SAR TEST REPORT

For

Shenzhen KVD Communications Equipment Limited

GSM/WCDMA Smartphone

Model No.: X9 Pro

Additional Model No.: X-music V

Prepared for : Shenzhen KVD Communications Equipment Limited : Room 13C, Block C, Electronics Science and Technology Address Building, Shennan Road Middle, Shenzhen, China Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Address Avenue, Bao'an District, Shenzhen, Guangdong, China Tel : (86)755-82591330 : (86)755-82591332 Fax : www.LCS-cert.com Web webmaster@LCS-cert.com Mail : Date of receipt of test sample : September 24, 2016 Number of tested samples : 1 Serial number : Prototype Date of Test : September 24, 2016~ September 28, 2016 Date of Report : November 05, 2016

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 110 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

SAR TEST REPORT		
Report Reference No	LCS1610191292E	
Date Of Issue:	November 05, 2016	
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.	
Address:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China	
Testing Location/ Procedure:	Full application of Harmonised standards	
	Partial application of Harmonised standards	
	Other standard testing method \Box	
Applicant's Name:	Shenzhen KVD Communications Equipment Limited	
Address:	Room 13C, Block C, Electronics Science and Technology Building, Shennan Road Middle, Shenzhen, China	
Test Specification:		
Standard:	IEEE 1528:2013/KDB865664 47CFR §2.1093	
Test Report Form No:	LCSEMC-1.0	
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.	
Master TRF:	Dated 2014-09	
This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes noresponsibility for and will not ing from the reader's interpretation of the reproduced material due to	
Test Item Description:	GSM/WCDMA Smartphone	
Trade Mark:	DOOGEE, OneClick	
Model/Type Reference:	X9 Pro	
Operation Frequency:	GSM 850/PCS1900, WCDMA Band II/ V, WLAN2.4G, Bluetooth4.0	
Modulation Type:	GSM(GMSK,8PSK), WCDMA/HSDPA/HSUPA(QPSK), WIFI(D SSS,OFDM), Bluetooth(GFSK,8DPSK, π/4-DQPSK)	
Ratings:	DC 3.8V by Li-ion Battery(3000mAh)	
Result:	Recharge Voltage: DC 5V/1000mA	

Compiled by:

Linda He

Linda He/ File administrators

Supervised by:

ash

Approved by:

Crowins

Gavin Liang/ Manager

Glin Lu/ Technique principal

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 110 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

No.: LCS1610191292E

SAR -- TEST REPORT

Test Report No. : LCS1610191292E

November 05, 2016 Date of issue

Test Result	t	Positive
Fax	: /	
Telephone		
Factory Address	: The second fle material indus Guanlan Guan China	oor in A2 building, Silicon valley power new strial park, Zongyi Road, Dafu industrial park, nguang Road, Baoan district, Shenzhen City,
Factory	• Shanzhan KV	D Communications Equipment Limited
Fax	: /	
Telephone		
Manufacturer	: The second flo material indus	VD Communications Equipment Limited oor in A2 building, Silicon valley power new strial park, Zongyi Road, Dafu industrial park, nguang Road, Baoan district, Shenzhen City,
Fax	: /	
Telephone	Building, She : /	nnan Road Middle, Shenzhen, China
Applicant Address	: Room 13C, B	D Communications Equipment Limited lock C, Electronics Science and Technology
EUT	: GSM/WCDM	IA Smartphone
Type / Model	: X9 Pro	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

No.: LCS1610191292E

Revison History

Revision	Issue Date	Revisions	Revised By
00	2016-11-05	Initial Issue	Gavin Liang

<u>SHENZ</u>	HEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AFPY-X9PRO	No.: LCS1610191292E
	TABLE OF C	ONTENTS	
1. TES	T STANDARDS AND TEST DESCRIPTION		6
1.1. 1.2. 1.3. 1.4.	PRODUCT DESCRIPTION		
1.5. 2 TES	STATEMENT OF COMPLIANCE		
2.1. 2.2. 2.3. 2.4.	TEST FACILITY Environmental conditions SAR Limits Equipments Used during the Test		
3. SAR	MEASUREMENTS SYSTEM CONFIGURATION		
3.11 3.12 3.13	MANUFACTURING TOLERANCE TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION	TOM	12 13 13 14 15 16 18 18 19 21 26 26 26 27 27 31 36
4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 4.10	SIMULTANEOUS TX SAR CONSIDERATIONS SAR MEASUREMENT VARIABILITY GENERAL DESCRIPTION OF TEST PROCEDURES MEASUREMENT UNCERTAINTY (300MHZ-3GHZ)		
	LIBRATION CERTIFICATES		
5.1 5.2 5.3 5.4	PROBE-EP221 CALIBRATION CERTIFICATE SID835DIPOLE CALIBRATION CERITICATE SID1900 DIPOLE CALIBRATION CERITICATE SID2450 DIPOLE CALIBRATION CERITICATE		
	T TEST PHOTOGRAPHS		
7. EUI	T PHOTOGRAPHS		

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1, 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. IEEE Std 1528[™]-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices KDB447498 D01 General RF Exposure Guidance v06 : Mobile and Portable Device RF Exposure Procedures

and Equipment Authorization Policies <u>KDB648474 D04, Handset SAR v01r03</u>: SAR Evaluation Considerations for Wireless Handsets

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS KDB941225 D01 3G SAR Procedures v03r01: 3G SAR MEAUREMENT PROCEDURES KDB 941225 D06 Hotspot Mode v02r01: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	September 24, 2016
Testing commenced on	:	September 26, 2016
Testing concluded on	:	September 28, 2016

1.4. Product Description

The **Shenzhen KVD Communications Equipment Limited.** Model: X9 Pro or the "EUT" as ref erred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Product Name:	GSM/WCDMA Smartphone	
Trade Mark:	DOOGEE, OneClick	
Model/Type reference:	X9 Pro	
Listed Model(s):	X9 Pro, X-music V	
Madulation Type:	GMSK for GSM/GPRS and 8PSK for EGPRS;QPSK for WCDMA;	
Modulation Type:	DSSS/OFDM for WIFI2.4G; GFSK/8DPSK/π-4DQPSK for Bluetooth	
Device category:	Mobile Device	
Exposure category:	General population/uncontrolled environment	
EUT Type:	Production Unit	
Hardware Version	N381-04	
Software Version:	DOOGEE-X9pro-Android6.0-20161029	
DC 3.8V by Li-ion Battery(3000mAh)		
Power supply: Recharge Voltage: DC 5V/1000mA		
Hotspot:	Supported, power not reduced when Hotspot open	
The EUT is GSM WCDMA, m	obile phone. the mobile phone is intended for speech and Multimedia Message	
Service (MMS) transmission. It is equipped with GPRS/EDGE class 12 for GSM850, PCS1900, WCDMA		
	h, WiFi2.4G and camera functions. For more information see the following	
datasheet		
นสเสราเธธเ		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 110

Technical Characteristics		
GSM		
Support Networks	GSM, GPRS, EGPRS	
Support Band	GSM850, PCS1900	
Frequency	GSM850: 824.2~848.8MHz	
	GSM1900: 1850.2~1909.8MHz	
Power Class:	GSM850:Power Class 5	
	PCS1900:Power Class 0	
Modulation Type:	GMSK for GSM/GPRS, 8-PSK for EGPRS	
GSM Release Version	R99	
GPRS Multislot Class	12	
EGPRS Multislot Class	12	
DTM Mode	Not Supported	
Antenna Type	PIFA Antenna, 0dBi(Max.)	
UMTS		
Support Networks	WCDMA RMC12.2K,HSDPA,HSUPA	
Operation Band:	WCDMA Band II, Band V	
Frequency Range	WCDMA Band II: 1852.4 ~ 1907.6MHz	
	WCDMA Band V: 826.4 ~ 846.6MHz	
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA	
Power Class:	Class 3	
WCDMA Release Version:	R99	
HSDPA Release Version:	R6	
HSUPA Release Version:	R6	
DC-HSUPA Release Version:	Not Supported	
Antenna Type	PIFA Antenna, 0dBi(Max.)	
WIFI 2.4G		
Supported Standards:	802.11b/802.11g/802.11n(HT20&HT40)	
Operation frequency:	2412-2462MHz for 11b/g/n(HT20)	
	2422-2452MHz for 11n(HT40)	
Type of Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM	
Data Rate:	1-11Mbps, 6-54Mbps, up to 150Mbps	
Channel number:	802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7	
Channel separation:	5MHz	
Antenna Description	PIFA Antenna, 0dBi(Max.)	
Bluetooth		
Bluetooth Version:	V4.0	
Modulation:	GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)	
Operation frequency:	2402MHz~2480MHz	
Channel number:	40/79	
Channel separation:	1MHz/2MHz	
Antenna Description	PIFA Antenna, 0dBi(Max.)	

1.5. Statement of Compliance

The maximum of results of SAR found during testing for X9 Pro are follows:

Classment Class	Frequency Band	Head (Report SAR₁-g (W/Kg)	Hotspot (Report SAR _{1-g} (W/Kg)	Body-worn (Report SAR _{1-g} (W/Kg)
	GSM 850	0.180	0.540	0.540
PCE	GSM1900	0.114	0.174	0.174
FUE	WCDMA Band V	0.151	0.501	0.501
	WCDMA Band II	0.133	0.268	0.268
DTS	WIFI2.4G	0.135	0.396	0.396

<Highest Reported standalone SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Frequency Band	Reported SAR _{1-g} (W/kg)	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Hotspot	GSM 850	0.540	PCE	0.936
riotspot	WIFI2.4G	0.396	DTS	0.930

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations: Site Description

EMC Lab.	:	CNAS Registration Number. is L4595.
		FCC Registration Number. is 899208.
		Industry Canada Registration Number. is 9642A-1.
		VCCI Registration Number. is C-4260 and R-3804.
		ESMD Registration Number. is ARCB0108.
		UL Registration Number. is 100571-492.
		TUV SUD Registration Number. is SCN1081.
		TUV RH Registration Number. is UA 50296516-001.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Llumiditu	40 GE 9/
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue) SAR (W/kg) (General Population / (Occupational / **EXPOSURE LIMITS Uncontrolled Exposure Controlled Exposure** Environment) Environment) Spatial Average(averaged over the 0.08 0.4 whole body) Spatial Peak(averaged over any 1 g of 1.6 8.0 tissue) Spatial Peak(hands/wrists/ 4.0 20.0 feet/anklesaveraged over 10 g)

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

No.: LCS1610191292E

2.4. Equipments Used during the Test

				Calibi	ation
Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Calibration Due
PC	Lenovo	G5005	MY42081102	N/A	N/A
Signal Generator	Angilent	E4438C	MY42081396	09/25/2016	09/24/2017
Multimeter	Keithley	MiltiMeter 2000	4059164	10/01/2015	09/30/2016
S-parameter Network Analyzer	Agilent	8753ES	US38432944	09/25/2016	09/24/2017
Wireless Communication Test Set	R & S	CMU200	105988	09/25/2016	09/24/2017
Power Meter	R & S	NRVS	100469	09/25/2016	09/24/2017
Power Sensor	R & S	NRV-Z51	100458	09/25/2016	09/24/2017
Power Sensor	R & S	NRV-Z32	10057	09/25/2016	09/24/2017
E-Field PROBE	SATIMO	SSE5	SN 17/14 EPG214	10/01/2015	09/30/2016
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2015	09/30/2018
DIPOLE 1900	SATIMO	SID 1900	SN 30/14 DIP 1G900-333	10/01/2016	09/30/2018
DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	10/01/2015	09/30/2018
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	10/01/2015	09/30/2016
Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	10/01/2015	09/30/2016
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
6 AXIS ROBOT	KUKA	KR6-R900	501217	N/A	N/A
High Power Solid State Amplifier (80MHz~1000MHz)	Instruments for Industry	CMC150	M631-0627	09/25/2016	09/24/2017
Medium Power Solid State Amplifier (0.8~4.2GHz)	Instruments for Industry	S41-25	M629-0539	09/25/2016	09/24/2017
Wave Tube Amplifier 48 GHz at 20Watt	Hughes Aircraft Company	1277H02F000	102	09/25/2016	09/24/2017

Note:

- Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 110

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

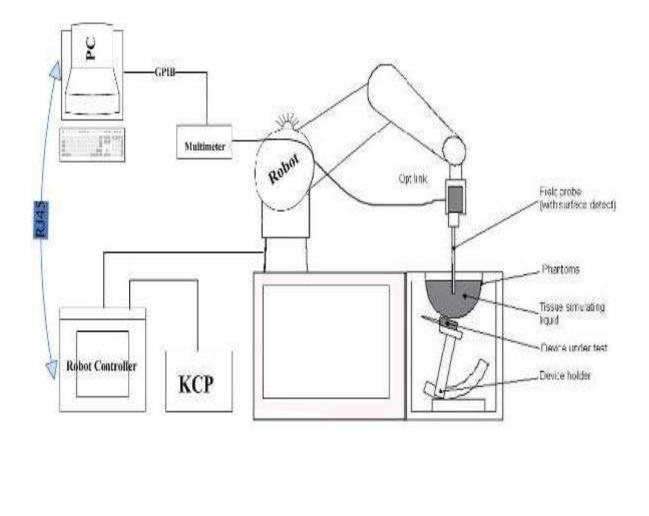
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 110

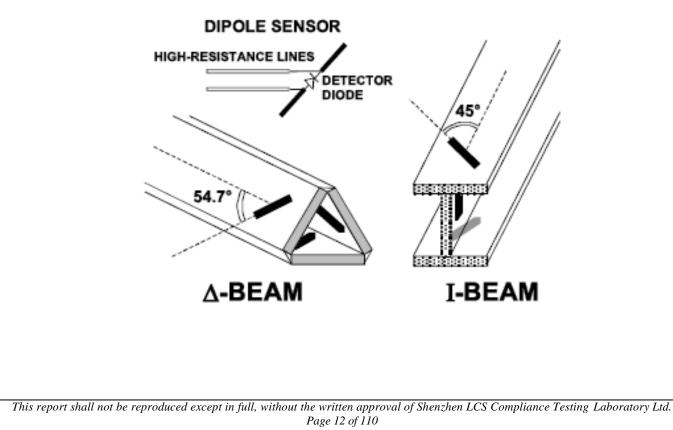
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EP220 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	700 MHz to 3 GHz; Linearity:0.25dB(700 MHz to 3GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 3 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 110

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \operatorname{mm} \pm 0.5 \operatorname{mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orienta above, the measurement re corresponding x or y dimen at least one measurement p	tion, is smaller than the solution must be ≤ the asion of the test device with

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 5x5x7 points within a cube whose base is centered around the maxima found in the preceding area scan if it's frequency Below 2G. If it's frequency is 2G-3G that it's Zoom Scan is 7x7x7 points.

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 5 \ \mathrm{mm}^* \\ 4-6 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm}^* \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{Zoom} (n)	$\leq 5 \mathrm{mm}$	$\begin{array}{c} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$
	graded	$\Delta z_{Zoom}(1)$: between I st two points closest to phantom surface	$\leq 4 \ \mathrm{mm}$	$3-4$ GHz: ≤ 3 mm $4-5$ GHz: ≤ 2.5 mm $5-6$ GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zo}$	om(n-1) mm
Minimum zoom scan volume	a zoom		\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$

Note: $\hat{\sigma}$ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 110

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AFPY-X9PRO	No.: LCS1610191292E
--	---	---------------------	---------------------

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/q], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion facto	r ConvFi
- Diode compressi	on point Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 V_i

Z)

- 1

With Vi = compensated signal of channel i (i = x, y, z)Ui = input signal of channel i (i = x, y, z)cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated: 1221 - M2012 DISTORES (M. 11)

$$E - \text{fieldprobes}: \qquad E_i = \sqrt{\frac{Norm_i \cdot ConvF}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}}{f}$$
With Vi = compensated signal of channel i
[mV/(V/m)2] for E-field Probes
ConvF = sensitivity enhancement in solution
$$E_i = \sqrt{\frac{1}{Norm_i \cdot ConvF}}$$

$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}}{f}$$
(i = x, y, z)
(i = x, y, z)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 110

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report FCC ID: 2AFPY-X9PRO No.: LCS1610191292E

- = sensor sensitivity factors for H-field probes aij f
 - = carrier frequency [GHz]
 - = electric field strength of channel i in V/m Ei = magnetic field strength of channel i in A/m Hi

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR

= local specific absorption rate in mW/g

= total field strength in V/m Etot σ

= conductivity in [mho/m] or [Siemens/m]

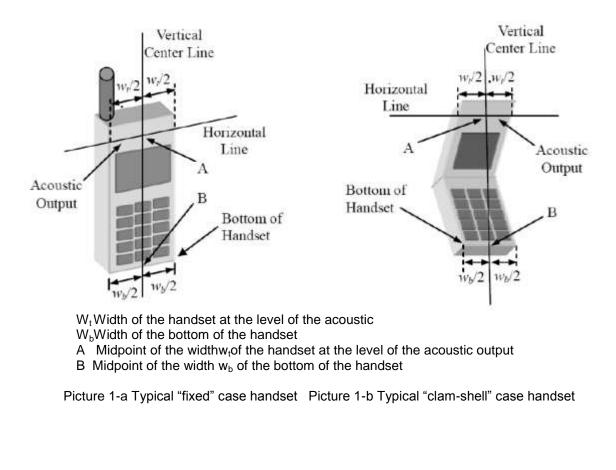
ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

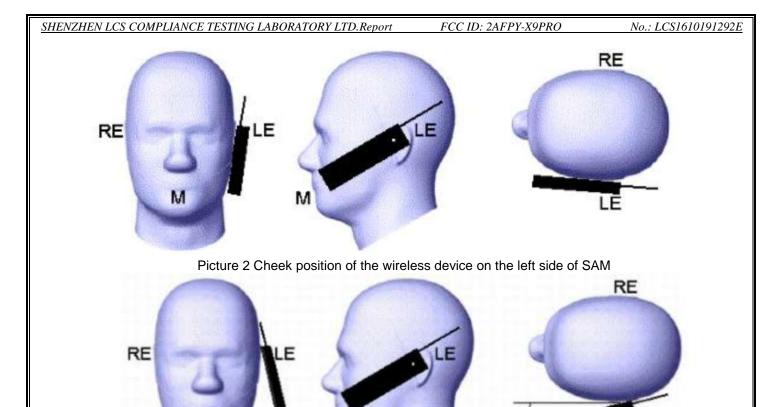
3.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom - the "cheek" position and the "tilt" position.


The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770} \text{ or } P_{(\text{pwe})} = H_{\text{tot}}^2.37.7$$


Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

E_{tot}=total electric field strength in V/m

H_{tot}=total magnetic field strength in A/m

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 110

Picture 3 Tilt position of the wireless device on the left side of SAM

For body SAR test we applied to FCC KDB941225 D03v01, KDB447498 D01v06, KDB248227 D01v02r02,

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

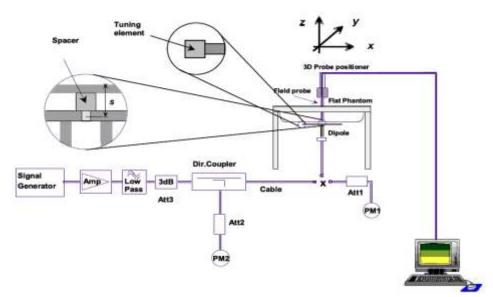
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity	
	%	%	%	%	%	%	%	%	σ	٤r	
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8	
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8	
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8	
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0	
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0	
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1	
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3	
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3	

The composition of the tissue simulating liquid

Target Frequency	Не	ad	B	Body		
(MHz)	ε _r	σ(S/m)	٤r	σ(S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800-2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
2600	39.0	1.96	52.5	2.16		
3000	38.5	2.40	52.0	2.73		
5800	35.3	5.27	48.2	6.00		

3.9. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

Tissue	Measured	Target	t Tissue		Measure	d Tissue		Liquid	
Туре	Frequency (MHz)	٤r	σ	ε _r	Dev.	σ	Dev.	Temp.	Test Data
835H	835	41.5	0.90	41.63	0.31%	0.92	2.22%	21.0	09/26/2016
1900H	1900	40.0	1.40	41.15	2.88%	1.42	1.43%	21.0	09/28/2016
2450H	2450	39.2	1.80	39.16	-0.10%	1.81	0.56%	21.0	09/30/2016
835B	835	55.2	0.97	54.20	-1.81%	0.98	1.03%	21.0	09/27/2016
1900B	1900	53.3	1.52	53.41	0.21%	1.51	-0.66%	21.0	09/29/2016
2450B	2450	52.7	1.95	52.75	0.09%	1.92	-1.54%	21.0	09/30/2016

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

Mixtur	•	e SAR _{1g}	SAR _{1g} SAR _{10g}	Drift 1W Target		arget	Difference percentage(%)		Liqui d	Date	
Туре	ncy (MHz)	Fower	(W/Kg)	(W/Kg)	(%)	SAR _{1q} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Tem p	Dale
		100 mW	0.949	0.614							09/26/
Head	835	Normalize to 1 Watt	9.49	6.14	2.14	9.60	6.20	-1.15	-0.97	21.0	2016
		100 mW	0.986	0.635							09/27/
Body	835	Normalize to 1 Watt	9.86	6.35	-2.61	9.90	6.39	-0.40	-0.63	21.0	2016
		100 mW	4.080	2.033							09/28/
Head	1900	Normalize to 1 Watt	40.80	20.33	0.79	39.84	20.20	2.41	0.64	21.0	2016
		100 mW	4.501	2.108							09/29/
Body	1900	Normalize to 1 Watt	45.01	21.08	3.33	43.33	21.59	3.88	-2.36	21.0	2016
		100 mW	5.210	2.355							09/30/
Head	2450	Normalize to 1 Watt	52.10	23.55	-1 78	53.89	24.15	-3.32	-2.48	21.0	2016
		100 mW	5.306	2.490							09/30/
Mixtur e Type Head Body Head Body Head	2450	Normalize to 1 Watt	53.06	24.90	-0.91	54.65	24.58	-2.91	1.30	21.0	2016

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.11.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

1) Body-Worn Accessory SAR

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 110

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AFPY-X9PRO	

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub- set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note2:	$\Delta_{ACK}, \Delta_{NACK}$ CM=1 for $\beta_c/$	β _d =12/15, β	_{ns} /β _c =24/15.		_{hs} =30/15*β _c		

Table 2: Subtests for UMTS Release 5 HSDPA

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Table 3: Sub-Test 5 Setup for Release 6 HSUPA

Sub - set	β _c	β_{d}	β _d (SF)	β₀/β _d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	$\substack{\beta_{ed} \\ (codes)}$	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³	15/15 ⁽³	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴	15/15 ⁽⁴	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \iff A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \iff \underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

3.11.4 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. Channels with measured maximum output power within ¼ dB are considered to have the same maximum output.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands

c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions .

a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz OFDM configurations using the initial test configuration.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 110

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AFPY-X9PRO	No.: LCS1610191292E
	10010120110100	

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz OFDM configurations using the initial test configuration procedures .

6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 110

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 110

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 110

4.TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

Conducted power measurement results for GSM850/PCS1900 <SIM1>

		Burst Co	nducted pow			_	age power (c	IBm)
GSM 850		Channel/Frequency(MHz)			1	Chann	el/Frequency	/(MHz)
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8
GSM		32.82	32.78	32.81	-9.03dB	23.79	23.75	23.78
	1TX slot	31.79	31.82	31.78	-9.03dB	22.76	22.79	22.75
GPRS	2TX slot	29.62	29.63	29.55	-6.02dB	23.60	23.61	23.53
(GMSK)	3TX slot	28.27	28.25	28.22	-4.26dB	24.01	23.99	23.96
	4TX slot	26.87	26.84	26.78	-3.01dB	23.86	23.83	23.77
	1TX slot	26.25	26.25	26.18	-9.03dB	17.22	17.22	17.15
EGPRS	2TX slot	23.79	23.80	23.77	-6.02dB	17.77	17.78	17.75
(8PSK)	3TX slot	22.25	22.24	22.20	-4.26dB	17.99	17.98	17.94
	4TX slot	20.49	20.46	20.64	-3.01dB	17.48	17.45	17.63
GSM 1900		Burst Conducted power (dBm)					age power (c	
		Chann	Channel/Frequency(MHz)			Chann	el/Frequency	/(MHz)
631	1 1 900	512/	661/	810/		512/	661/	810/
		1850.2	1880	1909.8		1850.2	1880	1909.8
G	SM	29.74	29.72	29.71	-9.03dB	20.71	20.69	20.68
	1TX slot	28.79	28.79	28.72	-9.03dB	19.76	19.76	19.69
GPRS	2TX slot	27.09	27.15	27.10	-6.02dB	21.07	21.13	21.08
(GMSK)	3TX slot	25.52	25.50	26.46	-4.26dB	21.26	21.24	22.20
	4TX slot	24.16	24.12	24.14	-3.01dB	21.15	21.11	21.13
EGPRS	1TX slot	25.11	25.06	25.09	-9.03dB	16.08	16.03	16.06
	2TX slot	23.33	23.31	23.26	-6.02dB	17.31	17.29	17.24
(8PSK)	3TX slot	21.72	21.74	21.64	-4.26dB	17.46	17.48	17.38
	4TX slot	19.40	19.44	19.48	-3.01dB	16.39	16.43	16.47

