PASS	
Fundamental	section 15.249 (a)	Clause 6.6		
Field Otropath of	FCC PART 15 C	ANSI C63.10:		
Field Strength of Unwanted Emissions	section 15.249 (a)	Clause 6.4, 6.6 and 6.7	PASS	
	section 15.249 (d)			
Band Edges	FCC PART 15 C	ANSI C63.10:	PASS	
Band Edges	section 15.249 (d)	Clause 6.9.2	FA35	
Occupied Rendwidth	FCC PART 15 C	ANSI C63.10:	DASS	
Occupied Bandwidth	section 15.215(c)	Clause 6.9.1		
Conducted Emissions	FCC PART 15 C	ANSI C63.10:	N/A	
at Mains Terminals	section 15.207	Clause 6.2	IN/A	

Remark:

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2009 in the whole report.

2.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, the maximum value of the uncertainty as below:

No.	Item	Uncertainty
1	Conducted Emission Test	1.20dB
2	Radiated Emission Test	3.30dB
3	RF power, conducted	0.16dB
4	RF power density, conducted	0.24dB
5	Spurious emissions, conducted	0.21dB
6	All emissions, radiated (<1G)	4.68dB
7	All emissions, radiated (>1G)	4.89dB

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

.FCC- Registration No: 713614

DONGGUAN UTL ELECTRONIC TECHNOLOGY CO., LTD.

1F, Hengzheng Bldg, North Road of Station, Nancheng District, Dongguan, Guangdong, China.

3.1 Deviation from standard

None

3.2 Abnormalities from standard conditions

None

4 General Information

4.1 General Description of EUT

Manufacturer:	Guangzhou Maipai Electronics Co.,Ltd.	
Manufacturer Address:	Room 202,No.94,Shinan Road,Xianchong Village,Qiaonan Street, Panyu District of Guangzhou.	
EUT Name:	wireless keyboard	
FCC ID	2AFVEKM-224	
Model No.:	KM-224W	
Operation frequency:	2402 MHz to 2480 MHz	
Number of channel:	40 channels	
Modulation Type :	MSK	
Antenna Type	PCB	
Antenna Gain:	0 dBi	
HW:	ASY_MA1386102_V1.0	
SW:	V1.1	
Brand Name:	N/A	
Serial No:	N/A	
Derivative model No.:	N/A	

Report No.: E-1508009 Page 6 of 31 Rev: 00

	1164.00
Power Supply Range:	DC 1.5V(1*1.5V AA battery)
Power Supply:	DC 1.5V from battery
Power Cord:	N/A
Signal Cable:	N/A

4.2 Test Location

All tests were performed at:

DONGGUAN UTL ELECTRONIC TECHNOLOGY CO., LTD. 1F,Hengzheng Bldg, North Road of Station, Nancheng District, Dongguan, Guangdong, China.

Description of Channel:							
Channel Frequency (MHz) Channel Frequency (MHz)							
00	2402	2402 20 2442					
01	2404	21	2444				
02	2406	22	2446				
03	2408	23	2448				
04	2410	24	2450				
05	2412	25	2452				
06	2414	26	2454				
07	2416 27		2456				
08	2418	2418 28 2					
09	2420 29		2460				
10	2422	30	2462				
11	2424	31	2464				
12	2426	32	2466				
13	2428	33	2468				
14	2430	34	2470				
15	2432	35	2472				
16	2434	36	2474				
17	2436	37	2476				
18	2438	38	2478				
19	2440	39	2480				

5 Description of Test conditions

5.1 E.U.T. Operation

Test Voltage:	DC 1.5V from battery(Use new batteries)		
Temperature:	20.0 -25.0 °C		
Humidity:	38-50 % RH		
Atmospheric Pressure:	1000 -1010 mbar		
Test frequencies and frequency range:	According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:		
	According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:		

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement		
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz,		
9 KHZ to below TO GHZ	whichever is lower		
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100 GHz,		
30 GHz	whichever is lower		
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz,		
ALOI ADOVE 30 GHZ	whichever is lower, unless otherwise specified		

