

## **TEST REPORT**

#### Report Number: 102289738MPK-012 Project Number: G102289738 October 30, 2015

Testing performed on the DragonBoard 410C Model: DragonBoard 410C FCC ID: 2AFQA-DB410C IC: 20763-DB410C

То

FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 1

For

Arrow Electronics, Inc.

Test Performed by: Intertek 1365 Adams Court Menlo Park, CA 94025 USA

Anderson Soungpanya

Reviewed by:

Prepared by:

Krishna K Vemuri

Test Authorized by: Arrow Electronics, Inc. 7459 South Lima Bldg. 1 Englewood, CO 80112 USA

**Date:** October 30, 2015

**Date:** October 30, 2015

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.



# Report No. 102289738MPK-012

Equipment Under Test: Trade Name: Model Number: Serial Number:

Applicant: Contact: Address:

Country

Email:

Tel. Number:

DragonBoard 410C DragonBoard DragonBoard 410C AE-3915-006048

Arrow Electronics, Inc. Amanda Meyer Arrow Electronics, Inc. 7459 South Lima Bldg. 1 Englewood, CO 80112 USA

(303) 824-1711 ameyer@arrow.com

FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 1

Date of Test:

**Applicable Regulation**:

October 1 - 28, 2015

We attest to the accuracy of this report:

Anderson Soungpanya Project Engineer

1C

Krishna K Vemuri EMC Senior Staff Engineer



# **TABLE OF CONTENTS**

| 1.0 | Intro | oduction                                            | 5  |
|-----|-------|-----------------------------------------------------|----|
|     | 1.1   | Summary of Tests                                    | 5  |
| 2.0 | Gene  | eral Description                                    | 6  |
|     | 2.1   | Product Description                                 | 6  |
|     | 2.2   | Related Submittal(s) Grants                         | 7  |
|     | 2.3   | Test Methodology                                    | 7  |
|     | 2.4   | Test Facility                                       | 7  |
| 3.0 | Syste | em Test Configuration                               | 8  |
|     | 3.1   | Support Equipment                                   | 8  |
|     | 3.2   | Block Diagram of Test Setup                         | 8  |
|     | 3.3   | Justification                                       | 9  |
|     | 3.4   | Mode of Operation During Test                       | 9  |
|     | 3.5   | Modifications Required for Compliance               | 9  |
|     | 3.6   | Additions, Deviations and Exclusions from Standards | 9  |
| 4.0 | Tran  | usmitter Emissions Measurement Results              |    |
|     | 4 1   | 20dB Bandwidth and 99% Occupied Bandwidth           | 10 |
|     |       | 4.1.1 Procedure                                     | 10 |
|     |       | 412 Test Result                                     | 11 |
|     | 4.2   | Conducted Output Power at Antenna Terminals         |    |
|     |       | 4.2.1 Requirement                                   |    |
|     |       | 4.2.2 Procedure                                     |    |
|     |       | 4.2.3 Test Result                                   |    |
|     | 4.3   | Carrier Frequency Separation                        |    |
|     |       | 4.3.1 Requirement                                   | 41 |
|     |       | 4.3.2 Procedure                                     | 41 |
|     |       | 4.3.3 Test Result                                   |    |
|     | 4.4   | Number of Channels                                  |    |
|     |       | 4.4.1 Requirement                                   |    |
|     |       | 4.4.2 Procedure                                     |    |
|     |       | 4.4.3 Test Result                                   |    |
|     | 4.5   | Average Channel Occupancy Time                      |    |
|     |       | 4.5.1 Requirement                                   |    |
|     |       | 4.5.2 Procedure                                     | 53 |
|     |       | 4.5.3 Test Results                                  | 53 |
|     |       | 4.6.1 Requirement                                   |    |
|     |       | 4.6.2 Procedure                                     |    |
|     |       | 4.6.3 Test Result                                   |    |
|     | 4.7   | Transmitter Radiated Emissions                      |    |
|     |       | 4.7.1 Requirement                                   |    |
|     |       | 4.7.2 Procedure                                     |    |
|     |       | 4.7.3 Field Strength Calculation                    |    |
|     |       | 4.7.4 Test Results                                  |    |



|            |       | 4.7.5               | Test Setup Photographs |     |
|------------|-------|---------------------|------------------------|-----|
|            |       | 4.7.5               | Test Setup Photographs |     |
|            | 4.8   | AC Li               | ine Conducted Emission |     |
|            |       | 4.8.1               | Requirement            |     |
|            |       | 4.8.2               | Procedure              |     |
|            |       | 4.8.3               | Test Result            |     |
| 60         | DF F. |                     |                        | 146 |
| 0.0        | KF E  | xposure             | Evaluation             | 146 |
| <b>7.0</b> | KF E  | xposure<br>f Test E | Evaluation             | 146 |



#### 1.0 Introduction

The Equipment Under Test (EUT) is the DragonBoard 410C, model number DragonBoard 410C, consisting one FHSS radio. This test report covers only the FHSS radio.