Conducted power measurement results for GSM850/PCS1900 <SIM2>

Burst Conducted power (dBm) Average power (dBm)							lBm)	
GSM 850		Channel/Frequency(MHz)			1	Chan	nel/Frequency	/(MHz)
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8
G	SM	32.54	32.70	32.64	-9.03dB	23.51	23.67	23.61
	1TX slot	31.75	31.75	31.58	-9.03dB	22.72	22.72	22.55
GPRS	2TX slot	29.56	29.61	29.47	-6.02dB	23.54	23.59	23.45
(GMSK)	3TX slot	28.19	28.23	28.13	-4.26dB	23.93	23.97	23.87
	4TX slot	26.81	26.75	26.77	-3.01dB	23.8	23.74	23.76
	1TX slot	26.21	26.38	26.52	-9.03dB	17.18	17.35	17.49
EGPRS	2TX slot	23.14	23.45	23.55	-6.02dB	17.12	17.43	17.53
(8PSK)	3TX slot	22.42	22.07	22.25	-4.26dB	18.16	17.81	17.99
	4TX slot	20.34	20.45	20.35	-3.01dB	17.33	17.44	17.34
GSM 1900		Burst Conducted power (dBm)					rage power (c	
		Channel/Frequency(MHz)			1	Chan	nel/Frequency	/(MHz)
001	11300	512/	661/	810/	,	512/	661/	810/
		1850.2	1880	1909.8		1850.2	1880	1909.8
G	SM	29.72	29.69	29.71	-9.03dB	20.69	20.66	20.68
	1TX slot	28.78	28.78	28.66	-9.03dB	19.75	19.75	19.63
GPRS	2TX slot	27.02	27.06	27.04	-6.02dB	21.00	21.04	21.02
(GMSK)	3TX slot	25.44	25.48	26.39	-4.26dB	21.18	21.22	22.13
	4TX slot	24.12	24.07	24.10	-3.01dB	21.11	21.06	21.09
EGPRS	1TX slot	25.02	25.00	25.06	-9.03dB	15.99	15.97	16.03
	2TX slot	23.25	23.24	23.19	-6.02dB	17.23	17.22	17.17
(8PSK)	3TX slot	21.71	21.64	21.54	-4.26dB	17.45	17.38	17.28
	4TX slot	19.34	19.41	19.38	-3.01dB	16.33	16.40	16.37

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 110

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB

2. According to the conducted power as above, the GPRS measurements are performed with 3Txslot for GPRS850 and 3Txslot GPRS1900.

3. We will only measured SAR at SIM1 as power higher than SIM2;

Conducted Power Measurement Results(WCDMA Band II/ V)

	band	WCDMA Band II result (dBm)			WCDMA Band V result (dBm)			
ltem	Danu	Chanr	nel/Frequency	(MHz)	Channel/Frequency(MHz)			
	sub-test	9262/1852.4	9400/1880	9538/1907.6	4132/826.4	4183/836.6	4233/846.6	
	12.2kbps RMC	23.66	23.44	23.13	23.48	23.46	23.53	
RMC	64kbps RMC	23.26	23.30	23.23	23.22	23.18	23.25	
RIVIC	144kbps RMC	23.17	23.21	23.14	23.21	23.17	23.16	
	384kbps RMC	23.13	23.09	23.04	23.10	23.03	23.08	
	Sub - Test 1	23.42	23.31	23.22	23.45	23.39	23.18	
HSDPA	Sub - Test 2	22.43	22.44	22.10	22.60	22.24	22.64	
HSDFA	Sub - Test 3	22.15	21.52	21.30	21.72	21.52	21.56	
	Sub - Test 4	20.87	21.00	21.27	21.11	21.67	21.42	
	Sub - Test 1	22.18	22.11	22.21	22.17	22.86	22.13	
HSUPA	Sub - Test 2	21.09	21.24	20.91	20.90	21.56	21.37	
	Sub - Test 3	21.57	21.66	21.62	21.68	21.49	22.19	
	Sub - Test 4	20.42	20.26	21.01	20.29	20.58	20.71	
	Sub - Test 5	21.43	21.13	21.35	20.83	21.31	21.10	

Note: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
			1	13.25
	4	0440	2	13.01
	1	2412	5.5	12.86
			11	12.80
			1	13.01
IEEE 802.11b	6	2437	2	12.56
	0	2437	5.5	12.51
			11	13.04
			1	12.86
	11	2462	2	12.77
			5.5	12.69
			11	12.55
			6	11.24
			9	11.51
			12	11.34
	1	2412	18	11.12
	I	2412	24	11.23
IEEE 802.11g			36	11.18
			48	11.31
			54	11.07
			6	11.17
	6	2437	9	11.06
	U	2437	12	11.10
			18	11.15

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 110

ZHEN LCS COMPLIANC	<u>E TESTING LABORATO</u>	ORY LTD.Report	FCC ID: 2AFPY-X9PRO	No.: LCS16101
			24	10.69
			36	10.63
			48	10.57
			54	10.54
-			6	11.12
			9	10.84
			12	10.77
			18	11.12
	11	2462	24	11.28
			36	11.13
			48	11.15
			54	11.30
			MCS0	10.85
			MCS1	10.00
			MCS1 MCS2	10.66
			MCS2	10.65
	1	2412	MCS4	10.61
			MCS4 MCS5	10.56
			MCS6	10.53
ł			MCS7	10.51
			MCS0	10.73
			MCS1	10.53
			MCS2	10.70
IEEE 802.11n	6	2437	MCS3	10.68
HT20	Ū.	2437	MCS4	10.48
			MCS5	10.54
			MCS6	10.61
-			MCS7	10.50
			MCS0	10.65
			MCS1	10.56
			MCS2	10.60
	11	2462	MCS3	10.60
	11	2402	MCS4	10.51
			MCS5	10.50
			MCS6	10.44
			MCS7	10.43
			MCS0	10.24
			MCS1	10.25
			MCS2	10.42
	_		MCS3	10.22
	3	2422	MCS4	10.10
			MCS5	10.09
			MCS6	10.15
			MCS7	10.13
-			MCS0	10.14
			MCS0	10.13
			MCS1	10.21
IEEE 802.11n			MCS2	10.17
HT40	6	2437	MCS3	10.07
H140			MCS4 MCS5	10.14
			MCS5	10.10
			MCS6 MCS7	10.16
-				
			MCS0	10.01
			MCS1	10.07
			MCS2	10.03
	9	2452	MCS3	9.83
	v	LTUL	MCS4	10.01
			MCS5	9.40
			MCS6	10.18
			MCS7	9.78

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 110

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AFPY-X9PRO	No.: LCS1610191292E
--	---	---------------------	---------------------

Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

The conducted power measurement results for BluetoothV4.0							
Mode	Channel	Frequency (MHz)	Conducted Output Average Power (dBm)				
	0	2402	-5.123				
BT-LE	19	2440	-5.341				
	39	2480	-5.294				
	00	2402	3.192				
GFSK	39	2441	3.767				
	78	2480	3.882				
	00	2402	1.921				
8DPSK	39	2441	2.943				
	78	2480	3.001				
π/4-DQPSK	00	2402	2.161				
	39	2441	2.533				
	78	2480	2.472				

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
4.0	5	2.45	0.8

Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.8 < 3, SAR testing is not required.

4.2. Manufacturing tolerance

GSM Speech <sim1></sim1>								
GSM 850 (GMSK) (Burst Average Power)								
Channel	Channel 128	Channel 190	Channel 251					
Target (dBm)	32.0	32.0	32.0					
Tolerance ±(dB)	1.0	1.0	1.0					
GSM 1900 (GMSK) (Burst Average Power)								
Channel	Channel 512	Channel 661	Channel 810					
Target (dBm)	29.0	29.0	29.0					
Tolerance ±(dB)	1.0	1.0	1.0					

	GSM 850 GPRS	(GMSK) (Burst Av	/erage Power)				
Ch	annel	128	190	251			
1 Txslot	Target (dBm)	31.0	31.0	31.0			
TIXSIO	Tolerance ±(dB)	1.0	1.0	1.0			
2 Txslot	Target (dBm)	29.0	29.0	29.0			
2 1 XSIOL	Tolerance ±(dB)	1.0	1.0	1.0			
3 Txslot	Target (dBm)	28.0	28.0	28.0			
5 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0			
4 Txslot	Target (dBm)	26.0	26.0	26.0			
4 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0			
	GSM 850 EDGE	(8PSK) (Burst Av	erage Power)				
Ch	annel	128	190	251			
1 Txslot	Target (dBm)	26.0	26.0	26.0			
1 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0			
2 Txslot	Target (dBm)	23.0	23.0	23.0			
2 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0			
3 Txslot	Target (dBm)	22.0	22.0	22.0			
3 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0			
4 Txslot	Target (dBm)	20.0	20.0	20.0			
4 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0			
GSM 1900 GPRS (GMSK) (Burst Average Power)							
Ch	annel	512	661	810			
1 Txslot	Target (dBm)	28.0	28.0	28.0			
1 1 1 300	Tolerance ±(dB)	1.0	1.0	1.0			
2 Txslot	Target (dBm)	27.0	27.0	27.0			
2 1 / 3101	Tolerance ±(dB)	1.0	1.0	1.0			
3 Txslot	Target (dBm)	25.0	25.0	25.0			
5 1 / 3101	Tolerance ±(dB)	1.0	1.0	1.0			
4 Txslot	Target (dBm)	24.0	24.0	24.0			
4 1 7 3101	Tolerance ±(dB)	1.0	1.0	1.0			
GSM 1900 EDGE (8PSK) (Burst Average Power)							
Ch	annel	512	661	810			
1 Txslot	Target (dBm)	25.0	25.0	25.0			
1 I XSIOT	Tolerance ±(dB)	1.0	1.0	1.0			
2 Txslot	Target (dBm)	23.0	23.0	23.0			
2 1 7 2101	Tolerance ±(dB)	1.0	1.0	1.0			
3 Txslot	Target (dBm)	21.0	21.0	21.0			
3 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0			
4 Txslot	Target (dBm)	19.0	19.0	19.0			
4 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0			

	GSM	Speech	<sim2></sim2>
--	-----	--------	---------------

GSM 850 (GMSK) (Burst Average Power)					
Channel	Channel 251	Channel 190	Channel 128		
Target (dBm)	32.0	32.0	32.0		
Tolerance ±(dB)	1.0	1.0	1.0		
GSM 1900 (GMSK) (Burst Average Power)					
Channel	Channel 810	Channel 661	Channel 512		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 110

SHENZHEN L	CS COMPLIANCE TH	ESTING LABORATORY L	TD.Report	FC	CC ID: 2AFPY-X9PF	0 No.: LCS16101	1912921
SILLIPERIE			2				
	Target (dBm) 29.0				29.0	29.0	
	Tolerance ±(dE	3) 1.0			1.0	1.0	
		GSM 850 GPRS	· /		verage Power)		
	Cha	annel	12		190	251	
	1 Txslot	Target (dBm)	31		31.0	31.0	
	1 1 20101	Tolerance ±(dB)	1.		1.0	1.0	
	2 Txslot	Target (dBm)	29		29.0	29.0	
	2 1 10101	Tolerance ±(dB)	1.		1.0	1.0	
	3 Txslot	Target (dBm)	28		28.0	28.0	
	0 1 20101	Tolerance ±(dB)	1.		1.0	1.0	
	4 Txslot	Target (dBm)	26		26.0	26.0	
	1 1 1000	Tolerance ±(dB)	1.		1.0	1.0	
		GSM 850 EDGE					
	Cha	annel	12		190	251	
	1 Txslot	Target (dBm)	26		26.0	26.0	
	1 1 20101	Tolerance ±(dB)	1.		1.0	1.0	
	2 Txslot	Target (dBm)	23		23.0	23.0	
	2 1 × 3101	Tolerance ±(dB)	1.		1.0	1.0	
	3 Txslot	Target (dBm)	22		22.0	22.0	
		Tolerance ±(dB)	1.		1.0	1.0	
	4 Txslot	Target (dBm)	20		20.0	20.0	
	1 1 1000	Tolerance ±(dB)	1.		1.0	1.0	
		GSM 1900 GPRS					
	Cha	annel	51		661	810	
	1 Txslot	Target (dBm)	28		28.0	28.0	
	1 1 1000	Tolerance ±(dB)	1.		1.0	1.0	
	2 Txslot	Target (dBm)	27		27.0	27.0	
	2 10000	Tolerance ±(dB)	1.		1.0	1.0	
	3 Txslot	Target (dBm)	25		25.5	25.5	
	0 1 X0101	Tolerance ±(dB)	1.		1.0	1.0	
	4 Txslot	Target (dBm)	24		24.0	24.0	
	4 1 X 3101	Tolerance ±(dB)	1.		1.0	1.0	
		GSM 1900 EDGE					
	Cha	annel	51		661	810	
	1 Txslot	Target (dBm)	25		25.0	25.0	
	1 1 / 0101	Tolerance ±(dB)	1.		1.0	1.0	
	2 Txslot	Target (dBm)	23		23.0	23.0	
	2 17000	Tolerance ±(dB)	1.		1.0	1.0	
	3 Txslot	Target (dBm)	21		21.0	21.0	
	0 1 13101	Tolerance ±(dB)	1.		1.0	1.0	
	4 Txslot	Target (dBm)	19		19.0	19.0	
		Tolerance ±(dB)	1.	0	1.0	1.0	