5.2 EUT Peripheral List

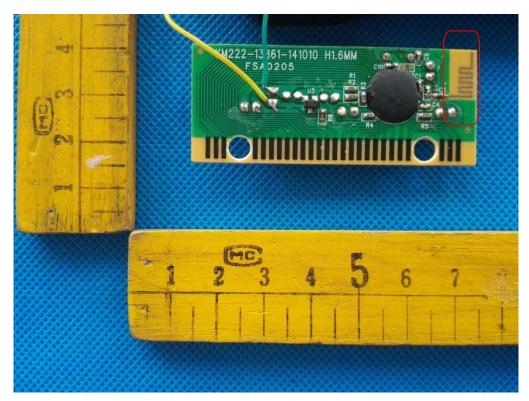
No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	N/A	N/A	N/A	N/A	N/A	N/A

5.3 Test Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	N/A	N/A	N/A	N/A	N/A	N/A

6 Equipments List for All Test Items

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	ADVANTEST	R3182	150900201	2015.06.29	2016.06.28
2	EMI Measuring Receiver	R&S	ESR	101660	2014.12.12	2015.12.11
3	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2015.06.29	2016.06.28
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2014.12.02	2015.12.01
5	TRILOG Super Broadband test Antenna	SCHWARZBEC K	VULB9160	9160-3206	2014.12.03	2015.12.02
6	Broadband Horn Antenna	SCHWARZBEC K	BBHA9120D	452	2014.12.03	2015.12.02
7	SHF-EHF Horn	SCHWARZBEC K	BBHA9170	BBHA917036 7	2014.12.03	2015.12.02
8	Loop Antenna	ARA	PLA-1030/B	1029	2015.03.20	2016.03.19
9	Radiated Cable 1# (30MHz-1GHz)	FUJIKURA	5D-2W	01	2015.01.04	2016.01.03
10	Radiated Cable 2# (1GHz -25GHz)	FUJIKURA	10D2W	02	2014.12.25	2015.12.24
11	Conducted Cable 1#(9KHz-30MHz)	FUJIKURA	1D-2W	01	2015.01.04	2016.01.03
12	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	N/A
Note	: The SMA antenna con antenna connector is li			order to perform	conducted test	s and this SMA


7 Test Result

7.1 Antenna Requirement

Standard requirement

EUT Antenna

The antenna is PCB antenna and no consideration of replacement. The maximum gain of the antenna is 0 dBi.

Test result: The unit does meet the FCC requirements.

7.2 Field Strength of Fundamental& Field Strength of Unwanted Emissions&

Band Edge

	(a) Except as provided in emissions from intentiona shall comply with the follow	I radiators operated withi				
	Fundamental Frequency (MHz)	Field Strength of Fundamental	Field Strength of Harmonics			
		(dBµV/m @ 3m)	(dBµV/m @ 3m)			
	902 to 928	94.0	54.0			
	2400 to 2483.5	94.0	54.0			
	5725 to 5875	94.0	54.0			
	24000 to 24250	108.0	68.0			
	(d) Emissions radiated out harmonics, shall be atter fundamental or to the ge whichever is the lesser att	nuated by at least 50 dleneral radiated emission enuation.	B below the level of the limits in Section 15.209,			
Limits:	The fundamental frequency rang is in the frequency band of the EUT is 2402 MHz ~ 2480 MHz.					
	The limit for AVG field strength dB μ V/m for the fundamental frequency = 94.0 dB μ V/m.					
	The limit for Peak field strength $dB\mu V/m$ for the fundamental frequency = 114.0 $dB\mu V/m$.					
	No fundamental is allowed in the restricted bands.					
	The limit for AVG field strength $dB\mu V/m$ for the harmonics and other above 1G frequencies = 54.0 $dB\mu V/m$.					
	The limit for Peak field str 1G frequencies = 74.0 dB		rmonics and other above			
Test Method:	ANSI C63.10: Clause 6.4, Field Strength of Unwante		ngth of Fundamental&			
	ANSI C63.10: Clause 6.9.	2 for Band Edge				
Status	Pre-test the EUT in contin in X, Y, Z threes axes, fou					
Measurement Distance:	3m (Semi-Anechoic Cham	nber)				
Frequency range	9 kHz – 25 GHz for transn	nitting mode.				
	Test instrumentation resolution bandwidth 9 kHz (9 kHz - 30 MHz), 120 kHz (30 MHz - 1000 MHz), 1 MHz (1000 MHz – 25 GHz)					