This report is designed to show compliance of the 2.4 GHz transceiver with the requirements of FCC Part 15 Subpart C (15.247) and RSS-247.

| TEST                                      | REFERENCE<br>FCC Part 15<br>Subpart C | REFERENCE<br>RSS-247 | RESULTS                                                             |
|-------------------------------------------|---------------------------------------|----------------------|---------------------------------------------------------------------|
| PE Output Dower                           | (15.247)                              | 542                  | Complias                                                            |
| KF Output Fower                           | 13.247(0)                             | 5.4.2                | Complies                                                            |
| 20-dB Bandwidth                           | 15.247(a)(1)                          | 5.1.1                | Complies                                                            |
| Channel Separation                        | 15.247(a)(1)                          | 5.1.2                | Complies                                                            |
| Number of Hopping Channels                | 15.247(a)(1)                          | 5.14                 | Complies                                                            |
| Average Channel Occupancy<br>Time         | 15.247(a)(1)                          | 5.14                 | Complies                                                            |
| Out-of-Band Antenna<br>Conducted Emission | 15.247(d)                             | 5.5                  | Complies                                                            |
| Transmitter Radiated<br>Emissions         | 15.247(d),<br>15.209, 15.205          | RSS-GEN              | Complies                                                            |
| RF Exposure                               | 15.247(i)                             | RSS-102              | Complies                                                            |
| AC Conducted Emission                     | 15.207                                | RSS-GEN              | Complies                                                            |
| Antenna Requirement                       | 15.203                                | RSS-GEN              | Complies. The EUT utilizes internal antenna and a unique connector. |

#### 1.1 Summary of Tests



#### 2.0 General Description

#### 2.1 Product Description

The DragonBoard<sup>™</sup> 410c is the first development board based on a Qualcomm<sup>®</sup> Snapdragon<sup>™</sup> 400 series processor. It features advanced processing power, Wi-Fi, Bluetooth connectivity, and GPS, all packed into a board the size of a credit card. Based on the 64-bit capable Snapdragon 410 processor, the DragonBoard 410c is designed to support rapid software development, education and prototyping, and is compliant with the96Boards Consumer Edition specification. All this makes it ideal for enabling embedded computing and Internet of Things (IoT) products, including the next generation of robotics, cameras, medical devices, vending machines, smart buildings, digital signage, casino gaming consoles, and much more.

| Applicant                | Arrow Electronics, Inc.                |
|--------------------------|----------------------------------------|
| Trade Name               | Arrow Electronics, Inc.                |
| Model Number             | DragonBoard 410C                       |
| FCC Identifier           | 2AFQA-DB410C                           |
| IC Identifier            | 20763-DB410C                           |
| Type of Transmission     | Frequency Hopping Spread Spectrum      |
| Rated RF Output          | 3.67 dBm (2.33mW)                      |
| Frequency Range          | 2402 – 2480 MHz                        |
| Number of Channel(s)     | 79, (Channels 0-78)                    |
| Modulation Type          | GFSK, $\pi/4$ -DQPSK, 8DPSK            |
| Data Rate                | Up to 3Mbps                            |
| Antonno(g) type & Cain   | PIFA Antenna, 3.6 dBi peak gain &      |
| Antenna(s) type & Gam    | Internal PCB Antenna, 0.7dBi peak gain |
|                          | Arrow Electronics, Inc.                |
| Applicant name & address | 7459 South Lima Bldg. 1                |
|                          | Englewood, CO 80112                    |
|                          | USA                                    |

#### **Overview of the EUT**

| EUT receive date:<br>EUT receive condition: | September 15, 2015<br>The pre-production version of the EUT was received in good condition         |
|---------------------------------------------|----------------------------------------------------------------------------------------------------|
| Lo i receive condition.                     | with no apparent damage. As declared by the Applicant, it is identical to<br>the production units. |
| Test start date:                            | October 01, 2015                                                                                   |
| Test completion date:                       | October 28, 2015                                                                                   |
| The test results in this report perta       | ain only to the item tested.                                                                       |



### 2.2 Related Submittal(s) Grants

None.

### 2.3 Test Methodology

Antenna conducted measurements were performed according to the procedure DA 00-705 Released March 30, 2000 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems."

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application.

All other measurements were made in accordance with the procedures in part 2 of CFR 47.

Following is the channel test plan:

| Channels in 2.4 GHz band |        |                |        |
|--------------------------|--------|----------------|--------|
| Test C                   | hannel | Frequency, MHz | Tested |
| Low                      | 0      | 2402           |        |
| Middle                   | 39     | 2441           |        |
| High                     | 78     | 2480           |        |

#### 2.4 Test Facility

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.



