

FCC Report (Bluetooth)

Product Name : Bluetooth Headset

Trade mark : SOUNDPEATS

Model No. : T2/T1/T3/T1+/T2+/T3+/T1 Pro/T2 Pro/T3 Pro

FCC ID : 2AFTU-DD016

Report Number : BLA-EMC-202012-A78-01

Date of sample receipt : 2020/12/18

Date of Test : 2020/12/18 - 2021/1/15

Date of Issue : 2021/1/25

Test standard : FCC CFR Title 47 Part 15 Subpart C Section

15.247

Test result : PASS

Prepared for:

Shenzhen Soundsoul Information Technology Co.,Ltd Room 1308-1309, Building B,Huihai Square,Chuangye Road, Longhua District,Shenzhen,Guangdong,China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compile by: Zason	Review by: Brand-weir
Approved by: Emen_li	Date:2021/1/25 8thices (Shenzhen)

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,

Shenzhen, Guangdong Province, China

Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Report No. : BLA-EMC-202012-A78-01 Page 2 of 84

Version

Version No.	Date	Description
00	2021/1/25	Original

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	5
5 GENERAL INFORMATION	6
5.1 GENERAL DESCRIPTION OF EUT	6
5.2 TEST MODE	_
5.3 TEST FACILITY	
5.4 TEST LOCATION	
5.5 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
5.6 DESCRIPTION OF SUPPORT UNITS	
6 TEST INSTRUMENTS LIST	
7 TEST RESULTS AND MEASUREMENT DATA	
7.1 ANTENNA REQUIREMENT	
7.2 CONDUCTED EMISSIONS	
7.3 CONDUCTED PEAK OUTPUT POWER	
7.4 20DB EMISSION BANDWIDTH	
7.5 CARRIER FREQUENCIES SEPARATION	
7.6 HOPPING CHANNEL NUMBER	
7.7 DWELL TIME	
7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
7.9 BAND EDGE	
7.9.1 Conducted Emission Method	
7.9.2 Radiated Emission Method	
7.10 SPURIOUS EMISSION	
7.10.1 Conducted Emission Method	
7.10.2 Radiated Emission Method	
8 TEST SETUP PHOTO	
9 EUT CONSTRUCTIONAL DETAILS	
10 APPENDIX	54
10.1 APPENDIX A: 20DB EMISSION BANDWIDTH	
10.1.1 Test Result	
10.1.2 Test Graphs	
10.2 APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
10.2.1 Test Result.	
10.2.2 Test Graphs	
10.3 APPENDIX D: CARRIER FREQUENCY SEPARATION	
10.3.1 Test Result	
10.3.2 Test Graphs	
10.4 APPENDIX E: TIME OF OCCUPANCY	
10.4.1 Test Result	
10.4.2 Test Graphs.	
10.5 APPENDIX F: NUMBER OF HOPPING CHANNELS	
10.5.1 Test Result	
10.6 APPENDIX G: BAND EDGE MEASUREMENTS	
10.6.1 Test Result.	
10.6.2 Test Graphs	
10.7 APPENDIX H: CONDUCTED SPURIOUS EMISSION	

蓝亚BLUE ASIA	Report No. : BLA-EMC-202012-A78-01
min bloc Noin	Page 4 of 84
10.7.1 Test Result	75
10.7.2 Test Graphs	

Page 5 of 84

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according ANSI C63.10:2013

Measurement Uncertainty

Test Item	Test Item Frequency Range		Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Report No. : BLA-EMC-202012-A78-01 Page 6 of 84

General Information

5.1 General Description of EUT

Product Name:	Bluetooth Headset
Model No.:	T2/T1/T3/T1+/T2+/T3+/T1 Pro/T2 Pro/T3 Pro
Test Model No.:	T2
Serial No.:	T1/T3/T1+/T2+/T3+/T1 Pro/T2 Pro/T3 Pro
Sample(s) Status	Engineer sample
Hardware:	NA
Software:	NA
Operation Frequency:	2402MHz-2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Internal Antenna
Antenna gain:	-1.2dBi
Power supply:	DC 3.7V
Remark:The Antenna Gain is sup	oplied by the customer.BlueAsia is not responsible for this data

Page 7 of 84

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Page 8 of 84

5.2 Test mode

Transmitting mode

Keep the EUT in continuously transmitting mode with modulation. (hopping or non hopping mode,non hopping mode is worse case for RE.)

