

FCC Test Report

Report No.: AGC05573190601FE03

FCC ID	: 2AFQBYH-418
APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: Bottle Bluetooth Speaker
BRAND NAME	: N/A
MODEL NAME	: YH-418
APPLACANT	Shanghai Yuhao Household Appliance Manufacturing Co., Ltd
DATE OF ISSUE	: July 10, 2019
STANDARD(S)	: FCC Part 15.247
REPORT VERSION	: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC05573190601FE03 Page 2 of 62

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		July 10, 2019	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	
2.3. RECEIVER INPUT BANDWIDTH	
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	
2.6. RELATED SUBMITTAL(S) / GRANT (S)	
2.7. TEST METHODOLOGY	
2.8. SPECIAL ACCESSORIES	
2.9. EQUIPMENT MODIFICATIONS	
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	
5.1. CONFIGURATION OF EUT SYSTEM	
5.2 EQUIPMENT USED IN TESTED SYSTEM	
5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3. LIMITS AND MEASUREMENT RESULT	
8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	
9.1. MEASUREMENT PROCEDURE	
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	
10. RADIATED EMISSION	
10.1. MEASUREMENT PROCEDURE	
10.2. TEST SETUP	
10.3. LIMITS AND MEASUREMENT RESULT	
10.4. TEST RESULT	
11. NUMBER OF HOPPING FREQUENCY	
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3. MEASUREMENT EQUIPMENT USED	
11.4. LIMITS AND MEASUREMENT RESULT	

Report No.: AGC05573190601FE03 Page 4 of 62

12. TIME OF OCCUPANCY (DWELL TIME)	
	45
12.1. MEASUREMENT PROCEDURE	
12.3. MEASUREMENT EQUIPMENT USED	
13. FREQUENCY SEPARATION	49
13.1. MEASUREMENT PROCEDURE	
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
13.3. MEASUREMENT EQUIPMENT USED 13.4. LIMITS AND MEASUREMENT RESULT	
14. FCC LINE CONDUCTED EMISSION TEST	50
14.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	54
APPENDIX B: PHOTOGRAPHS OF EUT	

1. VERIFICATION OF CONFORMITY

Applicant	Shanghai Yuhao Household Appliance Manufacturing Co., Ltd	
Address	Room 318, Flat 1, No.1481 GongHeXin Road, ZhaBei District, Shanghai, China	
Manufacturer	Dongguan Xing Yue Electronic co., Ltd	
Address	#98 LiWu Swan Industrial District, Qiao Tou Town, Dong Guan City, Guang Dong, China	
Factory	Dongguan Xing Yue Electronic co., Ltd	
Address	#98 LiWu Swan Industrial District, Qiao Tou Town, Dong Guan City, Guang Dong, China	
Product Designation	Bottle Bluetooth Speaker	
Brand Name	N/A	
Test Model	YH-418	
Date of test	Jun. 25, 2019 to July 08, 2019	
Deviation	None	
Condition of Test Sample	Normal	
Test Result	Pass	
Report Template	AGCRT-US-BR/RF	

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247.

Theo Huang

Tested By

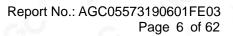
Thea Huang(Huang Qianqian) July 08, 2019

Max Zhang

Reviewed By

Max Zhang(Zhang Yi)

July 10, 2019


Forrest Un

Approved By

Forrest Lei(Lei Yonggang) Authorized Officer

July 10, 2019

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Bottle Bluetooth Speaker". It is designed by way of utilizing the GFSK, Pi/4 DQPSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	4.370dBm(Max)
Bluetooth Version	V5.0
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, □8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps
Number of channels	79
Hardware Version	HF-3001-V2
Software Version	V2.61
Antenna Designation	PCB Antenna(Comply with requirements of the FCC part 15.203)
Antenna Gain	2dBi
Power Supply	DC 3.7V by battery or DC 5V by adaptor
	sed for charging and can' t be used to transfer data with PC.

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402MHZ
		2403MHZ
	38	2440 MHZ
2402~2480MHZ	39	2441 MHZ
	40	2442 MHZ
	77	2479 MHZ
	78	2480 MHZ

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the

connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.