#### **3.0** System Test Configuration

### 3.1 Support Equipment

| Description   | Manufacturer   | Model No./ Part No.    |
|---------------|----------------|------------------------|
| Power Adapter | Power Partners | SAW24-120-2000         |
| HDMI Monitor  | HP             | ZR2440W                |
| Keyboard      | HP             | KU-0316                |
| Mouse         | Logitech       | M-B0001                |
| Laptop        | Asus           | Eee PC Seashell Series |

## 3.2 Block Diagram of Test Setup

Antenna was removed and co-axial connector with a cable was installed for Conducted Measurements. Antenna was used for Radiated Measurements.



| $\mathbf{S} = $ Shielded            | $\mathbf{F} = $ With Ferrite    |
|-------------------------------------|---------------------------------|
| $\mathbf{U} = \mathbf{U}$ nshielded | $\mathbf{m}$ = Length in Meters |



#### 3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table. The EUT is attached to peripherals and they are connected and operational (as typical as possible). The EUT is wired to transmit full power. During testing, all cables are manipulated to produce worst-case emissions.

All measurements except "Average Channel Occupancy Time" test were done with the worse-case data rate with highest power and widest spectrum were selected for final measurements: DH5 for GFSK, DH5 for  $\pi/4$ -DQPSK, DH5 for 8DPSK. The Average Channel Occupancy Time test was measured with DH1, DH3 and DH5.

3.4 Mode of Operation During Test

During transmitter testing, the transmitter was setup to transmit continuously at maximum RF power on the low channel, middle channel, high channel and with hopping channels enabled.

3.5 Modifications Required for Compliance

Intertek installed no modifications during compliance testing in order to bring the product into compliance.

3.6 Additions, Deviations and Exclusions from Standards

No additions, deviations or exclusions from the standard were made.



#### 4.0 Transmitter Emissions Measurement Results

- 4.1 20dB Bandwidth, and 99% Occupied Bandwidth FCC Rule 15.247(a)(1)
- 4.1.1 Procedure

The Procedure described in the FCC Publication DA 00-705 Released March 30, 2000 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" was used to determine the 20dB bandwidth.

- Span = Approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- RBW = 1% of the 20 dB bandwidth
- $VBW = 3 \times RBW$
- Sweep = Auto
- Detector function = Peak
- Trace = Max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-topeak function to set the marker to the peak of the emission. Use the markerdelta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

For 99% power bandwidth measurement, the bandwidth was determined by using the built-in 99% occupied bandwidth function of the spectrum analyzer.

The antenna port of the EUT was connected to the input of a spectrum analyzer (SA). For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A Peak output reading was taken, a Display line was drawn for 20dB lower than Peak level. The 20dB bandwidth was determined from where the channel output spectrum intersected the display line.



### 4.1.2 Test Result

| Modulation | Channel | Frequency | 20 dB FCC | Plot # | 99% Bandwidth, | Plot # |
|------------|---------|-----------|-----------|--------|----------------|--------|
| Туре       |         | MITZ      | MHz       |        | MINZ           |        |
|            | 0       | 2402      | 1.130     | 1.1    | 0.912          | 1.10   |
| GFSK       | 39      | 2441      | 1.130     | 1.2    | 0.914          | 1.11   |
|            | 78      | 2480      | 1.129     | 1.3    | 0.905          | 1.12   |
| -          | 0       | 2402      | 1.375     | 1.4    | 1.178          | 1.13   |
| W4-DQFSK   | 39      | 2441      | 1.370     | 1.5    | 1.179          | 1.14   |
|            | 78      | 2480      | 1.374     | 1.6    | 1.176          | 1.15   |
|            | 0       | 2402      | 1.380     | 1.7    | 1.178          | 1.16   |
| 8DPSK      | 39      | 2441      | 1.380     | 1.8    | 1.176          | 1.17   |
|            | 78      | 2480      | 1.384     | 1.9    | 1.176          | 1.18   |