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Full battery is used during all test except ac conducted emission, DT1, DH3, DH5 all have been tested, during the test, GFSK, Pi/4QPSK, 8-DPSK modulation were all pre-scanned only worse case is reported.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering Bureau of ISED for radio equipment testing with CAB identifier CN0028

5.4 Test Location

All tests were performed at:

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen,

Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Manufacturer Description		Serial Number
UGREEN Adapter		CD112	20358
Lenovo	Notebook computer	E470C	PF-10FB5C

Page 9 of 84

6 Test Instruments list

U	rest mstrumer	ito iiot				
Radi	ated Emission:		I			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m SAC	SKET	9m*6 m*6m	966	06-10-2018	06-09-2023
2	Broadband Antenna	COLIMADZDECK	VIII D0460	00836	07-13-2020	07-12-2021
_	Broadband Antenna	SCHWARZBECK	VULB9168	P:00227	07-13-2020	07-12-2021
3	Home Antonio	COLIMADADECK	04205	01892	07-13-2020	07-12-2021
	Horn Antenna	SCHWARZBECK	9120D	P:00331	07-13-2020	07-12-2021
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A
5	_				07-13-2020	07-12-2021
5	Pre-amplifier	SKET	N/A	N/A	07-13-2020	07-12-2021
6					07-13-2020	07-12-2021
0	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	07-13-2020	07-12-2021
7	5141 T . (D .)		5007	404400	07-13-2020	07-12-2021
'	EMI Test Receiver	Rohde & Schwarz	ESR7	101199	07-13-2020	07-12-2021
8	Controller	SKET	N/A	N/A	N/A	N/A
9	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2020	05-23-2021
10	Signal Generator	Agilent	E8257D	MY44320250	05-24-2020	05-23-2021
11	Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
12	Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
13	Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Report No. : BLA-EMC-202012-A78-01 Page 10 of 84

Conduc	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	EMI Test Receiver	Rohde & Schwarz	ESPI3	101082	06-10-2020	06-09-2021	
2	LISN	CHASE	MN2050D	1447	06-10-2020	06-09-2021	
3	LISN	Rohde & Schwarz	ENV216	3560.6550.15	06-10-2020	06-09-2021	
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A	
5	Temperature Humidity Chamber	Mingle	TT201B	N/A	07-19-2020	07-18-2021	
6	Coaxial Cable	BlueAsia	BLA-XC-05	N/A	N/A	N/A	

RF Con	ducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Spectrum Analyzer	Agilent	N9030A	MY50510123	05-24-2020	05-23-2021
2	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2020	05-23-2021
3	MXA Signal Analyzer	Agilent	N9020A	MY49100060	12-18-2019	12-17-2020
4	Vector Signal Generator	Agilent	N5182A	MY49060650	12-18-2019	12-17-2020
5	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2020	05-23-2021
6	Signal Generator	Agilent	E8257D	MY44320250	05-24-2020	05-23-2021
7	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO27	05-24-2020	05-23-2021
8	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO28	05-24-2020	05-23-2021
9	DC Power Supply	LODESTAR	LP305DE	N/A	07-19-2020	07-18-2021
10	Temperature Humidity Chamber	Mingle	TT201B	N/A	07-19-2020	07-18-2021

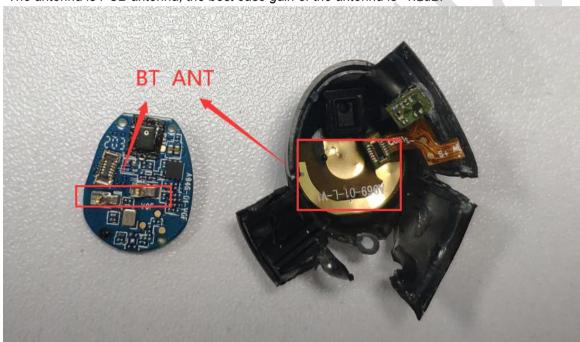
Page 11 of 84

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is -1.2dBi

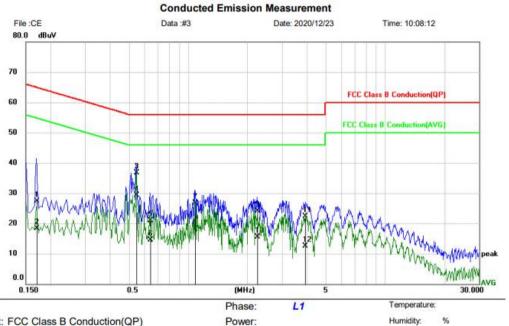
Report No. : BLA-EMC-202012-A78-01 Page 12 of 84