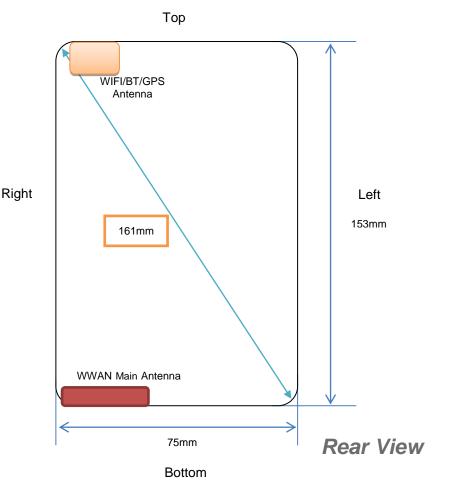
No.: LCS1610191292E

	U	MTS				
	UMTS Band V					
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	23.0	23.0	23.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	UMTS Band V I	HSDPA(sub-test 1)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	23.0	23.0	23.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	UMTS Band V I	HSDPA(sub-test 2)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	22.0	22.0	22.0			
Tolerance ±(dB)	1.0	1.0	1.0			
		HSDPA(sub-test 3)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	21.0	21.0	21.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	UMTS Band V I	HSDPA(sub-test 4)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	21.0	21.0	21.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	UMTS Band V I	ISUPA(sub-test 1)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	22.0	22.0	22.0			
Tolerance ±(dB)	1.0	1.0	1.0			
UMTS Band V HSUPA(sub-test 2)						
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	21.0	21.0	21.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	UMTS Band V I	HSUPA(sub-test 3)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	22.0	22.0	22.0			
Tolerance ±(dB)	1.0	1.0	1.0			
		HSUPA(sub-test 4)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	20.0	20.0	20.0			
Tolerance ±(dB)	1.0	1.0	1.0			
		HSUPA(sub-test 5)				
Channel	Channel 4132	Channel 4183	Channel 4233			
Target (dBm)	21.0	21.0	21.0			
Tolerance ±(dB)	1.0	1.0	1.0			

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E


UMTS Band II								
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	23.0	23.0	23.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II HSDPA(sub-test 1)							
Channel Channel 9262 Channel 9400 Channel 95								
Target (dBm)	23.0	23.0	23.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II H	ISDPA(sub-test 2)	-					
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	22.0	22.0	22.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II H	ISDPA(sub-test 3)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II H	ISDPA(sub-test 4)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II H	ISUPA(sub-test 1)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	22.0	22.0	22.0					
Tolerance ±(dB)	1.0	1.0	1.0					
UMTS Band II HSUPA(sub-test 2)								
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
		ISUPA(sub-test 3)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II H	ISUPA(sub-test 4)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.5	20.5	20.5					
Tolerance ±(dB)	1.0	1.0	1.0					
		ISUPA(sub-test 5)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	22.0	22.0	22.0					
Tolerance ±(dB)	1.0	1.0	1.0					

WiFi 2.4G							
802.11b (Average)							
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	13.0	13.0	13.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	802.11g (A	verage)					
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	11.0	11.0	11.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	802.11n HT20 (Average)						
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	10.0	10.0	10.0				
Tolerance ±(dB)	1.0	1.0	1.0				
802.11n HT40 (Average)							
Channel	Channel 3	Channel 6	Channel 9				
Target (dBm)	10.0	10.0	10.0				
Tolerance ±(dB)	1.0	1.0	1.0				

Bluetooth V4.0						
BLE-GFSK (Average)						
Channel	Channel 0	Channel 19	Channel 39			
Target (dBm)	-6.0	-6.0	-6.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	GFSK (Av	verage)				
Channel	Channel 0	Channel 39	Channel 78			
Target (dBm)	3.0	3.0	3.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	8DPSK (A	verage)				
Channel	Channel 0	Channel 39	Channel 78			
Target (dBm)	2.5	2.5	2.5			
Tolerance ±(dB)	1.0	1.0	1.0			
π/4DQPSK (Average)						
Channel	Channel 0	Channel 39	Channel 78			
Target (dBm)	2.0	2.0	2.0			
Tolerance ±(dB)	1.0	1.0	1.0			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 110

4.3. Transmit Antennas and SAR Measurement Position

Antenna information:

WWAN Main Antenna	GSM/UMTS TX/RX
WLAN/GPS/BT Antenna	WLAN/BT TX/RX

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 161mm>160mm, it is considered as "Phablet" device.

2). According to the KDB941225 D06 Hot Spot SAR v02, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

Distance of The Antenna to the EUT surface and edge (mm)							
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side						
WWAN	<5	<5	142	<5	40	<5	
BT/WLAN	<5	<5	<25	140	45	<5	

Positions for SAR tests; Hotspot mode							
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side						
WWAN	Yes	Yes	No	Yes	No	Yes	
BT/WLAN	Yes	Yes	Yes	No	No	No	

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are \geq 9cm*5cm, the test distance is 10mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 110

4.4. SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

The product with 2 SIMs and 2 SIMs(SIM1 and SIM2) can not used Simultaneous, we tested 2 SIMs(SIM1 and SIM2) and recorded worst case at SIM 1

Duty Cycle					
Test Mode	Duty Cycle				
Speech for GSM850/1900	1:8				
GPRS850	1:2.67				
GPRS1900	1:2.67				
UMTS	1:1				
WiFi2450	1:1				

.....

.

5.3.1 SAR Results

				SAR	Values [GSM	850]				
				Conduct	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Time slots	Test Position	ed Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			me	easured / rep	orted SAR n	umbers - l	Head			
190	836.6	Voice	Left Cheek	32.78	33.00	2.07	1.052	0.171	0.180	Plot 1
190	836.6	Voice	Left Tilt	32.78	33.00	1.17	1.052	0.124	0.130	
190	836.6	Voice	Right Cheek	32.78	33.00	4.03	1.052	0.160	0.168	
190	836.6	Voice	Right Tilt	32.78	33.00	-0.74	1.052	0.103	0.108	
		mea	sured / reporte	d SAR num	bers - Body (hotspot o	oen, dista	nce 10mm))	
190	836.6	3Txslots	Front	28.25	29.00	0.01	1.189	0.325	0.386	
190	836.6	3Txslots	Rear	28.25	29.00	1.68	1.189	0.454	0.540	Plot 2
190	836.6	3Txslots	Right	28.25	29.00	-1.30	1.189	0.285	0.371	
190	836.6	3Txslots	Bottom	28.25	29.00	-3.51	1.189	0.312	0.386	

SAR Values [GSM 1900]

				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			me	asured / repo	rted SAR nui	nbers - I	lead			
661	1880.0	Voice	Left Cheek	29.72	30.00	-0.34	1.067	0.107	0.114	Plot 3
661	1880.0	Voice	Left Tilt	29.72	30.00	2.63	1.067	0.085	0.091	
661	1880.0	Voice	Right Cheek	29.72	30.00	-4.07	1.067	0.098	0.105	
661	1880.0	Voice	Right Tilt	29.72	30.00	3.14	1.067	0.070	0.075	
		meas	ured / reported	d SAR numbe	ers – Body (h	otspot o	pen, dista	ance 10mm)	
661	1880.0	3Txslots	Front	25.50	26.00	1.82	1.122	0.114	0.128	
661	1880.0	3Txslots	Rear	25.50	26.00	2.20	1.122	0.155	0.174	Plot 4
661	1880.0	3Txslots	Right	25.50	26.00	2.93	1.122	0.088	0.137	
661	1880.0	3Txslots	Bottom	25.50	26.00	-0.82	1.122	0.122	0.128	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 110