Plot 1. 1 – 20dB Bandwidth Low Channel GFSK

Date: 5.0CT.2015 10:31:22





Plot 1. 2 – 20dB Bandwidth Middle Channel GFSK

Date: 5.0CT.2015 10:40:14





Plot 1. 3 – 20dB Bandwidth High Channel GFSK

Date: 5.0CT.2015 10:41:52





Plot 1. 4 – 20dB Bandwidth Low Channel  $\pi/4$ -DQPSK

Date: 5.0CT.2015 10:33:27





Plot 1. 5 – 20dB Bandwidth Middle Channel  $\pi/4$ -DQPSK

Date: 5.0CT.2015 10:38:45





Plot 1. 6 – 20dB Bandwidth High Channel  $\pi/4$ -DQPSK

Date: 5.0CT.2015 10:43:27





Plot 1. 7 – 20dB Bandwidth Low Channel 8DPSK

Date: 5.0CT.2015 10:35:33





Plot 1. 8 – 20dB Bandwidth Middle Channel 8DPSK

Date: 5.0CT.2015 10:37:18





Plot 1. 9 – 20dB Bandwidth High Channel 8DPSK

Date: 5.0CT.2015 10:45:04



#### 99% Bandwidth Test Result



Plot 1. 20 – 99% Bandwidth Low Channel GFSK

Date: 5.0CT.2015 11:34:16





Plot 1. 31-99% Bandwidth Middle Channel GFSK

Date: 5.0CT.2015 11:29:46





Plot 1. 42–99% Bandwidth High Channel GFSK

Date: 5.0CT.2015 11:28:50





Plot 1. 53 – 99% Bandwidth Low Channel  $\pi/4$ -DQPSK

Date: 5.0CT.2015 11:33:25





Plot 1. 14 – 99% Bandwidth Middle Channel  $\pi$ /4-DQPSK

Date: 5.0CT.2015 11:30:41





*Plot 1.* 15 – 99% *Bandwidth High Channel*  $\pi$ /4-DQPSK

Date: 5.0CT.2015 11:28:03





Plot 1. 16 – 99% Bandwidth Low Channel 8DPSK

Date: 5.0CT.2015 11:32:28





Plot 1. 17 – 99% B Bandwidth Middle Channel 8DPSK

Date: 5.0CT.2015 11:31:33





Plot 1. 18 – 99% Bandwidth High Channel 8DPSK

Date: 5.0CT.2015 11:25:23



4.2 Conducted Output Power at Antenna Terminals FCC Rule 15.247(b)(1)

#### 4.2.1 Requirement

For systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum peak output power is 1 watt (30 dBm), for all other systems 0.125 W (21 dBm).

#### 4.2.2 Procedure

The Procedure described in the FCC Publication DA 00-705 Released March 30, 2000 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" was used to determine the RF Output Power.

- Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- RBW > the 20 dB bandwidth of the emission being measured
- $VBW = 3 \times RBW$
- Sweep = auto
- Detector function = peak
- Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power (see the NOTE above regarding external attenuation and cable loss). The limit is specified in one of the subparagraphs of this Section. Submit this plot.

The antenna port of the EUT was connected to the input of a spectrum analyzer. Power was read directly from the spectrum analyzer and cable loss correction was added to the reading to obtain the power at the antenna terminals.



#### 4.2.3 Test Result

Refer to the following plots for the test result:

| Modulation<br>Type | Channel | Frequency<br>MHz | Conducted Peak<br>Power<br>dBm | Conducted Peak<br>Power<br>mW | Plot<br># |
|--------------------|---------|------------------|--------------------------------|-------------------------------|-----------|
|                    | 0       | 2402             | 3.32                           | 2.15                          | 2.1       |
| GFSK               | 39      | 2441             | 3.26                           | 2.12                          | 2.2       |
|                    | 78      | 2480             | 3.16                           | 2.07                          | 2.3       |
| -/4 DODEK          | 0       | 2402             | 3.32                           | 2.15                          | 2.4       |
| 1/4-DQPSK          | 39      | 2441             | 3.30                           | 2.14                          | 2.5       |
|                    | 78      | 2480             | 3.18                           | 2.08                          | 2.6       |
|                    | 0       | 2402             | 3.67                           | 2.33                          | 2.7       |
| 8DPSK              | 39      | 2441             | 3.60                           | 2.29                          | 2.7       |
|                    | 78      | 2480             | 3.55                           | 2.26                          | 2.9       |

|  | Results | Complies |
|--|---------|----------|
|--|---------|----------|



#### 4.2.3 Output Power Test Result (Continued)



Date: 21.0CT.2015 08:19:03





## Plot 2. 2 – Output Power Middle Channel GFSK

Date: 21.0CT.2015 08:17:53



#### 4.2.3 Output Power Test Result (Continued)



## Plot 2. 3 – Output Power High Channel GFSK

Date: 21.0CT.2015 08:20:20





#### *Plot 2. 4 – Output Power Low Channel* $\pi/4$ *-DQPSK*

Date: 21.0CT.2015 08:28:15



#### 4.2.3 Output Power Test Result (Continued)



## *Plot 2. 5 – Output Power Middle Channel* $\pi/4$ *-DQPSK*

Date: 21.0CT.2015 08:25:02




## *Plot 2. 6 – Output Power High Channel* $\pi/4$ *-DQPSK*

Date: 21.0CT.2015 08:20:46



### 4.2.3 Output Power Test Result (Continued)



Plot 2. 7 – Output Power Low Channel 8DPSK

Date: 21.0CT.2015 08:28:52





## Plot 2. 8 – Output Power Middle Channel 8DPSK

Date: 21.0CT.2015 08:29:29



## 4.2.3 Output Power Test Result (Continued)



# Plot 2. 9 – Output Power High Channel 8DPSK

Date: 21.0CT.2015 08:30:19



4.3 Carrier Frequency Separation FCC 15.247 (a)(1)

## 4.3.1 Requirement

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

## 4.3.2 Procedure

The Procedure described in the FCC Publication DA 00-705 Released March 30, 2000 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" was used to determine the Carrier Frequency Separation.

- The EUT must have its hopping function enabled
- Span = wide enough to capture the peaks of two adjacent channels
- Resolution (or IF) Bandwidth (RBW) = 1% of the span
- Video (or Average) Bandwidth (VBW) = 3 x RBW
- Sweep = auto
- Detector function = peak
- Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.