7.2 Conducted Emissions

 Conducted Emissions			
Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto	
Limit:	Fragueray range (MIII-)	Limit (d	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithn		
Test setup:	Reference Plane		->
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: 	n network (L.I.S.N.). The edance for the measuring also connected to the m/50uH coupling imped to the block diagram of checked for maximum to the maximum emissionall of the interface cab	nis provides a ng equipment. main power through a dance with 50ohm the test setup and conducted on, the relative bles must be changed
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement data:

Page 13 of 84


Line:

EUT: Probe: L1 **Bluetooth Headset**

Model: **Power Source:** AC120V/60Hz T2

Mode: BT mode Test by: Eason

23°C/49%RH Temp./Hum.(%H):

Limit: FCC Class B Conduction(QP)

EUT: bluetooth headset

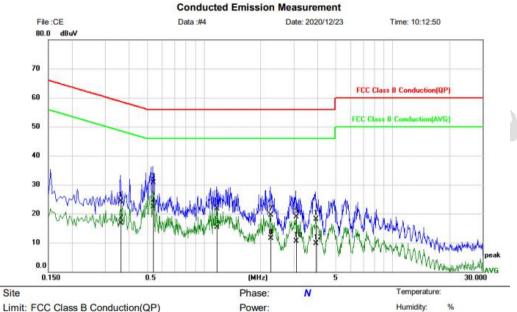
M/N: T2

Mode: working mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1700	27.20	0.07	27.27	64.96	-37.69	QP	
2		0.1700	18.21	0.07	18.28	54.96	-36.68	AVG	
3		0.5460	36.71	0.08	36.79	56.00	-19.21	QP	
4	*	0.5460	29.23	0.08	29.31	46.00	-16.69	AVG	
5		0.6419	20.89	0.08	20.97	56.00	-35.03	QP	
6		0.6419	14.40	0.08	14.48	46.00	-31.52	AVG	
7		1.0859	26.67	0.11	26.78	56.00	-29.22	QP	
8		1.0859	18.00	0.11	18.11	46.00	-27.89	AVG	
9		2.2420	24.00	0.11	24.11	56.00	-31.89	QP	
10	1	2.2420	15.43	0.11	15.54	46.00	-30.46	AVG	
11		3.9300	22.12	0.10	22.22	56.00	-33.78	QP	
12		3.9300	12.45	0.10	12.55	46.00	-33.45	AVG	

Page 14 of 84


Neutral:

EUT: Probe: Ν **Bluetooth Headset**

Model: **Power Source:** AC120V/60Hz T2

Mode: BT mode Test by: Eason

23°C/49%RH Temp./Hum.(%H):

Limit: FCC Class B Conduction(QP)

EUT: bluetooth headset

M/N: T2

Mode: working mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3620	24.27	0.07	24.34	58.68	-34.34	QP	
2		0.3620	16.64	0.07	16.71	48.68	-31.97	AVG	
3		0.5380	30.70	0.08	30.78	56.00	-25.22	QP	
4	*	0.5380	22.18	0.08	22.26	46.00	-23.74	AVG	
5		1.1660	21.60	0.11	21.71	56.00	-34.29	QP	
6		1.1660	15.10	0.11	15.21	46.00	-30.79	AVG	
7		2.2580	19.43	0.11	19.54	56.00	-36.46	QP	
8		2.2580	11.46	0.11	11.57	46.00	-34.43	AVG	
9		3.0780	18.77	0.12	18.89	56.00	-37.11	QP	
10		3.0780	10.34	0.12	10.46	46.00	-35.54	AVG	
11		3.9220	18.08	0.10	18.18	56.00	-37.82	QP	
12		3.9220	9.57	0.10	9.67	46.00	-36.33	AVG	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level +Correct Factor
- 4. Correct Factor = LISN Factor + Cable Loss

Page 15 of 84

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	21dBm(for GFSK),21dBm(for EDR)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixC: Maximum conducted output power

Report No. : BLA-EMC-202012-A78-01 Page 16 of 84

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixA: 20dBEmission Bandwidth

Page 17 of 84

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak
Limit:	GFSK & Pi/4QPSK & 8-DPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixD: Carrier frequency separation