Test Requirement: FCC Part15 C section 15.249

(a) Except as provided in paragraph (b) of this section, the field strength of

Detector:For PK and QP value:RBW = 1 MHz for $f \ge 1 GHz$, 100 kHz for f < 1 GHz $VBW \ge RBW$ Sweep = autoDetector function = peakTrace = max holdFor AV value:RBW = 1 MHz for $f \ge 1 GHz$,VBW = 10 HzSweep = autoDetector function = peakTrace = max hold

Test Procedure:

1)9 kHz to 30 MHz emissions:

For testing performed with the loop antenna, testing was performed in accordance to ANSI C63.10. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT, During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

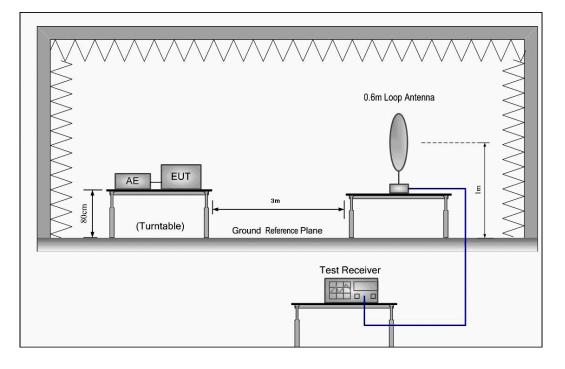
2)30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

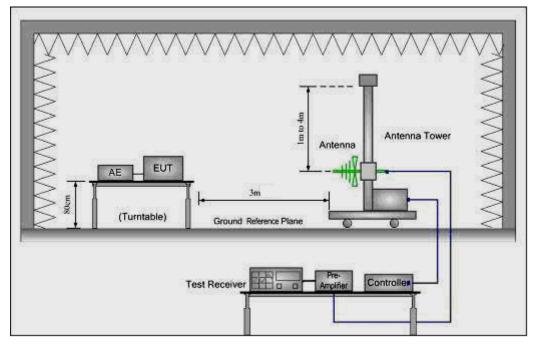
3)1 GHz to 25 GHz emissions:

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2007 was used to perform radiated emission test above 1 GHz.

For testing performed with the horn antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scan between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

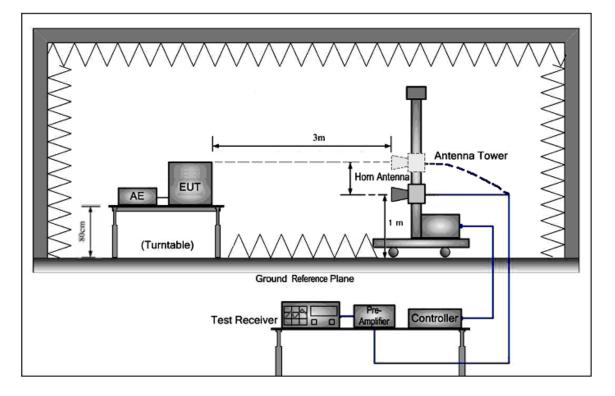

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.



Test Configuration:

1) 9 kHz to 30 MHz emissions:



2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 10 GHz emissions:

The field strength is calculated by adding the Antenna Factor, Cable Loss & Per-amplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Loss - Preamplifier Factor

7.2.1 Duty cycle measurement:

Receiver	Spectrum	8								
Ref Level	0.00 dBm	👄 RB	W 1 MHz							
🖶 Att	10 dB 🥌 SWT	10 ms 🖶 VB	W 1 MHz	: Inj	put 1 AC					
O TAP Clrw										
-10 dBm										
-20 dBm										
-30 dBm		+ +								
-40 dBm										
-50 dBm										
-60 dBm										
-70 dBm										
-80 dBm										
-90 dBm										
-20 0011										
CF 2.44 GH	z	· ·	691	pts				1.0 ms/		