2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us.The clock has a cycle of about one day(23h30).In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations)are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AFQBYH-418** filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8$ dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %
- Uncertainty of Dwell Time: Uc = ± 2 %
- Uncertainty of Frequency: $Uc = \pm 2 \%$

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION	
1	Low channel GFSK	
2	Middle channel GFSK	
3	High channel GFSK	
4	Low channel π/4-DQPSK	
5	Middle channel π/4-DQPSK	
6	High channel π/4-DQPSK	
7	Hopping mode GFSK	
8	Hopping mode π/4-DQPSK	

Note: 1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Transmit Power I 10 Packet type: 2-DHS end configuration information successfully 2019-06-24_134:31:16 hannet 78 Data Types: Pn9 Description: and configuration information successfully 2019-06-24_134:31:18 hannet 78 Data Types: Pn9 2019-06-24_134:31:18 hannet 78 Data Types: Pn9 animit Power: 10 Packet type: 2-DHS	Soft	tware Setting
MOXE NX MOXE NX Durined MOXE Durined Data Types mod Transmit Power 10 Packet type: 2-DHS end configuration Information successfully 2019-06-24_14/31:18 Description: 1. Otamet: Tampe 6-78, corresponding frequency 2.48264b;2.4806642 2019-06-24_14/31:18 Li Data Types: Pn9 Transmit Power: 10 Packet type: 2-DHS Motor 12 Data Data Types: Pn9 Transmit Power: 10 Packet type: 2-DHS Namet: 78 Data Data Types: Pn9 Transmit Power: 10 Packet type: 2-DHS Namet: 78 Data Tamet: Tamee 0-78, corresponding frequency 2.48264b; 2.4806642 2, Transmit Power: 10 Packet type: 2-DHS		
NOCC DX Poduct type Poduct type 2019-06-24_14-28:06 Throwset Rover 10 Pata Types: Pro9 Person Q CPF Data Types: Pro9 2019-06-24_14-28:06 Senal Port. CDM6 Image Senal Port. CDM6 Senal coordiguisation 2019-06-24_14-18:05 Senal Port. CDM6 Image Senal Port. CDM6 Image Senal Port. CDM6 2019-06-24_14-18:05 Senal Port. CDM6 Image Senal Port. CDM6 Image Senal Port. CDM6 2019-06-24_14-11:15 Packet type: 2-DH5 Image Senal Port. CDM6 Image Senal Port. CDM6 2019-06-24_14-11:15 Packet type: 2-DH5 Image Senal Port. CDM6 Image Senal Port. CDM6 2019-06-24_14-11:15 Packet type: 2-DH5 Image Senal Port. CDM6 Image Senal Port. CDM6 2019-06-24_14-11:15 Packet type: 2-DH5 Image Senal Port. CDM6 Image Senal Port. 2-480GR2 2019-06-24_14:11:15 Packet type: 2-DH5 Image Senal Port. Port. Pro9 Image Senal Port. Port. Port. Pro9 2019-06-24_14:11:16 Packet type: 2-DH5 Image Senal Port. Port. Pro9 Image Senal Port. Port. Pro9 2019-06-24_14:11:16 Packet type: 2-DH5 Image Senal Port. Port. Pro9 Image Senal Port. Port. Pro9 Partort. 78 Data Type: Pro9 <th></th> <th>₽ - a ×</th>		₽ - a ×
Dannet 0 Data Types: Pn9 Sera Port Come Types: Pn9 Description: Frammer Power: 10 Packet types: 2-0H5 Sera Come Types: Pn9 Description: 2019-06-24_34:31:18 Description: Secretably' 1- Channet: range 0-78, corresponding frequency 2:482GHz:2:480GHZ 2019-06-24_34:31:18 Data Types: Pn9 Secretably' 2-0H5 Description: Frammer Power: 10 Packet type: 2-0H5 Secretably 2-0H5 Description: Secretably 2-0H5 Secretably 2-0H5 Secretable 2-0H5 S	Channel 78 v Padlet type 20HS	
	Channel: 0 Data Types: Pn9 Transmit Power : 10 Packet type: 2-DH5 Send configuration: information successfully 2019-06-24_14:31:16 Channel: 78 Data Types: Pn9 Transmit Power : 10 Packet type: 2-DH5 Send configuration information successfully	Description: 1 - Channel: range 0-78, corresponding frequency 2.482GHz-2.480GHZ

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure :

EUT

Conducted Emission Configure :