Page 18 of 84

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data:

Reference to the AppendixF: Number of hopping channels

Report No. : BLA-EMC-202012-A78-01 Page 19 of 84

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

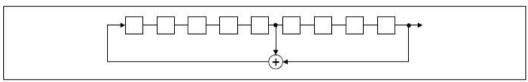
Measurement Data

Reference to the AppendixE: Time of occupancy

Page 20 of 84

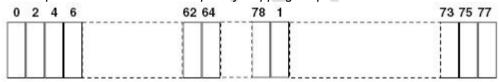
7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Page 21 of 84

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

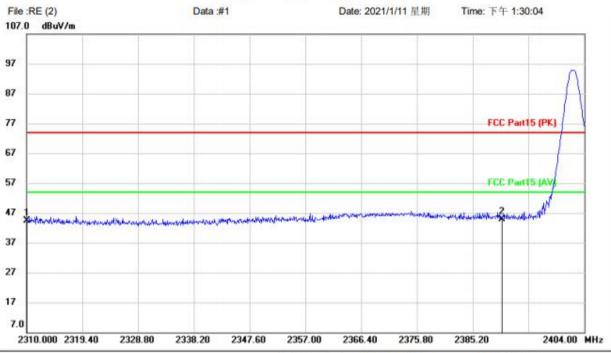
Reference to the AppendixG:Band edge measurements

Report No. : BLA-EMC-202012-A78-01 Page 22 of 84

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.10:20)13			
Test Frequency Range:	All restriction ba 2483.5MHz to 2				2390MHz,
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		Peak	1MHz	10Hz	Average Value
Limit:	Freque	ency	Limit (dBuV/ 54.0		Remark Average Value
	Above 1	GHz	74.0		Peak Value
Test setup:	Tum Table < 150cm >	EUT-	Test Antenna	?	
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to detended horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable 5. The test-receson Specified Bare 6. If the emission limit specified EUT would be 10dB margin.	s meter camber position of the set 3 meters che was mount height is varied termine the made vertical polant. pected emission antenna was table was turneding. Server system was diver system was the made of the diversity of the difference of the	er. The table was he highest race away from the ed on the toped from one maximum value rizations of the tuned to height ed from 0 degras set to Pearlaximum Hole EUT in peak could be stoped therwise the elected one by	was rotated diation. The interference of a variable of the field one antennatives arrange of the form of the field of the	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and 10dB lower than the ne peak values of the nat did not have peak, quasi-peak or
Test Instruments:	Refer to section			-	
Test mode:	Refer to section	5.2 for details	 S		
Test results:	Pass				

Page 23 of 84


Remark

1. During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case.

Test channel: Lowest

Peak value:

Radiated Emission Measurement

Site

Polarization: Horizontal

Temperature:

Limit: FCC Part15 (PK)

Power:

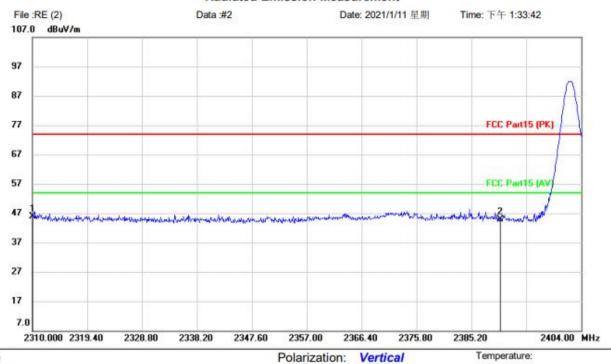
Humidity: %

EUT: Bluetooth Headset

Distance: 3m

M/N: T2 Mode: TX-L

Note:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2310.000	58.51	-14.01	44.50	74.00	-29.50	peak			
2 *	2390.000	58.51	-13.62	44.89	74.00	-29.11	peak			

Humidity:

Page 24 of 84

Radiated Emission Measurement

Vertical

Site

Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

M/N: T2 Mode: TX-L

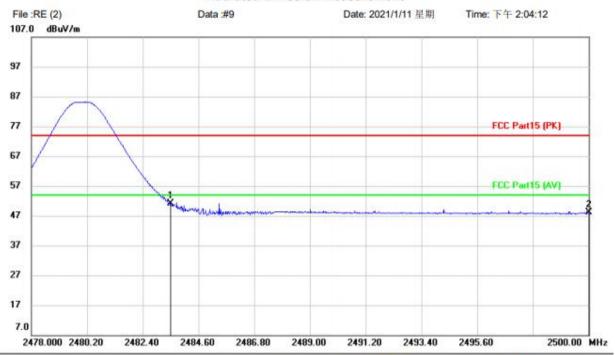
Note:

lo. N	Νk.	Freq.		Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 *		2310.000	60.07	-14.30	45.77	74.00	-28.23	peak			
2		2390.000	58.77	-13.95	44.82	74.00	-29.18	peak			

Power:

Distance: 3m

Page 25 of 84


%

Test channel:

Highest

Peak value:

Radiated Emission Measurement

Site

Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

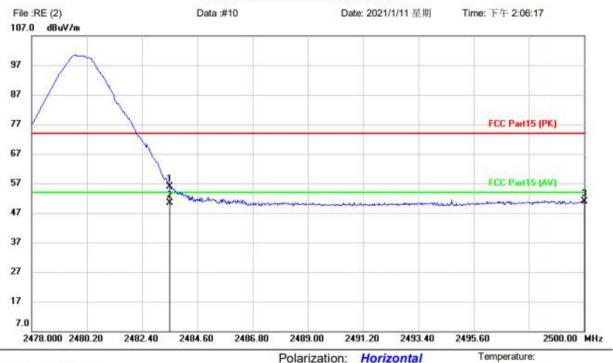
M/N: T2 Mode: TX-H

Note:

Polarization:	Vertical	Temperature:
Power:		Humidity:

Distance: 3m

No.	Mk.	Freq.		Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	Over		Antenna Height		
		MHz	dBuV	dB				Detector	cm	degree	Comment
1	*	2483.500	64.73	-13.50	51.23	74.00	-22.77	peak			
2		2500.000	61.51	-13.42	48.09	74.00	-25.91	peak			



Humidity:

Page 26 of 84

Radiated Emission Measurement

Polarization: Horizontal

Site

Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

M/N: T2 Mode: TX-H

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	ĺ.
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	-	2483.500	68.89	-13.11	55.78	74.00	-18.22	peak			
2	*	2483.500	63.44	-13.11	50.33	54.00	-3.67	AVG			
3		2500.000	63.84	-13.02	50.82	74.00	-23.18	peak			

Power:

Distance: 3m

Remark:

- Final Level =Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Correct factor= Antenna Factor + Cable Loss Preamplifier Factor 3.

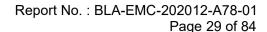
Page 27 of 84

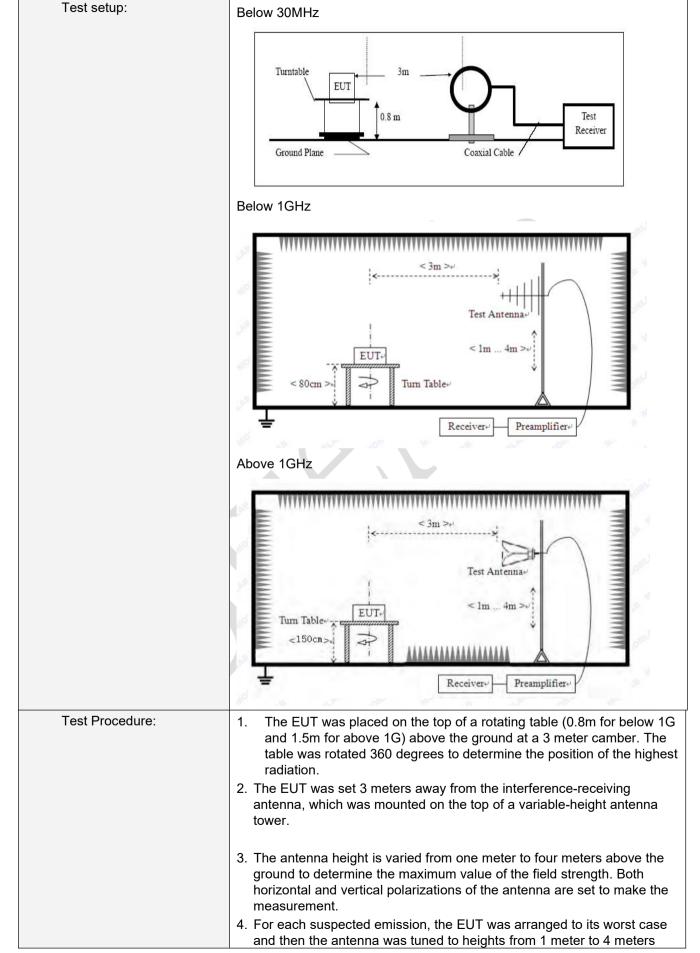
7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Measurement Data