7.2.2 Fundamental field strength measurement:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Antenna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	polarization
2402.000	96.58	-5.68	90.90	114.00	-23.10	Peak	V
2402.000	82.74	-5.68	77.06	94.00	-16.94	AVG	V
2402.000	96.81	-5.68	91.13	114.00	-22.87	Peak	Н
2402.000	80.66	-5.68	74.98	94.00	-19.02	AVG	Н
2440.000	98.52	-5.36	93.16	114.00	-20.84	Peak	V
2440.000	82.10	-5.36	76.74	94.00	-17.26	AVG	V
2440.000	97.76	-5.36	92.40	114.00	-21.60	Peak	Н
2440.000	82.69	-5.36	77.33	94.00	-16.67	AVG	Н
2480.000	94.61	-5.01	89.60	114.00	-24.40	Peak	V
2480.000	79.70	-5.01	74.69	94.00	-19.31	AVG	V
2480.000	95.16	-5.01	90.15	114.00	-23.85	Peak	Н
2480.000	82.37	-5.01	77.36	94.00	-16.64	AVG	Н

Note: Measurement Level = Reading Level + Factor Factor=Ant Factor + Cable Loss- Pre-amplifier.

7.2.3 Radiated Emissions Test Data

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

30 MHz~1 GHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

EUT:	wireless keyboard	Model Name :	KM-224W			
Temperature:	25 ℃	Test Data	2015-08-25			
Pressure:	1010 hPa	Relative Humidity:	60%			
Test Mode :	TX 2402 mode(worse-case)	Test Voltage :	DC 1.5V from battery			
Measurement Distance	3 m	Frenqucy Range	30MHz to 1GHz			
RBW/VBW	100KHz / 300KHz for spectrum, RBW=120KHz for receiver.					

(a) Antenna polarization: Horizontal

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
37.1550	38.58	-26.70	11.88	40.00	-28.12	QUASI-PEAK
107.5101	43.95	-23.70	20.25	43.50	-23.25	QUASI-PEAK
138.3873	40.26	-24.99	15.27	43.50	-28.23	QUASI-PEAK
434.0651	41.68	-15.70	25.98	46.00	-20.02	QUASI-PEAK
520.8882	42.35	-14.92	27.43	46.00	-18.57	QUASI-PEAK
726.8052	41.24	-10.16	31.08	46.00	-14.92	QUASI-PEAK

(b) Antenna polarization: Vertical

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
35.8746	39.75	-24.86	14.89	40.00	-25.11	QUASI-PEAK
107.5101	43.94	-25.70	18.24	43.50	-25.26	QUASI-PEAK
183.2005	39.41	-20.94	18.47	43.50	-25.03	QUASI-PEAK
238.3102	42.52	-22.11	20.41	46.00	-25.59	QUASI-PEAK
434.0651	43.02	-15.70	27.32	46.00	-18.68	QUASI-PEAK
948.7610	40.90	-6.20	34.70	46.00	-11.30	QUASI-PEAK

Note:

Measurement Level = Reading Level + Factor Factor=Ant Factor + Cable Loss- Pre-amplifier.

Above 1GHz Field Strength of Unwanted Emissions Measurement

EUT:	wireless keyboard	Model Name :	KM-224W		
Temperature:	25 ℃	Test Data	2015-08-25		
Pressure:	1010 hPa	Relative Humidity:	60%		
Test Mode :	TX mode	Test Voltage :	DC 1.5V from battery		
Measurement Distance	3 m	Frenqucy Range	1GHz to 25GHz		
RBW/VBW	1MHz/1MHz for Peak, 1MHz/10Hz for Average.				
	non-restricted band: 100KHz/300KHz for Peak.				

(a) Antenna polarization: Horizontal

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
4804.000	53.26	5.06	58.32	74.00	-15.68	PEAK
4804.000	41.31	5.06	46.37	54.00	-7.63	AVERAGE
7206.000	43.50	7.03	50.53	74.00	-23.47	PEAK
7206.000	30.66	7.03	37.69	54.00	-16.31	AVERAGE
9608.000	35.68	10.63	46.31	74.00	-27.69	PEAK
9608.000	23.65	10.63	34.28	54.00	-19.72	AVERAGE

(b) Antenna polarization: Vertical

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
4804.000	51.23	5.06	56.29	74.00	-17.71	PEAK
4804.000	37.56	5.06	42.62	54.00	-11.38	AVERAGE
7206.000	43.12	7.03	50.15	74.00	-23.85	PEAK
7206.000	31.66	7.03	38.69	54.00	-15.31	AVERAGE
9608.000	35.57	10.63	46.20	74.00	-27.80	PEAK
9608.000	23.90	10.63	34.53	54.00	-19.47	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Factor=Ant Factor + Cable Loss- Pre-amplifier.