SHENZ	ZHEN LCS C	OMPLIANC	E TESTING LAB	ORATORY LTD.	Report 1	FCC ID: 2	AFPY-X9PR	20	No.: LCS161	10191292 <u>E</u>
				SAR Value	es [WCDMA B	and V]				
Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
	1		me	asured / repo		nbers - I	Head	L		
4183	836.6	RMC	Left Cheek	23.46	24.00	1.03	1.132	0.126	0.143	
4183	836.6	RMC	Left Tilt	23.46	24.00	3.16	1.132	0.069	0.078	
4183	836.6	RMC	Right Cheek	23.46	24.00	-1.68	1.132	0.133	0.151	Plot 5
4183	836.6	RMC	Right Tilt	23.46	24.00	-1.07	1.132	0.084	0.095	
		measu	ured / reporte	d SAR numbe	ers - Body (he	otspot o	ben, dista	nce 10mm		
4183	836.6	RMC	Front	23.46	24.00	-0.44	1.132	0.355	0.402	
4183	836.6	RMC	Rear	23.46	24.00	0.27	1.132	0.442	0.501	Plot 6
4183	836.6	RMC	Right	23.46	24.00	-0.52	1.132	0.281	0.369	
4183	836.6	RMC	Bottom	23.46	24.00	-2.74	1.132	0.326	0.402	
				SAR Value	es [WCDMA B	and II]				
				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq.	Channel		Power	Allowed	Drift	Scaling			Graph
•	(MHz)	Туре	Position	(dBm)	Power (dBm)	(%)	Factor	Measured	Reported	Results
	(MHz)	Туре			(dBm)	(%)		Measured	Reported	Results
9400	(<i>MHz</i>) 1880.0	Type RMC		(dBm)	(dBm)	(%)		0.104	Reported 0.118	Results
			mea	(dBm) asured / repo	(dBm) rted SAR nur	(%) nbers –	Head		-	Results
9400	1880.0	RMC	<i>mea</i> Left Cheek	(dBm) asured / repo 23.44	(dBm) rted SAR nur 24.00	(%) nbers – 2.31	Head 1.138	0.104	0.118	Results Plot 7
9400 9400	1880.0 1880.0	RMC RMC	<i>me</i> a Left Cheek Left Tilt	(dBm) asured / repo 23.44 23.44	(dBm) rted SAR nur 24.00 24.00	(%) nbers – 7 2.31 -1.72	Head 1.138 1.138	0.104 0.074	0.118	
9400 9400 9400	1880.0 1880.0 1880.0 1880.0	RMC RMC RMC RMC measure	Left Cheek Left Tilt Right Cheek	(dBm) asured / repo 23.44 23.44 23.44 23.44	(dBm) rted SAR num 24.00 24.00 24.00 24.00	(%) mbers – 2.31 -1.72 -1.05 0.69	Head 1.138 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082	0.118 0.084 0.133 0.093	
9400 9400 9400	1880.0 1880.0 1880.0	RMC RMC RMC RMC MC mease RMC	Left Cheek Left Tilt Right Cheek Right Tilt	(dBm) asured / repo 23.44 23.44 23.44 23.44	(dBm) rted SAR num 24.00 24.00 24.00 24.00	(%) mbers – 2.31 -1.72 -1.05 0.69	Head 1.138 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082	0.118 0.084 0.133 0.093	
9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0	RMC RMC RMC RMC measure	mea Left Cheek Left Tilt Right Cheek Right Tilt ured / reporte	(dBm) asured / repo 23.44 23.44 23.44 23.44 23.44 d SAR numbe	(dBm) rted SAR nur 24.00 24.00 24.00 24.00 ers - Body (ho	(%) nbers – (2.31 -1.72 -1.05 0.69 otspot o	Head 1.138 1.138 1.138 1.138 1.138 pen, dista	0.104 0.074 0.117 0.082 ance 10mm	0.118 0.084 0.133 0.093	
9400 9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0	RMC RMC RMC RMC MC RMC RMC RMC RMC	Left Cheek Left Tilt Right Cheek Right Tilt ured / reporte Front	(dBm) asured / repo 23.44 23.44 23.44 23.44 d SAR numbe 23.44 23.44 23.44 23.44	(dBm) rted SAR num 24.00 24.00 24.00 24.00 ers - Body (he 24.00 24.00 24.00 24.00 24.00 24.00	(%) nbers – 2.31 -1.72 -1.05 0.69 otspot o 0.32 -0.80 -3.81	Head 1.138 1.138 1.138 1.138 0en, dista 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082 ance 10mm, 0.150 0.236 0.132	0.118 0.084 0.133 0.093 0.171 0.268 0.191	Plot 7
9400 9400 9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0 1880.0 1880.0	RMC RMC RMC RMC mease RMC RMC	mea Left Cheek Left Tilt Right Cheek Right Cheek Right Tilt ured / reporte Front Rear	(dBm) asured / repo 23.44 23.44 23.44 23.44 d SAR numbe 23.44 23.44	(dBm) rted SAR num 24.00 24.00 24.00 24.00 ers - Body (ho 24.00 24.00	(%) nbers – 7 2.31 -1.72 -1.05 0.69 otspot o 0.32 -0.80	Head 1.138 1.138 1.138 1.138 0en, dista 1.138 1.138 1.138	0.104 0.074 0.117 0.082 ance 10mm 0.150 0.236	0.118 0.084 0.133 0.093 0.171 0.268	Plot 7
9400 9400 9400 9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0	RMC RMC RMC RMC MC RMC RMC RMC RMC	mea Left Cheek Left Tilt Right Cheek Right Tilt Ured / reporte Front Rear Right	(dBm) asured / repo 23.44 23.44 23.44 23.44 d SAR numbe 23.44 23.44 23.44 23.44 23.44	(dBm) rted SAR num 24.00 24.00 24.00 ers - Body (ho 24.00 24.00 24.00 24.00 24.00 24.00	(%) nbers – 2.31 -1.72 -1.05 0.69 otspot o 0.32 -0.80 -3.81 2.72	Head 1.138 1.138 1.138 1.138 0en, dista 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082 ance 10mm, 0.150 0.236 0.132	0.118 0.084 0.133 0.093 0.171 0.268 0.191	Plot 7
9400 9400 9400 9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0	RMC RMC RMC RMC MC RMC RMC RMC RMC	mea Left Cheek Left Tilt Right Cheek Right Tilt Ired / reporte Front Rear Right Bottom	(dBm) asured / repo 23.44 23.44 23.44 23.44 d SAR numbe 23.44 23.44 23.44 23.44 23.44 23.44 23.44	(dBm) rted SAR num 24.00 24.00 24.00 24.00 ers - Body (he 24.00 24.00 24.00 24.00 24.00 24.00	(%) nbers – 2.31 -1.72 -1.05 0.69 otspot o 0.32 -0.80 -3.81 2.72 4G]	Head 1.138 1.138 1.138 1.138 0en, dista 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082 ance 10mm, 0.150 0.236 0.132	0.118 0.084 0.133 0.093 0.171 0.268 0.191 0.171	Plot 7
9400 9400 9400 9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0	RMC RMC RMC RMC MC RMC RMC RMC RMC	mea Left Cheek Left Tilt Right Cheek Right Tilt Ired / reporte Front Rear Right Bottom	(dBm) asured / repo 23.44 23.44 23.44 23.44 d SAR numbe 23.44 23.44 23.44 23.44 23.44	(dBm) rted SAR num 24.00 24.00 24.00 24.00 ers - Body (ho 24.00	(%) nbers – 2.31 -1.72 -1.05 0.69 otspot o 0.32 -0.80 -3.81 2.72	Head 1.138 1.138 1.138 1.138 0en, dista 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082 ance 10mm, 0.150 0.236 0.132 0.168	0.118 0.084 0.133 0.093 0.171 0.268 0.191 0.171	Plot 7
9400 9400 9400 9400 9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 Freq.	RMC RMC RMC RMC RMC RMC RMC RMC RMC	Left Cheek Left Tilt Right Cheek Right Tilt ured / reporte Front Rear Right Bottom	(dBm) asured / repo 23.44 23.44 23.44 23.44 d SAR numbe 23.44 23.44 23.44 23.44 23.44 23.44 23.44 23.44 23.44 23.44 23.44 23.44	(dBm) rted SAR num 24.00 25	(%) nbers – 1 2.31 -1.72 -1.05 0.69 otspot o 0.32 -0.80 -3.81 2.72 4G] Power Drift (%)	Head 1.138 1.138 1.138 1.138 0en, dista 1.138 1.138 1.138 1.138 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082 ance 10mm, 0.150 0.236 0.132 0.168 SAR _{1-g} res	0.118 0.084 0.133 0.093 0.171 0.268 0.191 0.171 0.171	Plot 7 Plot 8 Plot 8
9400 9400 9400 9400 9400 9400 9400 9400	1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 Freq.	RMC RMC RMC RMC RMC RMC RMC RMC RMC	Left Cheek Left Tilt Right Cheek Right Tilt ured / reporte Front Rear Right Bottom	(dBm) asured / repo 23.44 23.44 23.44 23.44 d SAR numbe 23.44 23.44 23.44 23.44 23.44 23.44 23.44 Conducted Power (dBm)	(dBm) rted SAR num 24.00 25	(%) nbers – 1 2.31 -1.72 -1.05 0.69 otspot o 0.32 -0.80 -3.81 2.72 4G] Power Drift (%)	Head 1.138 1.138 1.138 1.138 0en, dista 1.138 1.138 1.138 1.138 1.138 1.138 1.138 1.138	0.104 0.074 0.117 0.082 ance 10mm, 0.150 0.236 0.132 0.168 SAR _{1-g} res	0.118 0.084 0.133 0.093 0.171 0.268 0.191 0.171 0.171	Plot 7 Plot 8 Plot 8

Right Cheek 2.26 6 2437 DSSS 13.25 14.00 1.189 0.114 0.135 Plot 9 13.25 14.00 0.078 6 2437 DSSS **Right Tilt** -0.21 1.189 0.093 measured / reported SAR numbers - Body (hotspot open, distance 10mm) 6 2437 DSSS Front 13.25 14.00 -1.27 1.189 0.216 0.257 DSSS 13.25 1.189 0.333 0.396 Plot 10 6 2437 Rear 14.00 -1.21 2437 DSSS Right 13.25 14.00 3.15 1.189 0.202 0.240 6 2437 DSSS 14.00 0.265 6 Тор 13.25 4.02 1.189 0.223

Note:

1. The value with black color is the maximum Reported SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. Per KDB 941225 D02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dBhigher than RMC, or reported SAR with RMC 12.2kbps setting is \leq 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.

4. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. So ODFM SAR test is not required. 5. Per KDB 648474 D04, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is \leq 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 110

5.3.3 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

 (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01 simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1 + SAR_2)^{1.5}}{(\text{neak location separation mm})} < 0.04$$

(peak location separation, mm)

	Estimated stand alone SAR						
Communication system	Frequency (MHz)	Configuration	Maximum Power (including tune-up tolerance) (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)		
Bluetooth*	2450	Head	0.0	5	0.105		
Bluetooth*	2450	Hotspot	0.0	10	0.052		
Bluetooth*	2450	Body-worn	0.0	10	0.052		

Remark:

- Bluetooth*- Including Lower power Bluetooth 1.
- Maximum average power including tune-up tolerance; 2.
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine З. SAR test exclusion
- Body as body use distance is 10mm from manufacturer declaration of user manual. 4.

4.5. Simultaneous TX SAR Considerations

4.5.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT and WiFi modules sharing same antenna, GSM/WCDMA modules sharing a single antenna; Application Simultaneous Transmission information:

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)
	850	VO	Yes,WLAN or BT	N/A
GSM	1900	VO	Tes, WLAN OF DT	IN/A
	GPRS/EDGE	DT	Yes,WLAN or BT	N/A
WCDMA	Band II/ Band V	DT	Yes,WLAN or BT	N/A
WLAN	2450	DT	Yes,GSM,GPRS,EDGE,UMTS	Yes
BT	2450	DT	Yes,GSM,GPRS,EDGE,UMTS	N/A
Note:VO-Voice	Service only DT-Digital	Transport		

Service only;D1-Digital Transpor

Note: BT and WLAN can be active at the same time, but only with interleaving of packages switched on board level. That means that they don't transmit at the same time.

BLE-Bluetooth low energy;

BT- Classical Bluetooth

4.5.2 Evaluation of Simultaneous SAR

Head Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM SAR_{1-g} GSM850 Reported GSM1900 Reported WiFi2.4G Reported Peak location MAX. Test Simut Meas. SAR1-g SAR_{1-g} ΣSAR_{1-g} (W/Kg) SAR_{1-g} Limit separation Position Required (W/Kg) (W/Kg) (W/Kg) (W/Kg) ratio Left Cheek 0.114 0.180 0.124 0.482 no 1.6 no 0.130 0.077 Left Tilt 0.091 0.267 1.6 no no **Right Cheek** 0.168 0.105 0.135 0.303 1.6 no no **Right Tilt** 0.108 0.075 0.093 0.201 1.6 no no

Simultaneous transmission SAR for WiFi and UMTS SAR_{1-g} UMTS Band V MAX. UMTS Band II WiFi2.4G Reported Peak location Simut Meas. Test ΣSAR_{1-g} Reported SAR_{1-g} Reported SAR_{1-g} SAR1-g Limit separation Position Required (W/Kg) (W/Kg) (W/Kg) (W/Kg) (W/Kg) ratio Left Cheek 0.143 0.118 0.124 0.267 1.6 no no Left Tilt 0.078 0.084 0.077 1.6 0.161 no no **Right Cheek** 0.151 0.133 0.135 0.286 1.6 no no **Right Tilt** 0.095 0.093 0.093 0.188 1.6 no no

	Simultaneous transmission SAR for BT and GSM							
Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	BT Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Meas. Required	
Left Cheek	0.180	0.114	0.105	0.285	1.6	no	no	
Left Tilt	0.130	0.091	0.105	0.235	1.6	no	no	
Right Cheek	0.168	0.105	0.105	0.273	1.6	no	no	
Right Tilt	0.108	0.075	0.105	0.213	1.6	no	no	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 110

		Simultaneous tran	smission SAR	for BT and U	MTS		
Test Position	UMTS Band V Reported SAR _{1-g} (W/Kg)	UMTS Band II Reported SAR _{1-g} (W/Kg)	BT Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Me Require
eft Cheek	0.143	0.118	0.105	0.248	1.6	no	no
Left Tilt	0.078	0.084	0.105	0.189	1.6	no	no
ight Cheek	0.151	0.133	0.105	0.256	1.6	no	no
Right Tilt	0.095	0.093	0.105	0.200	1.6	no	no
Body H	lotspot Exposure	Conditions Simultaneous trans	smission SAR 1	for WiFi and	GSM		
Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	WiFi2.4G Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Me Require
Front	0.386	0.128	0.257	0.643	1.6	no	no
Rear	0.540	0.174	0.396	0.936	1.6	no	no
Left	/	/	/	/	1.6	no	no
Right	0.371	0.137	0.240	0.611	1.6	no	no
Bottom	0.386	0.128	/	/	1.6	no	no
Тор	/	/	0.265	0.265	1.6	no	no
·	•	Simultaneous trans	mission SAP f	or WiEi and I	IMTS		•
			WiFi2.4G				
Test Position	UMTS Band V Reported SAR _{1-g} (W/Kg)	UMTS Band II Reported SAR _{1-g} (W/Kg)	Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Me Require
Front	0.402	0.171	0.257	0.659	1.6	no	no
Rear	0.501	0.268	0.396	0.897	1.6	no	no
Left	/	/	/	/	1.6	no	no
Right	0.369	0.191	0.240	0.609	1.6	no	no
Bottom	0.402	0.171	/	/	1.6	no	no
Тор	/	/	0.265	0.265	1.6	no	no
		Simultaneous trar	smission SAR	for BT and G	SM		
Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	BT Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Me Require
Front	0.386	0.128	0.052	0.438	1.6	no	no
Rear	0.540	0.174	0.052	0.592	1.6	no	no
Left	/	/	/	/	1.6	no	no
Right	0.371	0.137	0.052	0.423	1.6	no	no
Bottom	0.386	0.128	/	0.386	1.6	no	no
Тор	/	/	0.052	0.052	1.6	no	no
		Simultaneous tran	smission SAR	for BT and U	MTS		
Test Position	UMTS Band V Reported SAR _{1-g} (W/Kg)	UMTS Band II Reported SAR _{1-g} (W/Kg)	BT Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Me Require
Front	0.402	0.171	0.052	0.454	1.6	no	no
	0.501	0.268	0.052	0.553	1.6	no	no
Rear		/	/	/	1.6	no	no
Rear Left	/	1		0.404	1.6		
	/ 0.369	0.191	0.052	0.421	1.6	no	no
Left	/ 0.369 0.402	0.191 0.171	0.052	0.421	1.6	no	no no