Reference to the AppendixH:Conducted SpuriousEmission


Report No. : BLA-EMC-202012-A78-01 Page 28 of 84

7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Secti	on 15	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: (3m						
Receiver setup:	Frequency		Detector		W	VBW	Value		
	9KHz-150KHz	Qι	uasi-peak	200	Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Qι	uasi-peak	9KI	Ηz	30KHz	Quasi-peak		
	30MHz-1GHz	Qι	uasi-peak	120k	Ήz	300KH	z Quasi-peak		
	Above 1GHz		Peak	1MI	Ηz	3MHz	Peak		
	Above IGHZ		Peak	1MHz		10Hz	Average		
Limit: (Spurious Emissions)	Frequency	Frequency		//m)	V	/alue	Measurement Distance		
	0.009MHz-0.490M	1Hz	2400/F(k	(Hz)		QP	300m		
	0.490MHz-1.705M	1Hz 24000/F(k		KHz)		QP	30m		
	1.705MHz-30MH	lz	30			QP	30m		
	30MHz-88MHz		100			QP			
	88MHz-216MHz	Z	150			QP			
	216MHz-960MH	z	200			QP	3m		
	960MHz-1GHz		500			QP	3111		
	Above 1GHz		500		Average				
	Above Toriz		5000		Peak				
Limit: (band edge)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.								

Report No.: BLA-EMC-202012-A78-01	1
Page 30 of 84	1

	and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark:

- 1. During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. no emission found above 13G,so only show plots below13G
- 4. fundamental frequency is blocked by filter, and only spurious emission is shown.

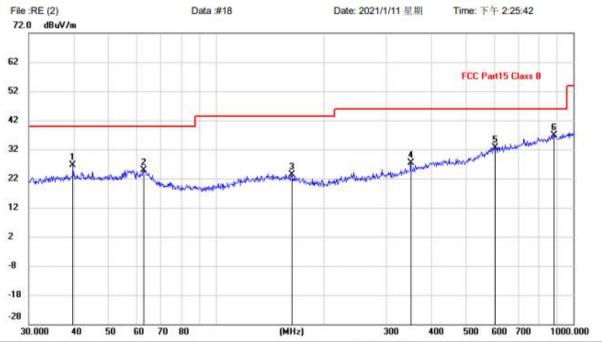
■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Page 31 of 84

■ Below 1GHz

EUT: Bluetooth Headset Polarziation: Horizontal


Model: T2 Power Source: AC120V/60Hz

Mode: BT mode Test by: Eason

Temp./Hum.(%H): 23°C/49%RH

Note:

Radiated Emission Measurement

Site

Limit: FCC Part15 Class B

EUT: Bluetooth Headset

M/N: T2

Mode: BT mode

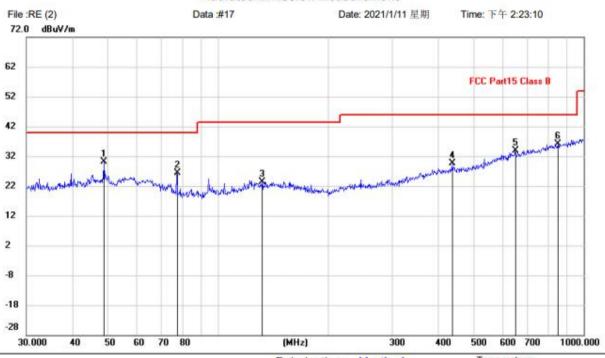
Note:

(miss)	300	700	200	000		
Polarization:	Horizontal		Ten	nperati	ure:	
Power:			Hur	nidity:	%	
Distance: 3m	i.					