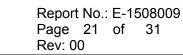
Low Channel: 2402 MHz

(a) Antenna polarization: Horizontal

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
4880.000	50.00	5.14	55.14	74.00	-18.86	PEAK
4880.000	36.11	5.14	41.25	54.00	-12.75	AVERAGE
7320.000	41.78	7.52	49.30	74.00	-24.70	PEAK
7320.000	28.15	7.52	35.67	54.00	-18.33	AVERAGE
9760.000	35.77	11.36	47.13	74.00	-26.87	PEAK
9760.000	21.22	11.36	32.58	54.00	-21.42	AVERAGE

(b) Antenna polarization: Vertical

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
4880.000	49.93	5.14	55.07	74.00	-18.93	PEAK
4880.000	37.51	5.14	42.65	54.00	-11.35	AVERAGE
7320.000	40.67	7.52	48.19	74.00	-25.81	PEAK
7320.000	26.20	7.52	33.72	54.00	-20.28	AVERAGE
9760.000	33.79	11.36	45.15	74.00	-28.85	PEAK
9760.000	21.42	11.36	32.78	54.00	-21.22	AVERAGE


Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Factor=Ant Factor + Cable Loss- Pre-amplifier.

Middle Channel: 2440 MHz

(a) Antenna polarization: Horizontal

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
4960.000	49.34	5.22	54.56	74.00	-19.44	PEAK
4960.000	36.59	5.22	41.81	54.00	-12.19	AVERAGE
7440.000	40.21	8.06	48.27	74.00	-25.73	PEAK
7440.000	26.26	8.06	34.32	54.00	-19.68	AVERAGE
9920.000	36.77	12.10	48.87	74.00	-25.13	PEAK
9920.000	22.58	12.10	34.68	54.00	-19.32	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector Type
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	
	(dBuV)	(dB)	(dBuV/m)			
4960.000	50.10	5.22	55.32	74.00	-18.68	PEAK
4960.000	37.42	5.22	42.64	54.00	-11.36	AVERAGE
7440.000	39.87	8.06	47.93	74.00	-26.07	PEAK
7440.000	26.13	8.06	34.19	54.00	-19.81	AVERAGE
9920.000	33.50	12.10	45.60	74.00	-28.40	PEAK
9920.000	21.26	12.10	33.36	54.00	-20.64	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Factor=Ant Factor + Cable Loss- Pre-amplifier.

High Channel: 2480 MHz

7.2.4 Band Edge Measurement:

Ant Dol	Apt Dol From		Reading		А	ct	Limit	
Ant.Pol. H/V	Freq. (MHz)	Peak	AV	Ant/CF CF(dB)	Peak	AV	Peak	AV
11/ V	(1011 12)	(dBuv)	(dBuv)		(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/m)
Lowest 2402 MHz								
V	2400.00	44.27	33.24	-5.72	38.55	27.52	74.00	54.00
н	2400.00	43.65	32.89	-5.72	37.93	27.17	74.00	54.00
Highest 2480 MHz								
V	2483.50	43.50	32.92	-4.98	38.52	27.94	74.00	54.00
н	2483.50	44.15	31.27	-4.98	39.17	26.29	74.00	54.00

Remark:

1). The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Loss –Preamplifier Factor.

Test result: The unit does meet the FCC requirements.