1. The WiFi and BT share same antenna, so cannot transmit at same time.

2. The value with block color is the maximum values of standalone 3. The value with blue color is the maximum values of ΣSAR_{1-g}

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 110

4.6. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with $\leq 20\%$ variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

						First Re	epeated
Frequency Band	Air Interface	RF Exposure Configuration	Test Position	Repeated SAR (yes/no)	Highest Measured SAR _{1-a} (W/Kg)	Measued SAR _{1-a} (W/Kg)	Largest to Smallest SAR Ratio
850MHz	GSM850	Standalone	Body-Rear	no	0.454	n/a	n/a
03010112	WCDMA Band V	Standalone	Body-Rear	no	0.442	n/a	n/a
1900MHz	GSM1900	Standalone	Body-Rear	no	0.155	n/a	n/a
1900IVINZ	WCDMA Band II	Standalone	Body-Rear	no	0.236	n/a	n/a
2450MHz	2.4GWLAN	Standalone	Body-Rear	no	0.333	n/a	n/a

Remark:

4.7. General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- 6. WiFi was tested in 802.11b/g/n mode with 1 Mbit/s and 6 Mbit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 7. Required WiFi test channels were selected according to KDB 248227
- 8. According to FCC KDB 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WiFi hot spot mode.
- 9. Per FCC KDB 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WiFi hot spot function.
- 10. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 110

^{1.} Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

• \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz • \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 11. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.
- 12. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
- Per KDB648474 D04 require for phablet SAR test considerations, For Mobile Phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 14. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

4.8. Measurement Uncertainty (300MHz-3GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

No.: LCS1610191292E

4.9. System Check Results

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE5(SN17/14 EPG214) Test Date: September 26, 2016

Medium(liquid type)	HSL_850
Frequency (MHz)	835.00000
Relative permittivity (real part)	41.63
Conductivity (S/m)	0.92
Input power	100mW
Crest Factor	1.0
Conversion Factor	4.83
Variation (%)	2.140000
SAR 10g (W/Kg)	0.614349
SAR 1g (W/Kg)	0.949452
SURFACE SAR	VOLUME SAR
Concernance Reference laboratory Concernance Reference laboratory Concernance Reference laboratory Reference laboratory Refer	Others fold Others fold <t< td=""></t<>

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 110

No.: LCS1610191292E

Test mode:835MHz(Body) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE5(SN17/14 EPG214) Test Date: September 27, 2016

Medium(liquid type)	MSL_850
Frequency (MHz)	835.0000
Relative permittivity (real part)	54.20
Conductivity (S/m)	0.98
Input power	100mW
Crest Factor	1.0
Conversion Factor	5.02
Variation (%)	-2.610000
SAR 10g (W/Kg)	0.634845
SAR 1g (W/Kg)	0.985579
SURFACE SAR	VOLUME SAR

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 110

No.: LCS1610191292E

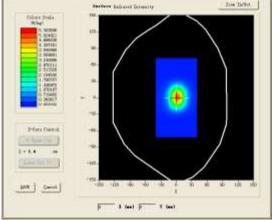
Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE5(SN17/14 EPG214) Test Date: September 28, 2016

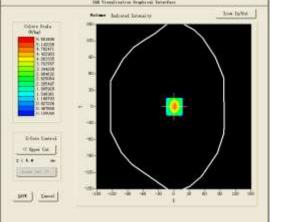
Medium(liquid type)	HSL_1900			
Frequency (MHz)	1900.0000			
Relative permittivity (real part)	41.15			
Conductivity (S/m)	1.42			
Input power	100mW			
Crest Factor	1.0			
Conversion Factor	4.71			
Variation (%)	0.790000			
SAR 10g (W/Kg)	2.033287			
SAR 1g (W/Kg)	4.080465			
SURFACE SAR	VOLUME SAR			
	Constrained Const			

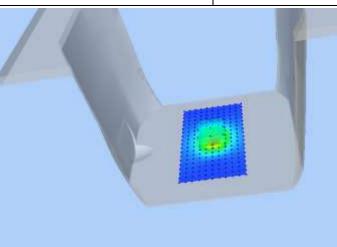
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 110

No.: LCS1610191292E

Test mode:1900MHz(Body) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE5(SN17/14 EPG214) Test Date: September 29, 2016

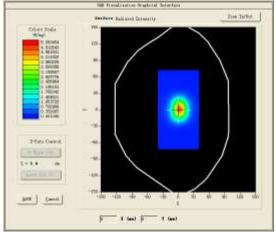

Medium(liquid type) Frequency (MHz) Relative permittivity (real part) Conductivity (S/m) Input power Crest Factor	MSL_1900 1900.0000 53.41 1.51 100mW
Relative permittivity (real part) Conductivity (S/m) Input power	53.41 1.51
Conductivity (S/m) Input power	
Input power	100mW
	100111 **
	1.0
Conversion Factor	4.85
Variation (%)	3.330000
SAR 10g (W/Kg)	2.107977
SAR 1g (W/Kg)	4.501314
SURFACE SAR	VOLUME SAR
Const fields	Colore Brail

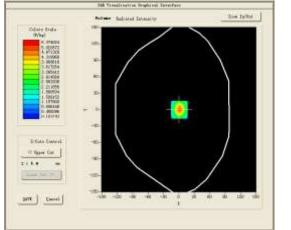

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 110

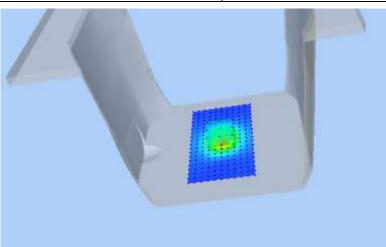

No.: LCS1610191292E

Test mode:2450MHz(Head) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE5(SN17/14 EPG214) Test Date: September 30, 2016

Medium(liquid type)	HSL_2450		
Frequency (MHz)	2450.000000		
Relative permittivity (real part)	39.16		
Conductivity (S/m)	1.81		
Input power	100mW		
Crest Factor	1.0		
Conversion Factor	4.11		
Variation (%)	-1.780000		
SAR 10g (W/Kg)	2.354956		
SAR 1g (W/Kg)	5.209843		
SURFACE SAR	VOLUME SAR		
Till Frankrussen Stratenat Bandere kalised Sciencity Colors Stelle Strate	204 TringStructure Registed Totantion Polymer Related Totantion Odiere Stale (Relation)		

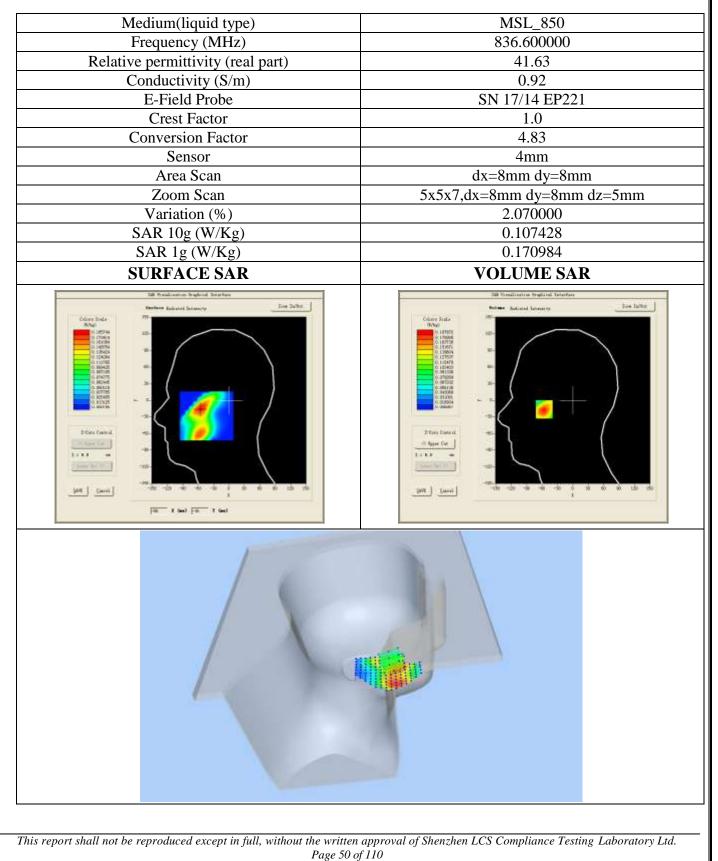



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 110

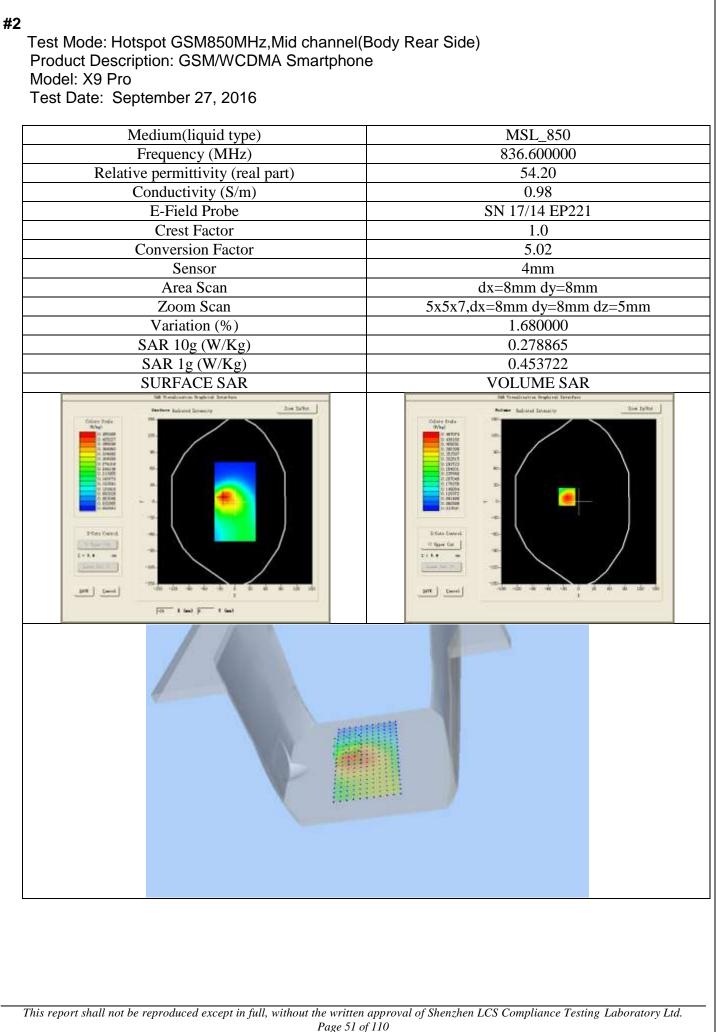

No.: LCS1610191292E

Test mode:2450MHz(Body) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE5(SN17/14 EPG214) Test Date: September 30, 2016

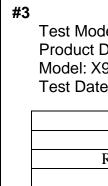
Talk Press/control Structure Structure	142 Visualization Registed Interface	
SURFACE SAR	VOLUME SAR	
SAR 1g (W/Kg)	5.305839	
SAR 10g (W/Kg)	2.489918	
Variation (%)	1.0 4.25 -0.910000	
Conversion Factor		
Crest Factor		
Input power	100mW	
Conductivity (S/m)	1.92	
Relative permittivity (real part)	52.75	
Frequency (MHz)	2450.000000	
Medium(liquid type)	MSL_2450	



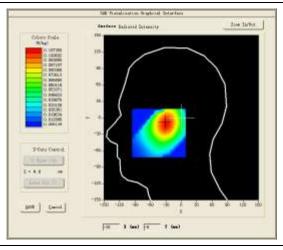
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 110