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	39.8541	2.67	24.02	26.69	40.00	-13.31	QP	33,50		
2	62.6507	2.07	22.88	24.95	40.00	-15.05	QP			
3	162.6106	0.39	22.95	23.34	43.50	-20.16	QP			
4	350.4768	1.36	25.93	27.29	46.00	-18.71	QP			
5	603.5392	1.07	31.68	32.75	46.00	-13.25	QP			
6 *	881.4067	1.40	35.47	36.87	46.00	-9.13	QP			

Page 32 of 84

EUT: Bluetooth Headset Polarziation: Vertical


Model: T2 Power Source: AC120V/60Hz

Mode: BT mode Test by: Eason

Temp./Hum.(%H): 23°C/49%RH

Note:

Radiated Emission Measurement

Site Polarization: Vertical Temperature:

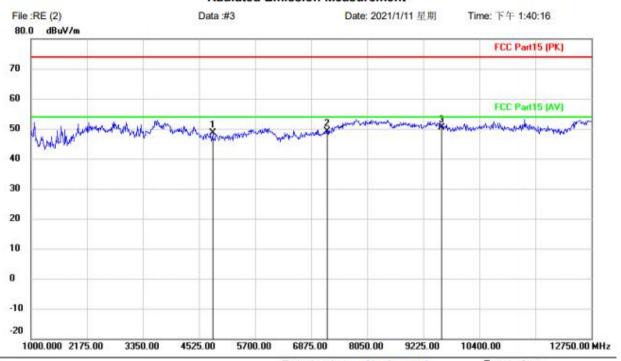
Limit: FCC Part15 Class B Power: Humidity:

EUT: Bluetooth Headset Distance: 3m

M/N: T2 Mode: BT mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	48.8429	6.44	23.81	30.25	40.00	-9.75	QP			
2		77.3212	6.30	20.13	26.43	40.00	-13.57	QP			
3		132.2204	0.35	23.06	23.41	43.50	-20.09	QP			
4		437.1197	1.65	27.95	29.60	46.00	-16.40	QP			
5		649.6597	1.82	32.11	33.93	46.00	-12.07	QP			
6		851.0353	1.12	34.97	36.09	46.00	-9.91	QP			


Page 33 of 84

■ Above 1GHz

Test channel: Lowest

Peak value:

Radiated Emission Measurement

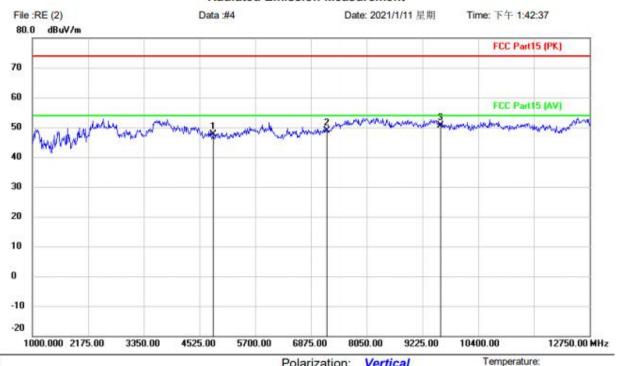
Site

Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

M/N: T2 Mode: TX-L Note: Polarization: Horizontal Temperature:
Power: Humidity: %

Distance: 3m


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	53.07	-4.52	48.55	74.00	-25.45	peak			
2		7206.000	51.42	-2.27	49.15	74.00	-24.85	peak			
3	*	9608.000	49.56	0.81	50.37	74.00	-23.63	peak			

Humidity:

Page 34 of 84

Radiated Emission Measurement

Polarization:

Distance: 3m

Power:

Vertical

Site Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

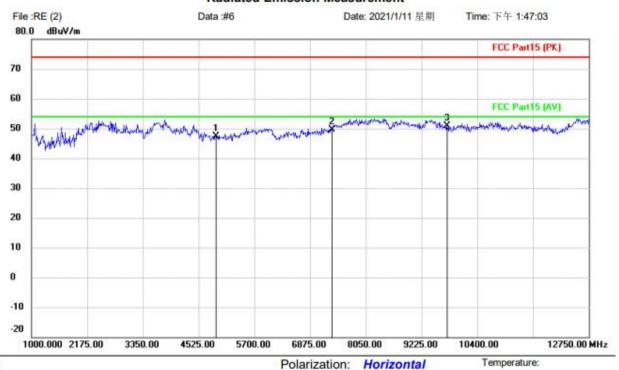
M/N: T2 Mode: TX-L

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	52.25	-4.52	47.73	74.00	-26.27	peak			
2		7206.000	50.96	-2.02	48.94	74.00	-25.06	peak			
3	*	9608.000	50.06	0.62	50.68	74.00	-23.32	peak			

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.


