Report on the Testing of the

InVue Security Products Inc. InVue LIVE One POD Sensor with integrated InVue module LBAA0QB1SJ

In accordance with: FCC 47 CFR part 15.247 ISED RSS-247 Issue 2, February 2017

Prepared for: InVue Security Products Inc. 9201 Baybrook Lane Charlotte, North Carolina 28277

COMMERCIAL-IN-CONFIDENCE

Document Number: AT72168019.1P0

SIGNATURE			
9			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Kirby Munroe	Wireless / EMC Technical and Certification Manager, NA TUV SUD America Inc.	Authorized Signatory	2/21/2022

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD America, Inc. document control rules.

FCC Accreditation Designation Number US1233 FCC Test Site Registration Number 967699 Innovation, Science, and Economic Development Canada Lab Code 23932		
EXECUTIVE SUMMARY		
A sample of this product was t	ested and found to be compliant with the standards listed above.	
	DISCLAIMER AND COPYRIGHT This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America. © TÜV SÜD.	
A2LA Cert. No. 2955.09	ACCREDITATION Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.	

TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 3005 Phone: 678-341-5900 www.tuv-sud-america.com

Contents

1	Report Summary	3
1.1	Report Modification Record	3
1.2	Introduction	3
1.3	Brief Summary of Results	5
1.4	Brief Summary of Results Product Information	6
1.5	Deviations from the Standard	
1.6	EUT Modification Record	8
1.7	Test Location	9
2	Test Details	10
2.1	Antenna Requirement	
2.2	Radiated Spurious Emissions into Restricted Frequency Bands	
2.3	Test Equipment Used	15
3	Diagram of Test Set-ups	
4	Accreditation, Disclaimers and Copyright	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
0	First Issue	2/21/2022

Table 1.1	-1 – Modification	Record
-----------	-------------------	--------

1.2 Introduction

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.247 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-247 for the tests documented herein to support a Permissive Change for the combination InVue Live OnePOD Sensor and Murata module LBAA0QB1SJ-295 to account for a new SMT antenna (Molex, Ceramic, (PN:2081420001).

ManufacturerInvue Security Products IncApplicant's Email AddressEricBrutke@invue.comHost Model NameInVue Live OnePod SensorHost Model Number(s)OPSNSRModule Model Number(s)LBAA0QB1SJSerial Number(s)N/AHost FCC IDN/AHost ISED Certification NumberN/AHardware Version(s)OSoftware Version(s)N/ANumber of Samples Tested1
Host Model NameInVue Live OnePod SensorHost Model Number(s)OPSNSRModule Model NameInVueModule Model Number(s)LBAA0QB1SJSerial Number(s)N/AHost FCC IDN/AHost ISED Certification NumberN/AHardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Host Model Number(s)OPSNSRModule Model NameInVueModule Model Number(s)LBAA0QB1SJSerial Number(s)N/AHost FCC IDN/AHost ISED Certification NumberN/AHardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Module Model NameInVueModule Model Number(s)LBAA0QB1SJSerial Number(s)N/AHost FCC IDN/AHost ISED Certification NumberN/AHardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Module Model Number(s)LBAA0QB1SJSerial Number(s)N/AHost FCC IDN/AHost ISED Certification NumberN/AHardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Serial Number(s)N/AHost FCC IDN/AHost ISED Certification NumberN/AHardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Host FCC IDN/AHost ISED Certification NumberN/AHardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Host ISED Certification NumberN/AHardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Hardware Version(s)0Software Version(s)N/ANumber of Samples Tested1
Software Version(s)N/ANumber of Samples Tested1
Number of Samples Tested 1
Test Specification/Issue/Date US Code of Federal REgulation (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2021
ISED Canada Radio Standards Specification: RSS-247 – Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices, Issue 2, February 2017.
Order Number 72168019

Date of Receipt of EUT Start of Test Finish of Test Related Document(s)

2021-July-19 2021-August-18 2021-August-18 ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device.

(February 2021)

FCC OET KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, April 2, 2019 US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2021. ISED Canada Radio Standards Specification: RSS-GEN – General Requirements for Compliance of Radio Apparatus,

Issue 5, Amendment 1 (March 2019), Amendment 2

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC Part 15.247 and ISED Canada's RSS-247 is shown below.