#### 4.3.3 Test Result

The worst case 20dB Bandwidth is 1.384MHz, therefor this bandwidth was used to calculate the minimum limit for Carrier Frequency Separation below.

(2/3) \* 1.384 MHz = 0.927 MHz (minimum requirement)

The Carrier Frequency Separation is **1.002 MHz**, therefore meets the minimum requirement. Please refer to spectrum analyzer plot 3.1 below for the test result.

Results Complies





Plot 3.7– Channel Separation GFSK

Date: 5.0CT.2015 11:39:24





*Plot 3.2– Channel Separation*  $\pi/4$ *-DQPSK* 

Date: 5.0CT.2015 11:58:40



## Plot 3.3– Channel Separation 8DPSK



Date: 5.0CT.2015 11:55:15



4.4 Number of Channels FCC 15.247 (a)(1)(iii)

#### 4.4.1 Requirement

Systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping channels.

#### 4.4.2 Procedure

The Procedure described in the FCC Publication DA 00-705 Released March 30, 2000 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" was used to determine the Number of Channels.

- The EUT must have its hopping function enabled.
- Span = the frequency band of operation
- RBW = 1% of the span
- $VBW = 3 \times RBW$
- Sweep = auto
- Detector function = peak
- Trace = max hold

Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

With the analyzer set to MAX HOLD, readings were taken once channels were filled in. The traces were broken down into 2 spans from 2400 to 2483.5MHz. The channel peaks were recorded and compared to the minimum number of channels required in the regulation.

#### 4.4.3 Test Result

| Modulation Type | No. Of Channels |  |  |  |
|-----------------|-----------------|--|--|--|
| GFSK            | 79              |  |  |  |
| $\pi/4$ -DQPSK  | 79              |  |  |  |
| DPQSK           | 79              |  |  |  |







Date: 5.0CT.2015 12:22:06





Plot 4.2 - Number of hopping channels (GFSK - 2442.5 to 2483.5 MHz)

Date: 5.0CT.2015 12:26:10





*Plot 4.3 - Number of hopping channels* ( $\pi$ /4-DQPSK-2400 to 2442.5 MHz)

Date: 5.0CT.2015 13:13:37

![](_page_49_Picture_0.jpeg)

![](_page_49_Figure_1.jpeg)

## Plot 4.4 - Number of hopping channels ( $\pi/4$ -DQPSK- 2442.5 to 2483.5 MHz)

Date: 5.0CT.2015 12:40:36

![](_page_50_Picture_0.jpeg)

![](_page_50_Figure_1.jpeg)

## Plot 4.5 - Number of hopping channels (8DPSK – 2400 to 2442.5 MHz)

Date: 5.0CT.2015 13:03:54

![](_page_51_Picture_0.jpeg)

![](_page_51_Figure_1.jpeg)

## Plot 4.6 - Number of hopping channels (8DPSK - 2442.5 to 2483.5 MHz)

Date: 5.0CT.2015 12:50:52

![](_page_52_Picture_0.jpeg)

## 4.5 Average Channel Occupancy Time FCC 15.247(a)(1)

## 4.5.1 Requirement

For systems operating in the 2400-2483.5 MHz band, the average time of occupancy on any channel shall not be greater than 0.4 second within a period of 0.4 second multiplied by the number of hopping channels employed.

## 4.5.2 Procedure

The Procedure described in the FCC Publication DA 00-705 Released March 30, 2000 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" was used to determine the Average Channel Occupancy Time.

- The EUT must have its hopping function enabled.
- Span = zero span, centered on a hopping channel
- RBW = 1 MHz
- VBW =  $3 \times RBW$
- Sweep = as necessary to capture the entire dwell time per hopping channel
- Detector function = peak
- Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. An oscilloscope may be used instead of a spectrum analyzer.

The spectrum analyzer center frequency was set to one of the known hopping channels, the SPAN was set to ZERO SPANS, and the TRIGGER was set to VIDEO. The time duration of the transmission so captured was measured with the MARKER DELTA function.

Since the radio is employed 79 hopping channels, the Occupancy Time was calculated for the period of 0.4 \* 79 = 31.6 sec.