EUT	AE

5.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Bottle Bluetooth Speaker	YH-418	2AFQBYH-418	EUT
2	Adapter	XCMS03-0510	DC 5V/2A	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(1)	Peak Output Power	Compliant
15.247 (a)(1)	20 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.209	Radiated Emission	Compliant
15.247 (a)(1)(iii)	Number of Hopping Frequency	Compliant
15.247 (a)(1)(iii)	Time of Occupancy	Compliant
15.247 (a)(1)	Frequency Separation	Compliant
15.207	Conducted Emission	Compliant

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd			
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China			
Designation Number	CN1259			
FCC Test Firm Registration Number	975832			
A2LA Cert. No.	5054.02			
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA			

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2019	Jun. 11, 2020
LISN	R&S	ESH2-Z5	100086	Aug. 28, 2018	Aug. 27, 2019

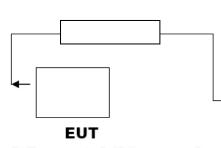
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
2.4GHz Fliter	EM Electronics	2400-2500MHz	N/A	Feb. 27, 2019	Feb. 26, 2020
Attenuator	ZHINAN	E-002	N/A	Aug. 28, 2018	Aug. 27, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

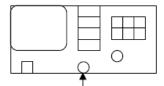
7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE

For peak power test:


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW \geq RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.


7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

RF Attenuator

PEAK POWER TEST SETUP

Spectrum Analyzer

RF Cable

7.3. LIMITS AND MEASUREMENT RESULT

	FOR GFSK MOUDULATION				
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail		
2.402	3.691	30	Pass		
2.441	3.772	30	Pass		
2.480	3.648	30	Pass		

CH39

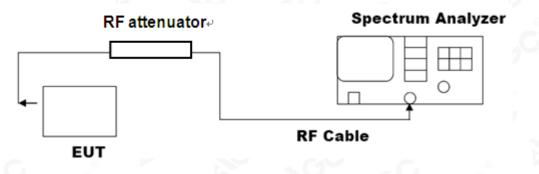
CH78

	FOR II /4-DQPSK N	IODULATION	
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.402	4.296	30	Pass
2.441	4.370	30	Pass
2.480	4.256	30	Pass

CH0

CH39

CH78



8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

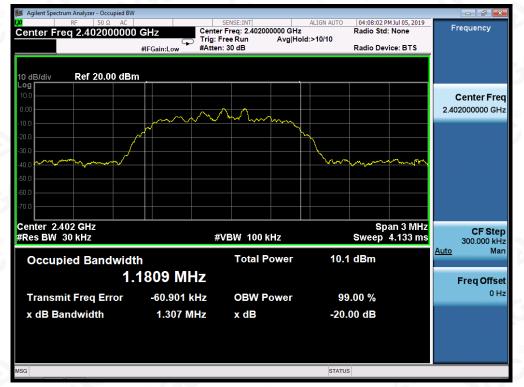
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

8.3. LIMITS AND MEASUREMENT RESULTS

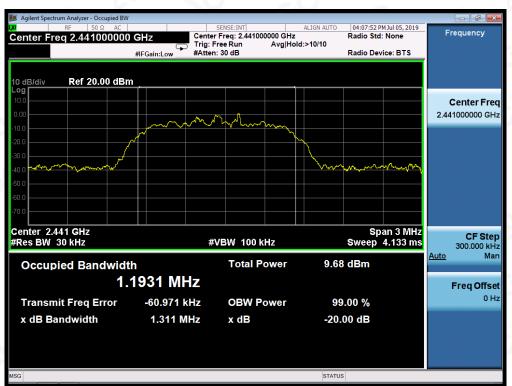
MEASUREMENT RESULT FOR GFSK MOUDULATION				
Applicable Limite		Measurement Resu	lt	
Applicable Limits	Test Data	(MHz)	Criteria	
	Low Channel	0.9456	PASS	
N/A	Middle Channel	0.9486	PASS	
	High Channel	0.9473	PASS	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



MEASUREMENT RESULT FOR II /4-DQPSK MODULATION				
Measurement Result				
Applicable Limits	Test Data	(MHz)	Criteria	
	Low Channel	1.307	PASS	
N/A	Middle Channel	1.311	PASS	
	High Channel	1.304	PASS	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT			
	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS	
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS	