Test Parameter	Test Plan (Yes/No)	Test Result	FCC 47 CFR Rule Part	ISED Canada's RSS	Test Report Page No
Antenna Requirement	Yes	Pass	15.203, 15.204		10
Carrier Frequency Separation	No	Not Tested	15.247(a)(1)	RSS-247 5.1(b)	
Number of Hopping Channels	No	Not Tested	15.247(a)(1)(i)	RSS-247 5.1(c)	
Channel Dwell Time	No	Not Tested	15.247(a)(1)(i)	RSS-247 5.1(c)	
20 dB Bandwidth	No	Not Tested	15.247(a)(1)(i)	RSS-247 5.1(c)	
99% Bandwidth	No	Not Tested		RSS-GEN 6.7	
Peak Output Power	No	Not Tested	15.247(b)(2)	RSS-247 5.4(a)	
Band-Edge Compliance of RF Conducted Emissions	No	Not Tested	15.247(d)	RSS-247 5.5	
RF Conducted Spurious Emissions	No	Not Tested	15.247(d)	RSS-247 5.5	
Radiated Spurious Emissions into Restricted Frequency Bands	Yes	Pass	15.205, 15.209	RSS-GEN 8.9, 8.10	11
Power Spectral Density	No	Not Tested	15.247(e)	RSS-247 5.2(b)	
Power Line Conducted Emissions	No	Not Tested	15.207	RSS-GEN 8.8	
Duty Cycle	No				

Table 1.3-1: Test Result Summary

1.4 Product Information

1.4.1 Technical Description

The LIVE ONEPOD host product provides a system for retailers to protect their electronic devices from theft while still enabling the customer a means to demo and handle the product. The system is comprised of two parts, a Stand and a Sensor. The Sensor is mounted to the top of the Stand and it communicates with the Stand with a customized 2-Wire Cable. The Sensor holds the displayed electronic device. The Stands mounts or bolts to the Table. The protected device, with the Sensor, is displayed on a Stand. This Stand provides power to the Sensor and charges the electronic device while the Sensor is docked. The integrated module details are provided in table 1.4-1. Below are images of the system and integrated module.

Detail	Description
Module FCC ID	2AFR8-LB1SJ
Module ISED ID	23313-LB1SJ
Host Transceiver Model #	InVue Live OnePOD Sensor
Modulation Format	LoRa (125kHz)
Frequency Range	902.3 MHz – 914.9 MHz
Antenna Type / Description:	PCB antenna / 1.8 dBi Gain

Table 1.4-1 – Wireless Module Technical Information

A full description and detailed product specification details are available from the manufacturer.

Figure 1.4.1-1 –Views of the Host

Figure 1.4.1-2 –Views of the Host with Dummy load

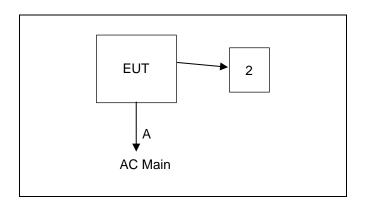


Figure 1.4.1-3: Test Setup Block Diagram

Table 1.4.	1-1 – Cable	Descriptions
------------	-------------	--------------

Item	Cable/Port	Description
А	USB	Power Cable

Item	Make/Model	Description
1	Lenovo	Laptop used for configuring wireless module
2	Simulated Load	EUT connected to load while performing testing.

1.4.2 Modes of Operation

The tested mode of operation was:

The EUT was placed in transmit mode using the radios applicable low, mid, and high channels.

Mode of Operation	Frequency Range (MHz)	Number of Channels	Channel Separation (kHz)	Mode	Data Rates Supported	Classification
1	902.3 – 914.9	64	200	LoRa	SF10	Hybrid

Transmit settings:

Power setting during test: 21 dBm

The module only operates in hybrid mode as identified below for the combination host / module for this application.

1.4.3 Monitoring of Performance

For radiated emissions, the EUT was evaluated in three orthogonal orientations. The worst-case orientation was Y-position. See test setup photos for more information. The EUT was programmed to generate a continuously modulated signal on each channel evaluated.