#### 4.5.3 Test Results

Results

Complies

![](_page_53_Picture_0.jpeg)

## 4.5.3 Test Results (Continued)

## GFSK, DH1

| No. of Burst in 3.16s<br>(31.6s Period) | Burst On Time (ms) | Dwell Time (ms) | Dwell Time limit (ms) |  |  |
|-----------------------------------------|--------------------|-----------------|-----------------------|--|--|
| 31*10                                   | 0.420              | 130.2           | 400                   |  |  |

![](_page_53_Figure_4.jpeg)

![](_page_53_Figure_5.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_54_Figure_1.jpeg)

Date: 5.0CT.2015 15:39:56

![](_page_55_Picture_0.jpeg)

## GFSK, DH3

| No. of Burst in 3.16s<br>(31.6s Period) |        |             | Burst On Time (ms) |                  | \$)            | Dwell Time (ms)           |                                          |         | Dwell Time limit (ms)     |                                  |            |  |
|-----------------------------------------|--------|-------------|--------------------|------------------|----------------|---------------------------|------------------------------------------|---------|---------------------------|----------------------------------|------------|--|
|                                         | 15*10  |             |                    | 1.68             |                |                           | 252.0                                    |         |                           | 400                              |            |  |
|                                         | Ref 20 | ) dBm       |                    | Att 4            | 0 dB           | RBW 1<br>VBW 3<br>SWT 1   | . MHz<br>3 MHz<br>.0 ms                  | Delta 2 | [T1 ]<br>0<br>1.680       | .50 dB<br>000 ms                 |            |  |
|                                         | 20 Off | set 10.2 d  | В                  |                  |                |                           |                                          | Marker  | 1 [T1<br>-39              | ]<br>.60 dBrr                    | <b></b>    |  |
| 1 77 1                                  | -10    | TRG 7.4 dBn | n —                |                  |                |                           |                                          |         | <del>30.000</del>         | <del>900 p.s</del>               | A          |  |
|                                         | -0     |             |                    |                  |                |                           |                                          |         |                           |                                  | TRG<br>LML |  |
|                                         | 10     |             |                    |                  |                |                           |                                          |         |                           |                                  | •          |  |
|                                         | 20     |             |                    |                  |                |                           |                                          |         |                           |                                  |            |  |
|                                         |        |             |                    | the all the said | to black parts | lads <mark>t st</mark> ad | unter deux                               |         | ollphallfeet              | , <mark>bay till kyr d</mark> al |            |  |
|                                         | 50-    |             | þið                | den an aite      |                |                           | en e | ուղեղո  | L <sub>tre</sub> (j. Klen | <b>P</b> PPat                    | -          |  |
|                                         | 60     |             |                    |                  |                |                           |                                          |         |                           |                                  |            |  |
|                                         | 70     |             |                    |                  |                |                           |                                          |         |                           |                                  |            |  |
|                                         | -80    |             |                    |                  |                |                           |                                          |         |                           |                                  |            |  |
|                                         | Center | 2.441 GHz   |                    |                  | 1 1            | ms/                       |                                          |         |                           |                                  |            |  |

Date: 5.0CT.2015 15:32:59

![](_page_56_Picture_0.jpeg)

![](_page_56_Figure_1.jpeg)

Date: 5.0CT.2015 15:39:12

![](_page_57_Picture_0.jpeg)

## GFSK, DH5

| No. of Burst in 3.16s<br>(31.6s Period)         | Burst On Time (ms)    | Dwell Time (ms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dwell Time limit (ms)                            |  |  |
|-------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| 12*10                                           | 2.92                  | 350.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400                                              |  |  |
| Ref 20 dBm                                      | R<br>V<br>Att 40 dB S | 2BW 1 MHz Delta 2<br>7BW 3 MHz<br>5WT 10 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [T1]<br>1.23 dB<br>2.920000 ms                   |  |  |
| 20 Offset 10.2 dB<br>-10<br>IRG 7.4 dBm<br>-0   |                       | Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 [T1 ]<br>-41.89 dBr<br><del>30.000000 ps</del> |  |  |
| 10                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |  |  |
| 30                                              |                       | edberner der editionelige sted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | re ad a blading only in the second               |  |  |
| <mark>4, 411, 4<sup>444</sup>,</mark><br>- + 50 |                       | <sup>even</sup> d for the protect of the prote |                                                  |  |  |
|                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |  |  |
| -80<br>Center 2.441 CHz                         | 1 ms/                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |  |  |

Date: 5.0CT.2015 15:33:41

![](_page_58_Picture_0.jpeg)

![](_page_58_Figure_1.jpeg)

Date: 5.0CT.2015 15:36:48

![](_page_59_Picture_0.jpeg)

## 4.5.3 Test Results (Continued)

## $\pi/4$ -DQPSK, DH1

![](_page_59_Figure_3.jpeg)

Date: 5.0CT.2015 15:30:26

![](_page_60_Picture_0.jpeg)

![](_page_60_Figure_1.jpeg)

Date: 5.0CT.2015 15:29:01

![](_page_61_Picture_0.jpeg)

## $\pi/4$ -DQPSK, DH3

![](_page_61_Figure_2.jpeg)

Date: 5.0CT.2015 15:26:55

![](_page_62_Picture_0.jpeg)

![](_page_62_Figure_1.jpeg)

Date: 5.0CT.2015 15:27:44

![](_page_63_Picture_0.jpeg)

## $\pi/4$ -DQPSK, DH5

![](_page_63_Figure_2.jpeg)

Date: 5.0CT.2015 15:25:11

![](_page_64_Picture_0.jpeg)

![](_page_64_Figure_1.jpeg)

Date: 5.0CT.2015 15:23:31

![](_page_65_Picture_0.jpeg)