TEST RESULT FOR ENTIRE FREQUENCY RANGE TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF π /4-DQPSK MODULATION IN LOW CHANNEL

Avg Type: Log-Pwr Avg|Hold:>100/100 Peak Search 2.401781742725 GHz Trig: Free Run Atten: 30 dB TYP PNO: Wide 🖵 IFGain:Low DE Next Peak Mkr1 2.401 781 74 GHz 3.479 dBm Ref 20.00 dBm 10 dB/div Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.402000 GHz #Res BW 100 kHz Span 5.000 MHz Sweep 2.000 ms (30000 pts) #VBW 300 kHz PM Jul 05, 2019 Peak Search Avg Type: Log-Pw Avg|Hold: 100/100 Marker 3 21.613122770759 GHz Trig: Free Run Atten: 30 dB Ģ PNO: Fas IEGain:Lo Next Peak Mkr3 21.613 1 GHz -50.019 dBm Ref 20.00 dBm 10 dB/div Next Pk Right Next Pk Left Marker Delta Start 30 MHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.388 s (30000 pts) #VBW 300 kHz Mkr→CF -43.097 dBm -50.019 dBm 4.803 6 GHz 21.613 1 GHz Mkr→RefLv More 1 of 2

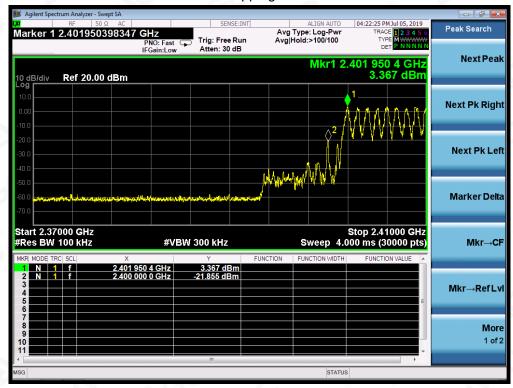
TEST PLOT OF OUT OF BAND EMISSIONS OF π /4-DQPSK MODULATION IN MIDDLE CHANNEL

 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$

STATUS

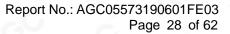
TEST PLOT OF OUT OF BAND EMISSIONS OF π /4-DQPSK MODULATION IN HIGH CHANNEL

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit. The π /4-DQPSK modulation is the worst case and only those data recorded in the report.


TEST RESULT FOR BAND EDGE

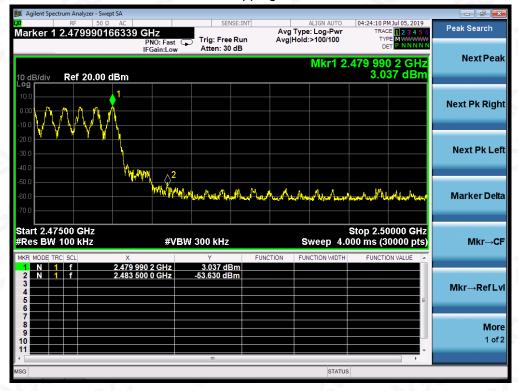
GFSK MODULATION IN LOW CHANNEL

Hopping off


Hopping on

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Service Hotline:400 089 2118



GFSK MODULATION IN HIGH CHANNEL Hopping off

Hopping on

π /4-DQPSK MODULATION IN LOW CHANNEL Hopping off

Hopping on

π /4-DQPSK MODULATION IN HIGH CHANNEL Hopping off

Hopping on

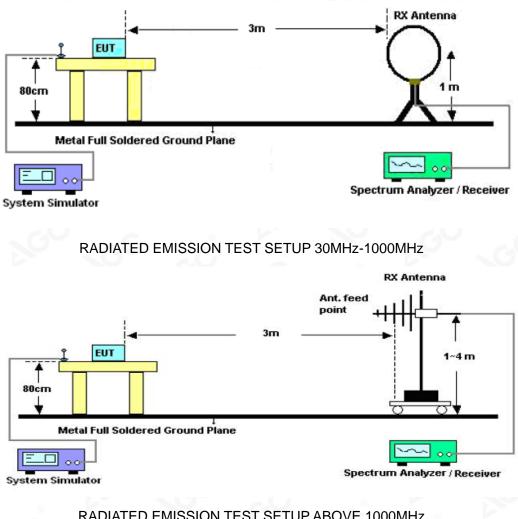
10. RADIATED EMISSION

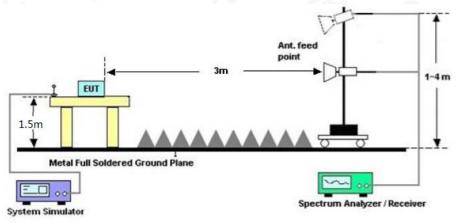
10.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting	
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP	
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP	
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP	
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average	