Humidity:

Page 35 of 84

Test channel: Middle

Peak value:

Radiated Emission Measurement

Site

Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

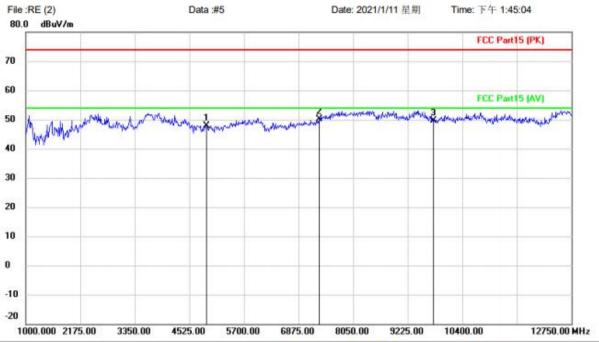
M/N: T2 Mode: TX-M

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4882.000	52.57	-5.07	47.50	74.00	-26.50	peak		400	
2		7323.000	50.92	-1.34	49.58	74.00	-24.42	peak			
3	*	9764.000	49.89	0.94	50.83	74.00	-23.17	peak			

Power:

Distance: 3m



Temperature:

Humidity:

Page 36 of 84

Radiated Emission Measurement

Polarization:

Distance: 3m

Power:

Vertical

Site

Limit: FCC Part15 (PK)

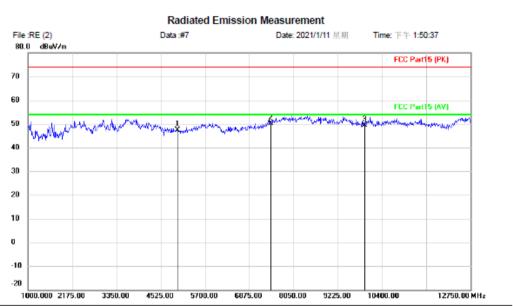
EUT: Bluetooth Headset

M/N: T2 Mode: TX-M

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0	4882.000	52.89	-5.07	47.82	74.00	-26.18	peak			
2	*	7323.000	51.64	-1.48	50.16	74.00	-23.84	peak			
3		9764.000	48.69	0.91	49.60	74.00	-24.40	peak			

Remark:


- 1. Final Level =Receiver Read level + Correct facto
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 37 of 84

Test channel: Highest

Peak value:

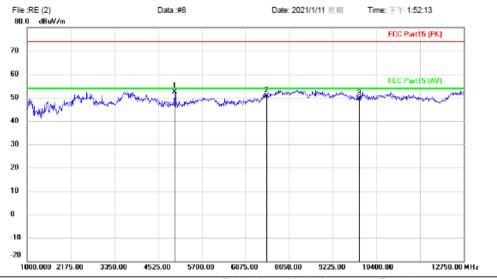
Site

Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

M/N: T2 Mode: TX-H Note: Polarization: Horizontal Temperature:

Power: Humidity:


Distance: 3m

No.	Mk.	Freq.			Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4960.000	52.22	-4.84	47.38	74.00	-26.62	peak			
2	*	7440.000	50.71	-0.56	50.15	74.00	-23.85	peak			
3		9920.000	48.20	1.30	49.50	74.00	-24.50	peak			

Page 38 of 84

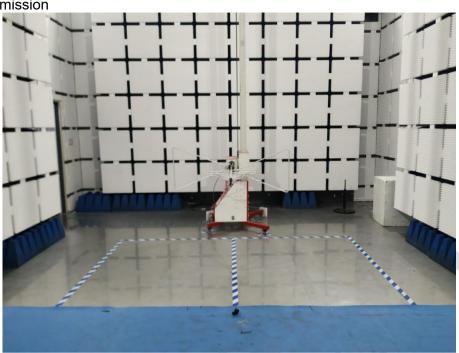
Site Limit: FCC Part15 (PK)

EUT: Bluetooth Headset

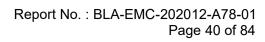
M/N: T2 Mode: TX-H Note: Polarization: Vertical Temperature
Power: Humidity:

Distance: 3m

No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	4960.000	57.31	-4.84	52.47	74.00	-21.53	peak			
2		7440.000	51.75	-1.07	50.68	74.00	-23.32	peak			
3		9920.000	48.05	1.42	49.47	74.00	-24.53	peak			


Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



8 Test Setup Photo

Radiated Emission

Conducted Emission