## 4.5.3 Test Results (Continued)

## 8DPSK, DH1

![](_page_65_Figure_3.jpeg)

Date: 5.0CT.2015 15:19:14

![](_page_66_Picture_0.jpeg)

![](_page_66_Figure_1.jpeg)

Date: 5.0CT.2015 15:21:06

![](_page_67_Picture_0.jpeg)

### 8DPSK, DH3

![](_page_67_Figure_2.jpeg)

Date: 5.0CT.2015 15:17:50

![](_page_68_Picture_0.jpeg)

![](_page_68_Figure_1.jpeg)

Date: 5.0CT.2015 15:16:26

![](_page_69_Picture_0.jpeg)

## 8DPSK, DH3

| 1                           | No. of Burst in 3.16s<br>(31.6s Period) | Burst On                      | Time (ms)           | Dwell Ti                          | Dwell Time limit (ms)                                 |                        |                              |            |
|-----------------------------|-----------------------------------------|-------------------------------|---------------------|-----------------------------------|-------------------------------------------------------|------------------------|------------------------------|------------|
|                             | 12*10                                   | 2.                            | .90                 | 348                               | 400                                                   |                        |                              |            |
|                             | Ref 20 dBm                              | Att 40                        | RI<br>VI<br>) dB SI | BW 1 MHz<br>BW 3 MHz<br>WI 10 ms  | Delta 2                                               | [T1 ]<br>-16<br>2.9000 | .70 dB<br>000 ms             | I          |
|                             | 20 Offset 10.2 de                       | 3                             |                     |                                   | Marker                                                | 1 [T1<br>20            | ]<br>62 dBr                  |            |
|                             |                                         | alitica interitica incertita. |                     |                                   |                                                       | -29<br>-6.250          | .03 081<br><del>300 µs</del> | А          |
| <mark>1 pr</mark> *<br>View | -0                                      |                               |                     |                                   |                                                       |                        |                              | TRG<br>LML |
|                             | 10                                      |                               |                     |                                   |                                                       |                        |                              |            |
|                             | -20                                     |                               |                     |                                   |                                                       |                        |                              |            |
|                             | -30                                     |                               |                     |                                   |                                                       |                        |                              |            |
|                             | ar fraght faith                         |                               | elmblet eter with a | a the plan                        | ay, he lay that                                       | lissingle              | algalia la                   |            |
|                             |                                         | <u>I</u> II                   | epert plate date    | <mark>a k<sub>a</sub> kabu</mark> | <mark>a da da</mark> | in the second          |                              |            |
|                             | 60                                      |                               |                     |                                   |                                                       |                        |                              |            |
|                             | -70                                     |                               |                     |                                   |                                                       |                        |                              |            |
|                             | -80                                     |                               |                     |                                   |                                                       |                        |                              |            |
|                             | Center 2.441 GHz                        |                               | 1 ms/               | /                                 |                                                       |                        |                              |            |

Date: 5.0CT.2015 15:11:43

![](_page_70_Picture_0.jpeg)

![](_page_70_Figure_1.jpeg)

Date: 5.0CT.2015 15:14:30

![](_page_71_Picture_0.jpeg)

4.6 Out-of-Band Conducted Emissions FCC 15.247(d)

#### 4.6.1 Requirement

In any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

#### 4.6.2 Procedure

The Procedure described in the FCC Publication DA 00-705 Released March 30, 2000 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" was used to determine the Out-of-Band Conducted Emissions.

- Span = wide enough to capture the peak level of the in-band emission and all spurious
- emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the
- 10th harmonic. Typically, several plots are required to cover this entire span.
- RBW = 100 kHz
- $VBW = 3 \times RBW$
- Sweep = auto
- Detector function = peak
- Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

A spectrum analyzer was connected to the antenna port of the transmitter. Analyzer Resolution Bandwidth was set to 100 kHz. For each channel investigated, the in-band and out-of-band emission measurements were performed. The out-of-band emissions were measured from 30 MHz to 26 GHz.


## 4.6.3 Test Result

Refer to the following plots and out-of-band conducted spurious emissions at the Band-Edge, Table 4.1 & 4.2 for the test results:

| Table 4.1 |         |                  |                      |           |  |
|-----------|---------|------------------|----------------------|-----------|--|
| Radio     | Channel | Frequency<br>MHz | Description          | Plot<br># |  |
| GFSK      | 0       | 2402             | Scan 30 MHz – 26 GHz | 4.1       |  |
|           | 39      | 2441             | Scan 30 MHz – 26 GHz | 4.2       |  |
|           | 78      | 2480             | Scan 30 MHz – 26 GHz | 4.3       |  |
| π/4-DQPSK | 0       | 2402             | Scan 30 MHz – 26 GHz | 4.4       |  |
|           | 39      | 2441             | Scan 30 MHz – 26 GHz | 4.5       |  |
|           | 78      | 2480             | Scan 30 MHz – 26 GHz | 4.6       |  |
| 8DPSK     | 0       | 2402             | Scan 30 MHz – 26 GHz | 4.7       |  |
|           | 39      | 2441             | Scan 30 MHz – 26 GHz | 4.8       |  |
|           | 78      | 2480             | Scan 30 MHz – 26 GHz | 4.9       |  |