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



10.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

10.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

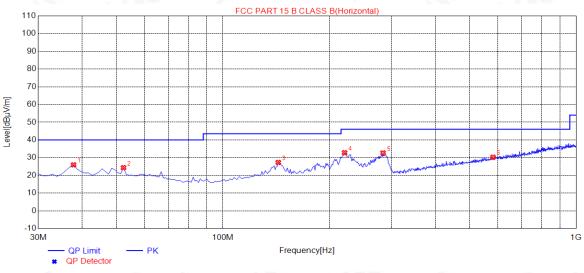
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

The test records reported below are the worst result compared to other modes.

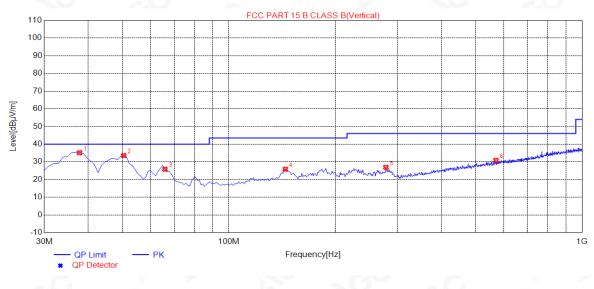
10.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Horizontal

RADIATED EMISSION BELOW 1GHZ


NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV/m]	[dB]	[dBuV/m]	[dB]	[cm]	[°]	Polanty
1	37.7600	25.93	14.39	40.00	14.07	100	168	Horizontal
2	52.3100	24.33	14.49	40.00	15.67	200	73	Horizontal
3	143.4900	27.29	14.88	43.50	16.21	200	276	Horizontal
4	221.0900	32.79	13.37	46.00	13.21	100	360	Horizontal
5	284.1400	32.65	16.25	46.00	13.35	100	151	Horizontal
6	581.9300	30.25	23.95	46.00	15.75	200	247	Horizontal

RESULT: PASS

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Vertical

9	NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
ି	1	37.7600	35.17	14.39	40.00	4.83	100	0	Vertical
	2	50.3700	33.58	14.64	40.00	6.42	100	88	Vertical
	3	65.8900	25.84	12.93	40.00	14.16	150	126	Vertical
	4	144.4600	25.84	14.88	43.50	17.66	100	145	Vertical
	5	278.3200	26.91	16.14	46.00	19.09	100	69	Vertical
	6	570.2900	30.84	23.70	46.00	15.16	100	113	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 5 is the worst case and recorded in the report.

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal

RADIATED EMISSION ABOVE 1GHZ

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	47.87	0.08	47.95	74	-26.05	peak
4804.000	42.94	0.08	43.02	54	-10.98	AVG
7206.000	46.93	2.21	49.14	74	-24.86	peak
7206.000	41.78	2.21	43.99	54	-10.01	AVG
					2	- <u>-</u> 0
emark:		- 6	<u> </u>	Ø		
$actor = \Delta nter$	na Factor + Cab	le Loss - Pre-	amplifier			

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	47.64	0.08	47.72	74	-26.28	peak
4804.000	42.58	0.08	42.66	54	-11.34	AVG
7206.000	46.76	2.21	48.97	74	-25.03	peak
7206.000	41.67	2.21	43.88	54	-10.12	AVG
N	<u> </u>				2	
Remark:		6	C			. 6
Contor - Antor	na Eastar + Cab	along Dro	omplifior			

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: AGC05573190601FE03 Page 38 of 62

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4882.000	46.99	0.14	47.13	74	-26.87	peak
4882.000	41.86	0.14	42	54	-12	AVG
7323.000	45.89	2.36	48.25	74	-25.75	peak
7323.000	40.76	2.36	43.12	54	-10.88	AVG
emark:	1 <u>_</u>	0			- 20,	