Worst case mode for all parameters measured listed below:

Test case	Modulation / Data rate	Tested Frequency (MHz)
Radiated spurious emissions	LoRa / SF10	902.3, 908.7, 914.9

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted	
0	Initial State			

The equipment was tested as provided without any modifications.

1.7 Test Location

TÜV SÜD conducted the following tests at our Alpharetta, GA test laboratory.

Test Name	Name of Engineer(s)	Accreditation
Radiated Spurious Emissions into Restricted Frequency Bands	Paul Villarreal	A2LA

Office address: TÜV SÜD America 5945 Cabot Parkway, Suite 100 Alpharetta, GA 30005, USA

2 Test Details

2.1 Antenna Requirement

2.1.1 Specification Reference

FCC Section: 15.203

2.1.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.1.3 Date of Test

8/18/2021

2.1.4 Test Method

N/A

2.1.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature	22.3 °C
Relative Humidity	53.8 %
Atmospheric Pressure	972.2 mbar

2.1.6 Test Results

The EUT utilizes PCB antenna with peak gain 1.8 dBi which is mounted on the bottom side of the printed circuit board, therefore satisfying the requirements of Section 15.203.

2.2 Radiated Spurious Emissions into Restricted Frequency Bands

2.2.1 Specification Reference

FCC Sections: 15.205, 15.209. ISED Canada: RSS-GEN 8.9, 8.10

2.2.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.2.3 Date of Test

8/18/2021

2.2.4 Test Method

Radiated emissions tests were made over the frequency range of 9 kHz to 10 GHz, 10 times the highest fundamental frequency of 900 MHz. Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in Section 15.209.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 150 kHz, quasi-peak measurements were made using a resolution bandwidth RBW of 300 Hz and a video bandwidth VBW of 1 kHz and frequencies between 150 kHz and 30MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 30 kHz. For frequencies between 30 MHz and 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 100 kHz and a video bandwidth VBW of 300 kHz. For frequencies between 30 MHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 100 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak and average measurements were made with RBW of 1 MHz and VBW of 3 MHz.

2.2.5 Environmental Conditions

The EUT was evaluated within the temperature, humidity and pressure range of the EUT as specified by the standard. The laboratory shall have an ambient temperature range of 15°C to 35°C, relative humidity range of 30% to 60% and atmospheric pressure range of 86 kPa to 106 kPa.

Ambient Temperature	22.3 °C
Relative Humidity	53.8 %
Atmospheric Pressure	972.2 mbar

2.2.6 Test Results

Test Summary: EUT was set to transmit mode.

Test Results: Pass

See data below for detailed results.

Frequency (MHz)		vel SuV)	Antenna Polarity	Correction Factors		ed Level ıV/m)		mit IV/m)		rgin IB)
	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
				LC	Ή					
2706.9	45.80	38.00	Н	5.82	51.62	43.82	74.0	54.0	22.4	10.2
2706.9	46.20	37.30	v	5.82	52.02	43.12	74.0	54.0	22.0	10.9
3609.2	48.00	42.40	н	7.43	55.43	49.83	74.0	54.0	18.6	4.2
3609.2	47.20	41.10	V	7.43	54.63	48.53	74.0	54.0	19.4	5.5
	МСН									
2726.1	46.10	38.30	Н	5.87	51.97	44.17	74.0	54.0	22.0	9.8
2726.1	45.90	37.80	V	5.87	51.77	43.67	74.0	54.0	22.2	10.3
3634.8	47.30	41.30	Н	7.48	54.78	48.78	74.0	54.0	19.2	5.2
3634.8	46.60	40.10	V	7.48	54.08	47.58	74.0	54.0	19.9	6.4
				HC	:H					
2744.7	45.20	37.10	Н	5.91	51.11	43.01	74.0	54.0	22.9	11.0
2744.7	46.50	39.20	V	5.91	52.41	45.11	74.0	54.0	21.6	8.9
3659.6	47.40	41.10	Н	7.53	54.93	48.63	74.0	54.0	19.1	5.4
3659.6	46.50	39.80	V	7.53	54.03	47.33	74.0	54.0	20.0	6.7

Table 2.2.6-1: Radiated Spurious Emissions Tabulated Data

Sample Calculations

 $R_c = R_U + CF_T$

Where:

- CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
- R_U = Uncorrected Reading
- Rc = Corrected Level
- AF = Antenna Factor
- CA = Cable Attenuation
- AG = Amplifier Gain
- DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: $48 + 7.43 = 55.43 \text{ dB}\mu\text{V/m}$ Margin: 74 dB $\mu\text{V/m} - 55.43 \text{dB}\mu\text{V/m} = 18.6 \text{ dB}$

Example Calculation: Average

Corrected Level: $42.40 + 7.43 + 0 = 49.83 \text{ dB}\mu\text{V/m}$ Margin: $54 \text{ dB}\mu\text{V/m} - 49.83 \text{dB}\mu\text{V/m} = 4.2 \text{ dB}$

1ultiView B	1	X LOV		IGH 🗶					~
Ref Level 107 Att Input	.00 dBµV 10 dB SW 1 1 DC PS	T 14 ms (~23 m	 RBW 300 s) = VBW 1 k On Notch 		FFT			Frequency 7	9.5000 kH
Frequency Sv							 1 Pk 	View • 2Pk Vie	
								M1	[3] 49.69 dBj
Ю dBµV									17.950 kl
dвµV									
									Í
dBµV									ĺ
dBµV									
dBuV-									
oop.									
M1									Í
dBµV	nA.		www.auchow.ov						ĺ
Contraction of the second s	An Washerman window	markan and							
dBµV		- nontra	- Alandara Ar	A Road And Andrew Courses	Minter Vand a				
						anaque and abare and	to have been and the second	and marked	hadar
dBµV									
oop.									Í
									ĺ
dBµV									
									ĺ
dBµV									
0 kHz		1	1000 pt	s	1.	4.1 kHz/			150.0 kł

Figure 1: Reference plot for Radiated Spurious Emissions – 9 kHz – 150 kHz

RefLevel 107.00 Att 1 Input	.0 dB SWT 837 1 DC PS	7 μs (~24 ms Οι	■ RBW 101) ■ VBW 301 Notch	<hz aut<br="" mode="">Off</hz>	> FFT		Freq	uency 15.0	750000 MH
requency Swee			Hotan	011			● 1 Pk	View 🍳 2Pk Vie	
								М1	[1] 50.90 dB 157.50 kl
Ο dBμV									137.30 K
звµv									
авру									
iBμV									
1014									
dBhA									
dBµV									
dвµv									
				Cn.					
dBulkt				/A_					
dBp	Contraction of the second s	and the second second		$ 11 \rangle$					
	AND A DECK	and the second se	Marian .	- Aller	Same attended				
dBµVVu8b	A Charles and	a state of the sta	and the second states of		The second second	a de la sela fre de	and the second second second	and the second second	a constitution of the second
dвµ∨									
0.0 kHz			6000 pt	S	2.	.99 MHz/			30.0 MI

Figure 2: Reference plot for Radiated Spurious Emissions– 150 kHz – 300 kHz Note: Emissions above the noise floor are ambient not associated with the EUT.