7.2.5 Restricted Bands Measurement:

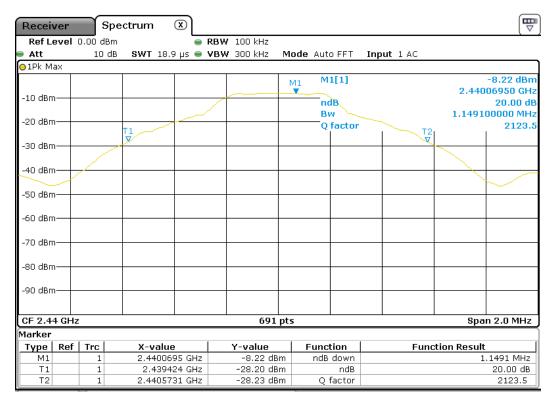
EUT:	wireless keyboard	Model Name :	KM-224W				
Temperature:	25 ℃	Test Data	2015-08-25				
Pressure:	1010 hPa	Relative Humidity:	60%				
Test Mode :	TX mode	Test Voltage :	DC 1.5V from battery				
Note:	 The transmitter was setup to transmit at the lowest channel. Then the field strength was measured at 2310-2390 MHz. The transmitter was setup to transmit at the highest channel. Then the field strength was measured at 2483.5-2500 MHz. The data of 2390MHz and 2483.5MHz was the worst. 						

Ant.Pol.	Ant.Pol. Freq.		Reading		А	ct	Limit		
H/V	(MHz)	Peak	AV	Ant/CF CF(dB)	Peak	AV	Peak	AV	
11/V	(101112)	(dBuv)	(dBuv)		(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/m)	
V	2390.00	45.28	34.76	-5.79	39.49	28.97	74.00	54.00	
Н	2390.00	44.25	32.74	-5.79	38.46	26.95	74.00	54.00	
V	2483.50	43.17	30.58	-4.98	38.19	25.60	74.00	54.00	
Н	2483.50	42.60	31.45	-4.98	37.62	26.47	74.00	54.00	

Remark:

- (1) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode.
- (2) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (3) Corr.Factor = Antenna Factor + Cable Loss Pre-amplifier.

7.3 Occupied Bandwidth


Test Requirement:	FCC Part 15 C section 15.215							
	(c)Intentional radiators operating under the alternative provisions to the							
	general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.							
Test Method:	ANSI C63.10: Clause 6.9.1							
rest method.	Operation within the band 2402 MHz to 2480 MHz							
Method of measurement:	A small sample of the transmitter output was fed into the Spectrum Analyzer and the attached plot was taken.							

Test in the frequency 2402 MHz (20 dB bandwidth)

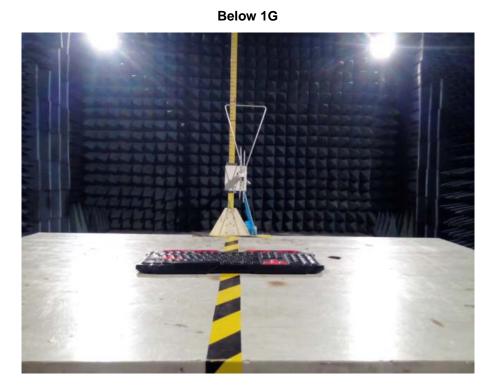
Receive	r Sp	ectrum (x							
Ref Lev	el 0.00 dBr	n	🔵 RB	W 100 kHz						
🖷 Att	10 di	B SWT 18.9	µs 👄 VB	W 300 kHz	Мо	de Aut	o FFT	Input 1 AC		
⊖1Pk Max										
						м ^М	1[1]			-8.96 dBm
-10 dBm—					<u> </u>				2.402	15340 GHz
-10 0011			/	1		n				20.00 dB
-20 dBm-						B	_		1.1404	00000 MHz
20 00111		T1				Q	factor	T2	21	2106.5
-30 dBm—		T1 又						V	7	
00 abiii										
-40 dBm-										
-50 dBm-	-									\sim
00 40										
-60 dBm—	_								_	
-70 dBm—	_									
-80 dBm-	_	_								
-90 dBm—					 					
05.0.400										
CF 2.402	GHZ			691	pts				spa	n 2.0 MHz
Marker	- 1 1									
	tef Trc	X-value		Y-value		Func		Function Result		
M1	1	2.402153		-8.96 dB		ndB	down		1	1404 MHz
T1 T2	1	2.401426		-29.00 dB -28.92 dB		0	ndB factor			20.00 dB 2106.5
	1	2,402507	o u⊓z	-20.92 Ut	5111 -	<u>ر</u>	actor			2100.5

Test in the frequency 2440 MHz (20 dB bandwidth)