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 5	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin 💿	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4882.000	47.06	0.14	47.2	74	-26.8	peak
4882.000	42.34	0.14	42.48	54	-11.52	AVG
7323.000	45.99	2.36	48.35	74	-25.65	peak
7323.000	39.97	2.36	42.33	54	-11.67	AVG
	- C	0			6	- 6.
		G				3
lemark:		· · · ·	C			
actor = Ante	enna Factor + Ca	ble Loss –	Pre-amplifier.	3 1		

Report No.: AGC05573190601FE03 Page 39 of 62

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.000	46.55	0.22	46.77	74	-27.23	peak
4960.000	40.28	0.22	40.5	54	-13.5	AVG
7440.000	45.07	2.64	47.71	74	-26.29	peak
7440.000	38.64	2.64	41.28	54	-12.72	AVG
C.	0			0	0	
	C	0		5	- C.	0
emark:	0				10	- G
actor = Anter	nna Factor + Cabl	e Loss – Pre-a	mplifier.			0

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.000	45.72	0.22	45.94	74	-28.06	peak
4960.000	39.69	0.22	39.91	54	-14.09	AVG
7440.000	44.67	2.64	47.31	74	-26.69	peak
7440.000	38.43	2.64	41.07	54	-12.93	AVG
<u> </u>	- 6	0		5	0	6
Remark:		C	0		(
actor = Anter	nna Factor + Cable	e Loss – Pre-a	mplifier.	0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

RESULT: PASS

Note: Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The π /4-DQPSK modulation is the worst case and recorded in the report.

TEST RESOLTTOR RESTRICTED BANDS REGULARMENTS				
EUT	Bottle Bluetooth Speaker	Model Name	YH-418	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 4	Antenna	Horizontal	

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

PK

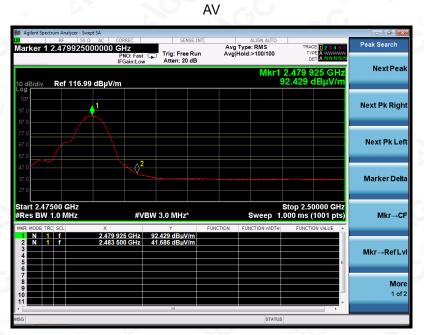
RESULT: PASS

Report No.: AGC05573190601FE03 Page 41 of 62

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

ΡK

RESULT: PASS

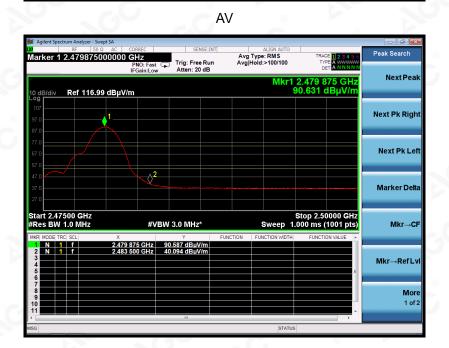


Report No.: AGC05573190601FE03 Page 42 of 62

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Horizontal

ΡK

RESULT: PASS


Report No.: AGC05573190601FE03 Page 43 of 62

More 1 of 2

EUT	Bottle Bluetooth Speaker	Model Name	YH-418
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 6	Antenna	Vertical

PK

Peak Search arker 1 2.479775000000 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 Trig: Free Run Next Pea Ref 116.99 dBµV/m Next Pk Righ Next Pk Lef Marker Delta Start 2.47500 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.000 ms (1001 pts) #VBW 3.0 MHz Sweep Mkr→C 2.479 775 GHz 96.481 dBµ\ 2.483 500 GHz 51.931 dBµ\ Mkr→RefLv

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The π /4-DQPSK modulation is the worst case and recorded in the report.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

11. NUMBER OF HOPPING FREQUENCY

11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

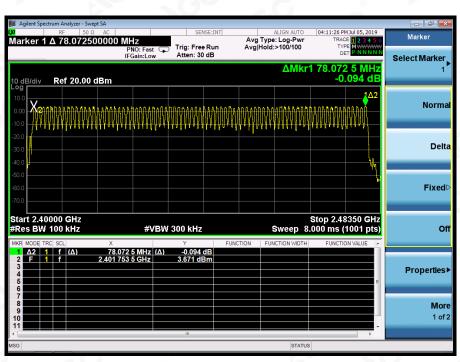
1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

3. VBW \geq RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.

4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)


Same as described in section 8.2

11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT(NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

