1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 Standard Applicable

According to $\S 1.1307(\mathrm{~b})(1)$, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.
(a) Limits for Occupational / Controlled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	$/$	$/$	$\mathrm{F} / 300$	6
$1500-100000$	$/$	$/$	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	$/$	$/$	$\mathrm{F} / 1500$	30
$1500-100000$	$/$	$/$	1	30

Note: $\mathrm{f}=$ frequency in MHz: * = Plane-wave equivalents power density

1.2 MPE Calculation Method

$\mathrm{S}=(30 * \mathrm{P} * \mathrm{G}) /\left(377 * \mathrm{R}^{2}\right)$
$\mathrm{S}=$ power density (in appropriate units, e.g., $\mathrm{mw} / \mathrm{cm}^{2}$)
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mw)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator,
the power gain factor is normally numeric gain.
$\mathrm{R}=$ distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.3 MPE Calculation Result

Wifi:

Maximum peak output power: $17.98(\mathrm{dBm})$
Maximum peak output power at antenna input terminal: $\underline{62.81(\mathrm{~mW})}$
Prediction distance: >20 (cm)
Prediction frequency: 2412 (MHz)
Antenna gain (typical): 4 (dBi)
Antenna gain (typical): 2.51(numeric)
The worst case is power density at prediction frequency at $5 \mathrm{~cm}: \underline{0.031\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$
$0.031\left(\mathrm{mw} / \mathrm{cm}^{2}\right)<1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Result: Pass