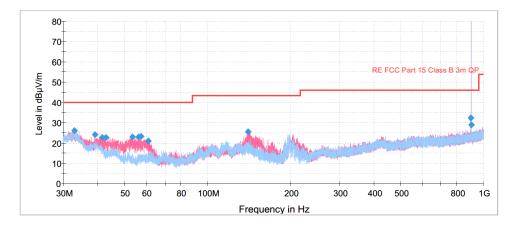


Figure 3: Reference plot for Radiated Spurious Emissions – 30 MHz – 1 GHz

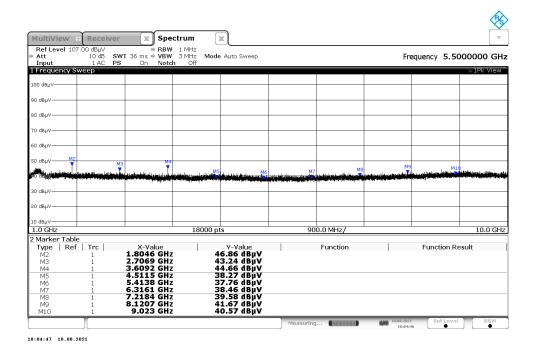


Figure 4: Reference plot for Radiated Spurious Emissions – 1 GHz – 10 GHz

2.3 Test Equipment Used

AssetID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
628	EMCO	6502	Active Loop Antenna 10kHz-30MHz	9407-2877	6/8/2021	6/8/2023
3161	Teseq	CBL 6112D	Bilog Antenna 30MHz- 1GHz	51323	3/19/2021	3/19/2022
857	ETS Lindgren	3117	Horn Antenna 1-18GHz	153608	11/12/2019	11/12/2021
22	Hewlett Packard	8449B	High Frequency Pre- Amp	3008A00526	11/19/2020	11/19/2021
213	TEC	PA 102	Amplifier	44927	7/30/2021	7/30/2022
337	Hewlett Packard	H1G513G1	Microwave Bandpass filter	282706	6/9/2021	6/9/2022
654	Micro-Tronics	BRC50722	Band Reject Filter	-10	6/9/2021	6/9/2022
882	Rohde & Schwarz	ESW44	Test Receiver	101961	6/24/2021	6/24/2022
836	ETS Lindgren	N/A	SAC Cable set	N/A	5/11/2021	5/11/2022

Table 2.3-1 – Equipment List

N/A – Not Applicable

3 Diagram of Test Set-ups

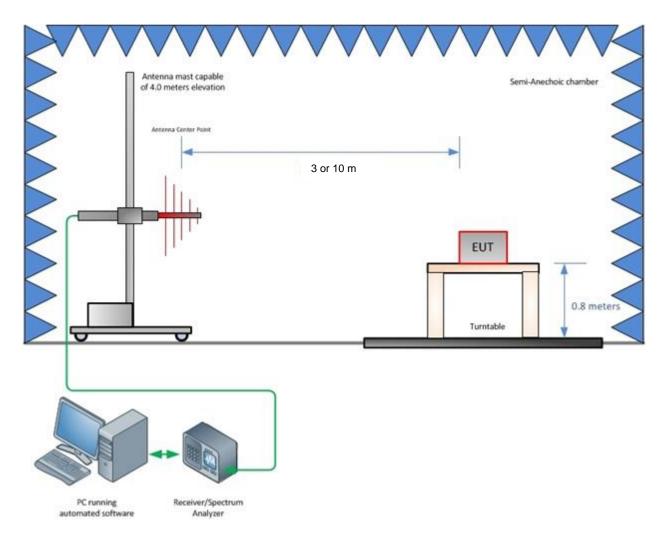


Figure 3-1 – Radiated Emissions Test Setup up to 1 GHz

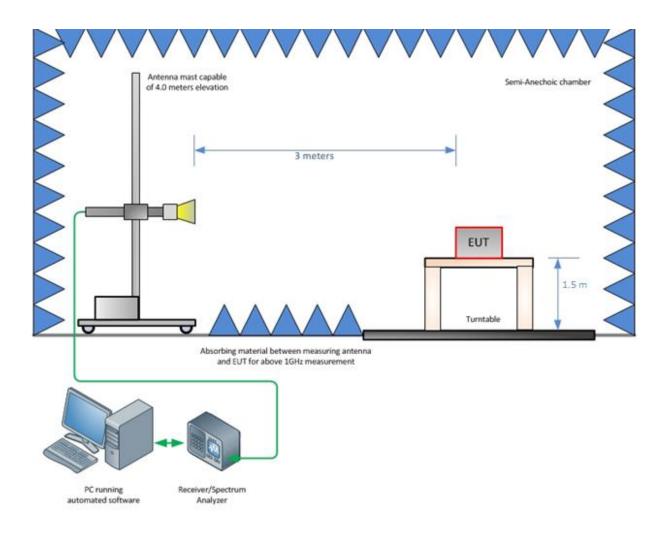


Figure 3-2 – Radiated Emissions Test Setup above 1 GHz

4 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

STATEMENT OF MEASUREMENT UNCERTAINTY

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.

Parameter	U _{lab}
Radiated Emissions ≤ 1 GHz	± 5.814 dB
Radiated Emissions > 1 GHz	± 4.318 dB
Temperature	± 0.860 °C
Radio Frequency	± 2.832 x 10 ⁻⁸

Table 4-1: Estimation of Measurement Uncertainty

TEST EQUIPMENT

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated to meet test method standard requirements and/or manufacturer's specifications