## **Out-of-Band Conducted Spurious Emissions at the Band-Edge:**

| Tabla  | 12  |
|--------|-----|
| I able | 4.2 |

| Radio     | Channel | Frequency<br>MHz | Out-band emissions<br>margin to In-band<br>emissions<br>(dB) | Plot<br># |
|-----------|---------|------------------|--------------------------------------------------------------|-----------|
| GFSK      | 0       | 2402             | -51.20                                                       | 4.10      |
|           | Hopping | Low Band Edge    | -55.78                                                       | 4.11      |
|           | 78      | 2480             | -51.47                                                       | 4.12      |
|           | Hopping | High Band Edge   | -51.38                                                       | 4.13      |
| π/4-DQPSK | 0       | 2402             | -50.39                                                       | 4.14      |
|           | Hopping | Low Band Edge    | -54.00                                                       | 4.15      |
|           | 78      | 2480             | -49.87                                                       | 4.16      |
|           | Hopping | High Band Edge   | -49.08                                                       | 4.17      |
| 8DPSK     | 0       | 2402             | -49.69                                                       | 4.18      |
|           | Hopping | Low Band Edge    | -55.07                                                       | 4.19      |
|           | 78      | 2480             | -50.88                                                       | 4.20      |
|           | Hopping | High Band Edge   | -50.41                                                       | 4.21      |

Results

Complies





Plot 4.1 Transmitter Spurious, Low Channel with GFSK

| H                     | Plot 4.2                 |
|-----------------------|--------------------------|
| Transmitter Spurious, | Middle Channel with GFSK |





Plot 4.3 Transmitter Spurious, High Channel with GFSK



π/4-DQPSK Low Channel FCC Part 15.247 100 kHz RBW, 300 kHz VBW, Peak Detector Conducted Spurious 30 MHz - 26 GHz **20.0** Ţ 10.0 0 ୍କି -10.0 ଅଞ୍ଚ-20.0 ) -30.0 Wmblitnde 40.0 Vmblitnde Vmblitnde -60.0 -70.0 30.0M 2.6G 5.2G 7.8G 10.4G 13.0G 15.6G 18.2G 20.8G 23.4G 26.0G Frequency (Hz)

Plot 4.4 *Transmitter Spurious, Low Channel with*  $\pi/4$ -DQPSK





Plot 4.5 Transmitter Spurious, Mid Channel with  $\pi/4$ -DQPSK



Plot 4.6 *Transmitter Spurious, High Channel with*  $\pi/4$ -DQPSK







Plot 4.7 Transmitter Spurious, Low Channel with 8DPSK







8DPSK High Channel FCC Part 15.247 100 kHz RBW, 300 kHz VBW, Peak Detector Conducted Spurious 30 MHz - 26 GHz **20.0 ‡** 10.0 ‡ 0‡ Amplitude(dBm) -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 2.6G 10.4G 13.0G 18.2G 23.4G 5.2G 7.8G 15.6G 20.8G 26.0G Frequency (Hz)

Plot 4.9 Transmitter Spurious, High Channel with 8DPSK



Plot 4.10 Conducted Band Edge, Low Channel with GFSK



Date: 5.0CT.2015 13:24:10





Plot 4.11 Conducted Band Edge, with GFSK (Hopping)

Date: 5.0CT.2015 13:22:49



Plot 4.12 Conducted Band Edge, High Channel with GFSK



Date: 5.0CT.2015 13:37:49



Plot 4.13 Conducted Band Edge, High Channel with GFSK (Hopping)



Date: 5.0CT.2015 13:40:18





Plot 4.14 Conducted Band Edge, Low Channel with  $\pi$ /4-DQPSK

Date: 5.0CT.2015 13:25:27





Plot 4.15 Conducted Band Edge, with  $\pi/4$ -DQPSK (Hopping)

Date: 5.0CT.2015 13:19:09





Plot 4.16 *Conducted Band Edge, High Channel with*  $\pi/4$ -DQPSK

Date:

5.0CT.2015 13:36:28



Plot 4.17 Conducted Band Edge, High Channel with  $\pi/4$ -DQPSK (Hopping)



Date: 5.0CT.2015 13:35:21





Plot 4.18 Conducted Band Edge, Low Channel with 8DPSK

Date: 5.0CT.2015 13:26:47





Plot 4.19 Conducted Band Edge, with 8DPSK (Hopping)

Date: 5.0CT.2015 13:21:33



Plot 4.20 Conducted Band Edge, High Channel with 8DPSK



Date: 5.0CT.2015 13:28:22





Plot 4.21 Conducted Band Edge, High Channel with 8DPSK (Hopping)

Date: 5.0CT.2015 13:30:49