Test in the frequency 2480 MHz (20 dB bandwidth)

Recei	ver	Spe	ectrum	×								
Ref L	evel (0.00 dBm		- F	RBW 100 kHz							
🕨 Att		10 dB	SWT 18.9	Ə µs 👄 🎙	/BW 300 kHz	Мос	ie Auto	D FFT	Input	1 AC		
⊖1Pk M	ах											
					M1		M:	1[1]				-8.16 dBm
-10 dBr					, The second sec						2.479	984080 GHz
-10 ubi							nc	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				20.00 dE
-20 dBn							By				1.1548	800000 MHz
-20 001	"		T1 V				Q	factor		T2	1	2147.3
-30 dBn	n		V							V		
00 001	"											
-40 dBn	n											
-50 dBr	n											
-60 dBn	n											
-70 dBn	n——											
-80 dBn	n———											
-90 dBn	n											
CF 2.4	8 GHz		1		691	nts					l Sna	n 2.0 MHz
Marker					0,1	P.5						
Туре	Ref	Trc	X-value	, 1	Y-value	1	Funct	tion		Fue	tion Resul	ŀ
M1	Ker	1	2.4798408 GHz		-8.16 dB	Sm		down				L.1548 MHz
T1		1	2.47942		-28.18 dE			ndB				20.00 dB
T2		1	2.4805		-28.21 dE							

7.4 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz


Test Requirement:	FCC Part 15 C section 15.207
Test Method:	ANSI C63.10: Clause 6.2
Frequency Range:	150 kHz to 30 MHz
Detector:	Peak for pre-scan (9 kHz Resolution Bandwidth)
Test Result	N/A (Please see the remark as below)

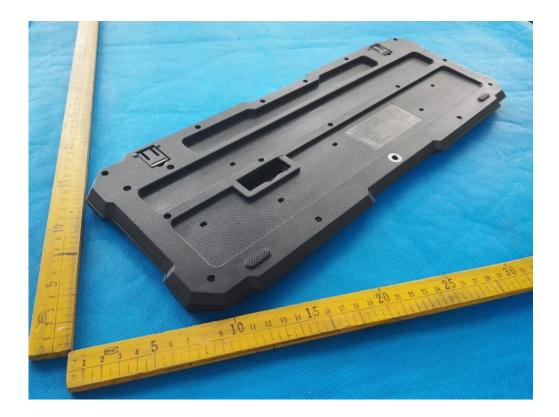
Remark: Because the EUT employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Measurements to demonstrate compliance with the conducted limits are not required for devices.

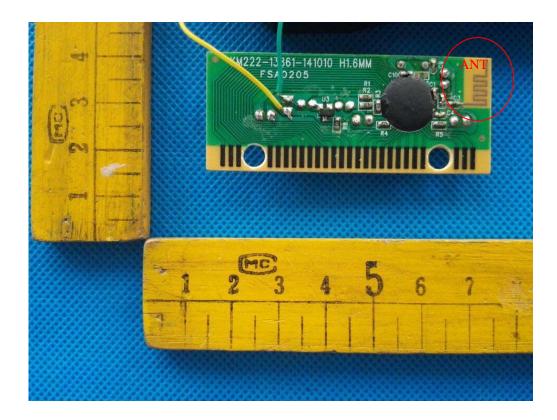
8 Photographs

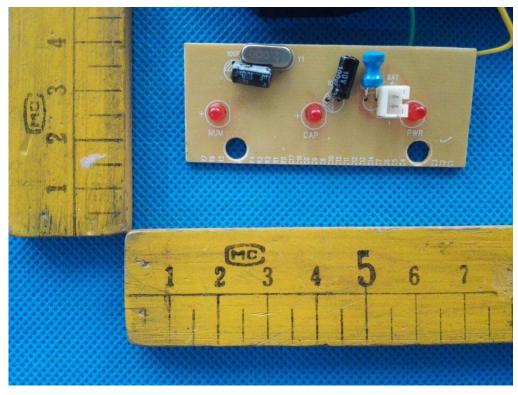
8.1 Radiated Emission Test Setup

Above 1G

Report No.: E-1508009 Page 28 of 31 Rev: 00


9 EUT Constructional Details





End of report