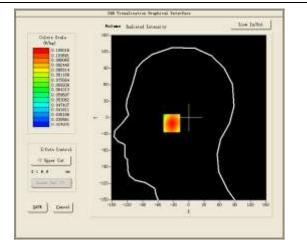

4.10. SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02 **#1**

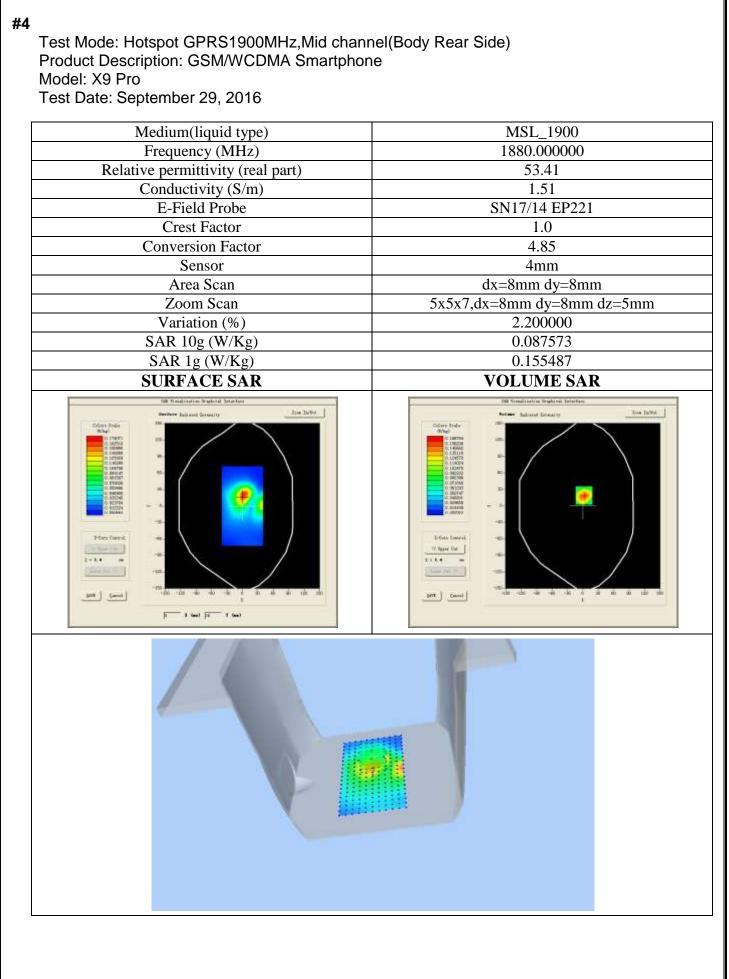

Test Mode:GSM 850MHz,Mid channel(Head Left Cheek) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 26, 2016

No.: LCS1610191292E




No.: LCS1610191292E

Test Mode:GSM 1900MHz,Mid channel(Head Left Cheek) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 28, 2016


Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.000000
Relative permittivity (real part)	41.15
Conductivity (S/m)	1.42
E-Field Probe	SN17/14 EP221
Crest Factor	1.0
Conversion Factor	4.71
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.340000
SAR 10g (W/Kg)	0.078704
SAR 1g (W/Kg)	0.107256
SURFACE SAR	VOLUME SAR

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 110

No.: LCS1610191292E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 110

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

Test Mode:WCDMA Band V, High channel (Head Right Cheek) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 26, 2016 Medium(liquid type) MSL 850 Frequency (MHz) 846.600000 Relative permittivity (real part) 41.63 Conductivity (S/m) 0.92 **E-Field Probe** SN 17/14 EP221 **Crest Factor** 1.0 **Conversion Factor** 4.83 Sensor 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) -1.680000 SAR 10g (W/Kg) 0.084297 SAR 1g (W/Kg) 0.132510 **SURFACE SAR VOLUME SAR** Sine In-The gent Carrie Mit David Fil I Gen) Fil I Gen)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 110

FCC ID: 2AFPY-X9PRO

Test Mode: Hotspot WCDMA Band V, Mid channel (Body Rear Side) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 27, 2016 Medium(liquid type) MSL 850 Frequency (MHz) 836.600000 Relative permittivity (real part) 54.20 Conductivity (S/m) 0.98 SN 17/14 EP221 E-Field Probe Crest Factor 1.0 **Conversion Factor** 5.02 Sensor 4mm dx=8mm dy=8mm Area Scan Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) 0.270000 SAR 10g (W/Kg) 0.277375 SAR 1g (W/Kg) 0.441606 **SURFACE SAR VOLUME SAR** 304 15/04 Zive Three State Carrie Densi Densi

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 110

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

Test Mode:WCDMA Band II,Mid channel(Head Right Cheek) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 28, 2016 Medium(liquid type) MSL 1900 Frequency (MHz) 1880.000000 Relative permittivity (real part) 41.15 Conductivity (S/m) 1.42 **E-Field Probe** SN17/14 EP221 **Crest Factor** 1.0 **Conversion Factor** 4.71 Sensor 4mm Area Scan dx=8mm dy=8mm 5x5x7,dx=8mm dy=8mm dz=5mmZoom Scan Variation (%) -1.050000 SAR 10g (W/Kg) 0.086202 SAR 1g (W/Kg) 0.116940 **SURFACE SAR VOLUME SAR** Zies Three Sta Is The David David int Serie -12 1 (an) -21 1 (an)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 110

FCC ID: 2AFPY-X9PRO

Test Mode: Hotspot WCDMA Band II, Mid channel (Body Rear Side) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 29, 2016 Medium(liquid type) MSL 1900 Frequency (MHz) 1880.000000 Relative permittivity (real part) 53.41 Conductivity (S/m) 1.51 **E-Field Probe** SN17/14 EP221 **Crest Factor** 1.0 **Conversion Factor** 4.85 Sensor 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) -0.800000 SAR 10g (W/Kg) 0.113094 SAR 1g (W/Kg) 0.236071 **SURFACE SAR VOLUME SAR** Zive Thread Sta Is The int Serie Densi Densi 1 (m) [1 1 (m)

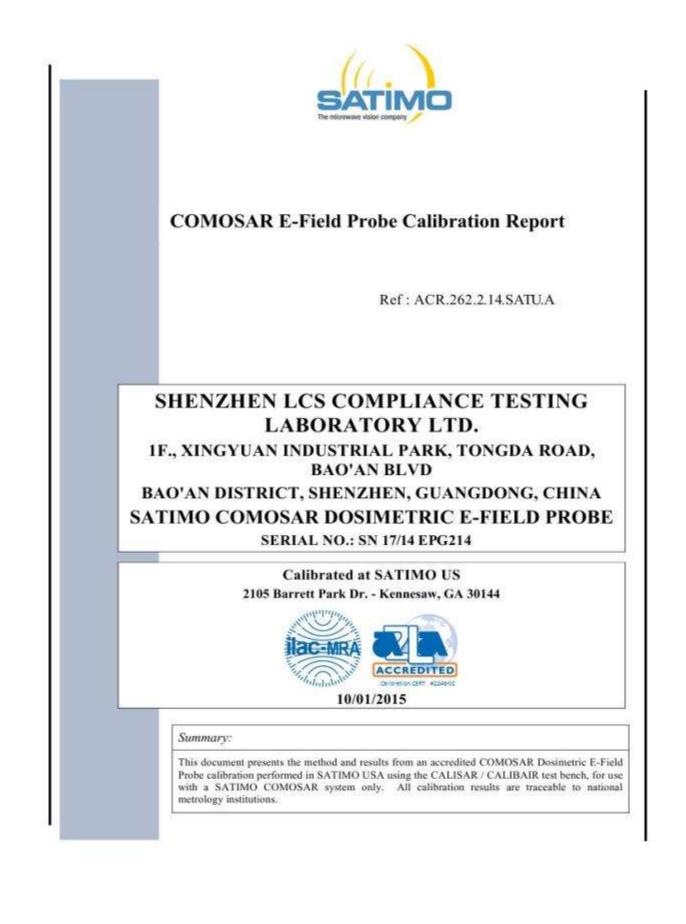
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 110

No.: LCS1610191292E

#9 Test Mode:802.11b(WiFi2.4G), Mid Channel(Head Right Cheek) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 30, 2016 Medium(liquid type) MSL 2450 Frequency (MHz) 2437.000000 Relative permittivity (real part) 39.16 Conductivity (S/m) 1.81 **E-Field Probe** SN 17/14 EP221 Crest Factor 1.0 **Conversion Factor** 4.11 Sensor 4mm Area Scan dx=8mm dy=8mm 7x7x7, dx=5mm dy=5mm dz=5mmZoom Scan Variation (%) 2.260000 SAR 10g (W/Kg) 0.061201 SAR 1g (W/Kg) 0.113507 **SURFACE SAR VOLUME SAR** 214 Th/Brt Sink Taribat e the SPIK Canal Stat David 1 (an) [21 1 (an) This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 58 of 110

#10


Test Mode: Hotspot 802.11b(WiFi2.4G), Mid channel (Body Rear Side) Product Description: GSM/WCDMA Smartphone Model: X9 Pro Test Date: September 30, 2016

	MGL 2470
Medium(liquid type)	MSL_2450
Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.75
Conductivity (S/m)	1.92
E-Field Probe	SN 17/14 EP221
Crest Factor	1.0
Conversion Factor	4.25
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	7x7x7,dx=5mm dy=5mm dz=5mm
Variation (%)	-1.210000
SAR 10g (W/Kg)	0.158958
SAR 1g (W/Kg)	0.333372
SURFACE SAR	VOLUME SAR
10 Visibilities Treading Televise	10 Traditative Traditation
	a approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 59 of 110

5.CALIBRATION CERTIFICATES

5.1 Probe-EPG214 Calibration Certificate

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 110

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 262.2.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2015	JS
Checked by :	Jérôme LUC	Product Manager	10/14/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	tum Patthoustai

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing
	Laboratory Ltd.

Issue	Date	Modifications		Modifications	
A	10/14/2015	Initial release			

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

6

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 61 of 110

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.14.SATU.A

TABLE OF CONTENTS

1	De	vice Under Test4	
2		duct Description4	
	2.1	General Information	4
3	Me	asurement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty5	
5	Cal	ibration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	Lis	t of Equipment10	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 110

7

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.14.SATU.A

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE2		
Serial Number	SN 17/14 EPG214		
Product Condition (new / used)	New		
Frequency Range of Probe	0.4 GHz- 6 GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.212 MΩ		
n .	Dipole 2: R2=0.205 MΩ		
	Dipole 3: R3=0.227 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

8

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 110

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.261.2.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to he released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 110

9

No.: LCS1610191292E

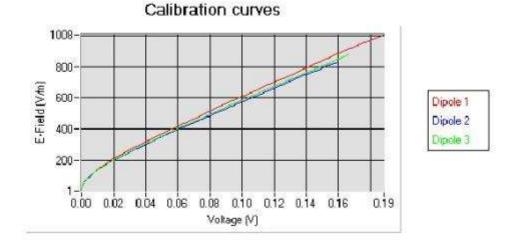
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.14.SATU.A

Combined standard uncertainty	5.	831%
Expanded uncertainty 95 % confidence level k = 2	1	2.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


5.1 SENSITIVITY IN AIR

	Normy dipole 2 (µV/(V/m) ²)	
0.75	0.57	0.62

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
90	91	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

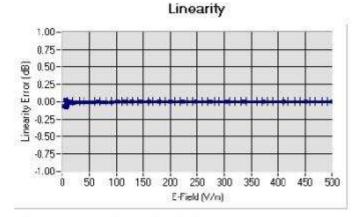
$$E = \sqrt{E_1^2 + E_2^2 + E_1^2}$$

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

10

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 110


No.: LCS1610191292E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.14.SATU.A

5.2 LINEARITY

Linearity:0+/-1.92% (+/-0.08dB)

5.3 SENSITIVITY IN LIQUID

<u>Liquid</u>	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43.90	0.87	23.53
BL450	450	58.63	0.98	24.12
HL750	750	42.06	0.89	17.62
BL750	750	56.57	0.99	18.20
HL850	835	42.81	0.89	18.79
BL850	835	53.46	0.96	19.33
HL900	900	42.47	0.96	18.13
BL900	900	56.69	1.08	18.85
HL1800	1800	41.31	1.38	18.52
BL1800	1800	53.27	1.51	18.89
HL1900	1900	41.09	1.42	20.93
BL1900	1900	54.20	1.54	21.73
HL2000	2000	39.72	1.43	19.85
BL2000	2000	53.91	1.53	20.55
HL2450	2450	39.05	1.77	20.46
BL2450	2450	52.97	1.93	21.07
HL2600	2600	38.35	1.92	21.01
BL2600	2600	51.81	2.19	21,47
HL5200	5200	36.62	4.93	16.88
BL5200	5200	50.69	4.98	17.36
HL5400	5400	35.95	5.18	19.08
BL5400	5400	48.45	5.82	19.83
HL5600	5600	36.08	5.60	18.13
BL5600	5600	50.57	6.37	18.56
HL5800	5800	34.73	5.74	16.24
BL5800	5800	48.19	6.45	16.79

LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

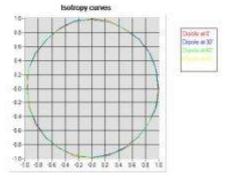
11

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 110

No.: LCS1610191292E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

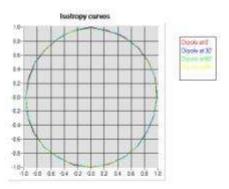
Ref: ACR.261.2.14.SATU.A


5.4 ISOTROPY

HL900 MHz

- Axial isotropy:

- Hemispherical isotropy:


0.04 dB 0.07 dB

HL1800 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.04 dB 0.07 dB

Page: 8/10

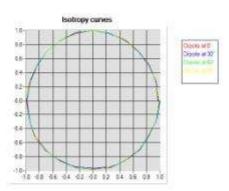
This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

12

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 110

COMOSAR E-FIELD PROBE CALIBRATION REPORT

0.06 dB


0.09 dB

Ref: ACR.261.2.14.SATU.A

HL5600 MHz

- Axial isotropy:

- Hemispherical isotropy:

Page: 9/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

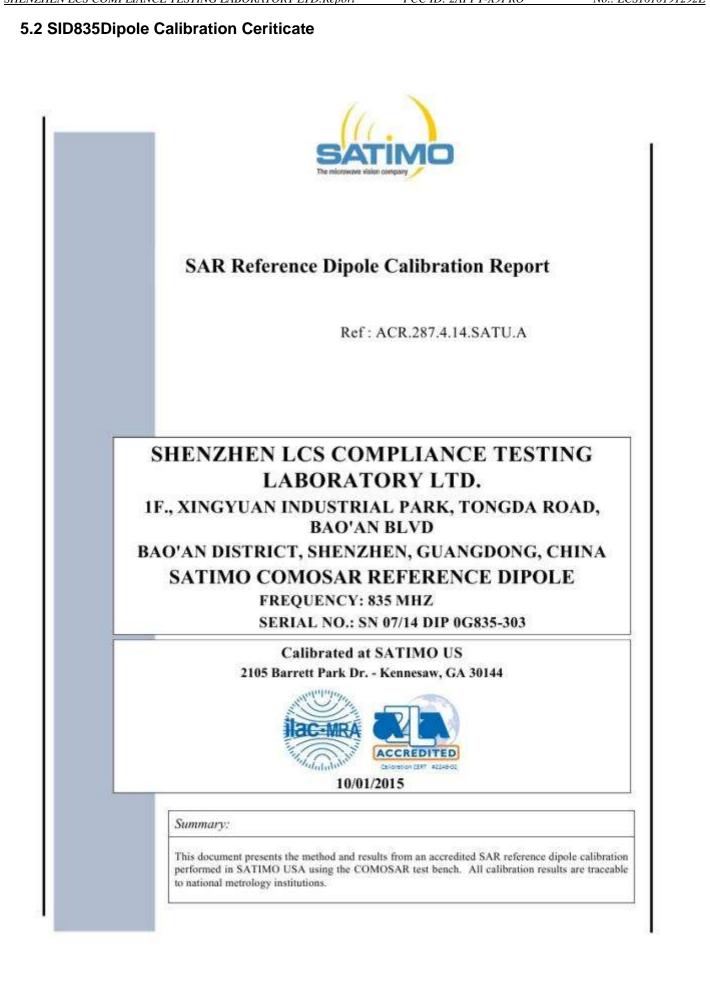
13

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 110

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.14.SATU.A

6 LIST OF EQUIPMENT


Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	Satimo	EP 94 SN 37/08	10/2015	10/2016	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior test. No cal require	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016	

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

14

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 110

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 70 of 110

No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2015	JS
Checked by :	Jérôme LUC	Product Manager	10/14/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	Acm Puthowski

	Customer Name
Distribution :	Shenzhen LCS
	Compliance Testing
	Laboratory Ltd.

Issue	Date	Modifications	
A	10/14/2015	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 110 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Inte	oduction4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Va	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2		7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 72 of 110

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID835
Serial Number	SN 07/14 DIP 0G835-303
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 110

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

F	requency band	Expanded Uncertainty on Return Loss
3	400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

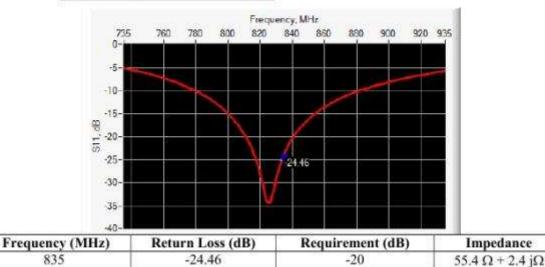
Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 74 of 110

No.: LCS1610191292E



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	Lmm		h mm		nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35±1%.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %		45.7±1%.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0±1%.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5±1%.		28.8±1%.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1%.		26.4 ±1 %.		3.6 ±1 %,	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 75 of 110

Ref. ACR.287.4.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (ơ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

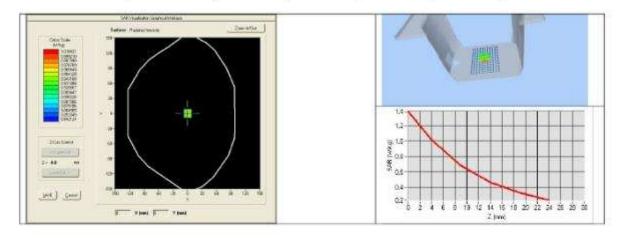
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
hantom SN 20/09 SAM71	
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 42.3 sigma : 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 110



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.4.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
Control	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.60 (0.96)	6.22	6.20 (0.62
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	1	20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 77 of 110

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.4.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (s,')		ity (0) S/m
Alternation	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	_
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

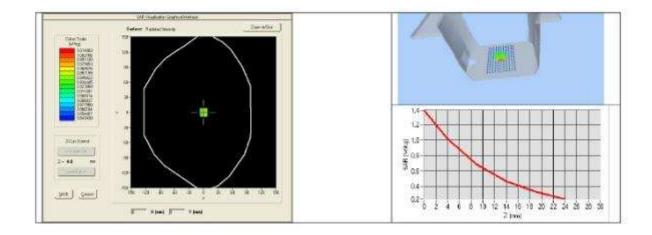
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

OPENSAR V4
SN 20/09 SAM71
SN 18/11 EPG122
Body Liquid Values: eps' : 54.1 sigma : 0.97
15.0 mm
dx=8mm/dy=8mm
dx=8mm/dy=8m/dz=5mm
835 MHz
20 dBm
21 °C
21 °C
45 %

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 78 of 110


No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

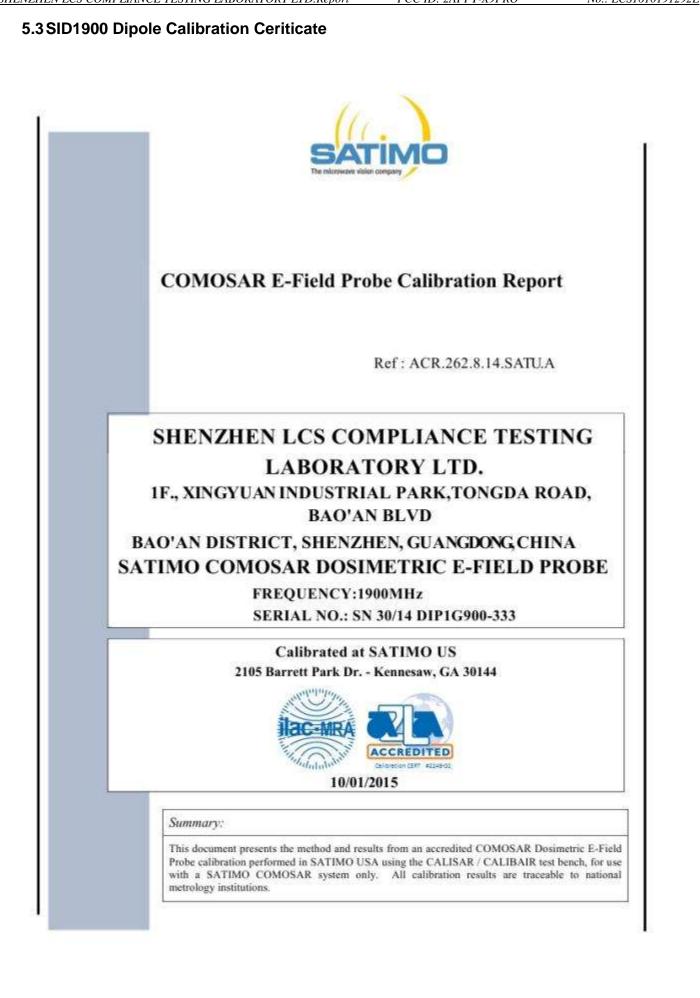
Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.90 (0.99)	6.39 (0.64)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 79 of 110

Ref. ACR.287.4.14.SATU.A


8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2015	10/2016	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 80 of 110

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 81 of 110 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2015	JS
Checked by :	Jérôme LUC	Product Manager	10/14/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	Aum Putthemetal

	Customer Name		
	Shenzhen LCS Compliance Testing		
Distribution :			
	Laboratory Ltd.		

Issue	Date	Modifications	
A	10/14/2015	Initial release	

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 82 of 110 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 83 of 110

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID1900			
Serial Number	SN 30/14 DIP1G900-333			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 84 of 110

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

F	requency band	Expanded Uncertainty on Return Loss		
3	400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

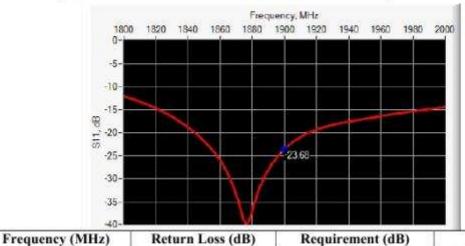
Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 85 of 110

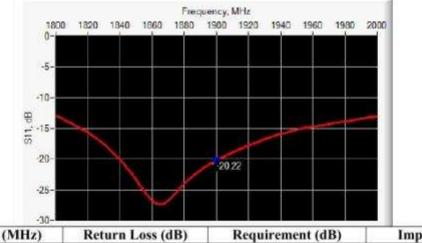
No.: LCS1610191292E


1900

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.262.8.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS


6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

11.04.74	
	Impedance
	$51.2 \Omega + 6.4 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

-23.68

-20

Frequency (MHZ)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-20.22	-20	48.8 Ω + 9.6 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz L mm		1 m	h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 86 of 110

No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7±1%.	6 0	3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.	2	3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5±1%.	PASS	3.6 ±1 %.	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5±1%.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7±1%.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3,6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1%.		26.4 ±1 %		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (ɛ,')		Conductivity (o) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 87 of 110

Ref. ACR.262.8.14.SATU.A

2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

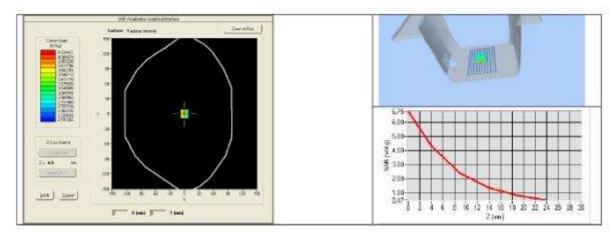
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps' : 41.1 sigma : 1.42		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	1900 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	
1800	38.4		20.1	
1900	39.7	39.84 (3.98)	20.5	20.20 (2.02)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 88 of 110


No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

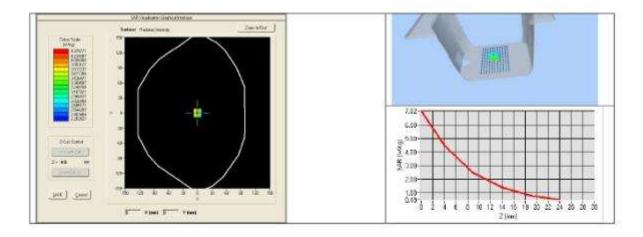
Frequency MHz	Relative permittivity (c,')		Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 89 of 110

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.262.8.14.SATU.A

5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps' : 54.2 sigma : 1.54		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	1900 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
1900	43.33 (4.33)	21.59 (2.16)	

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 90 of 110

Ref. ACR.262.8.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	Satimo	EPG122 SN 18/11	10/2015	10/2016		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016		

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 91 of 110

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 92 of 110

No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2015	JS
Checked by :	Jérôme LUC	Product Manager	10/14/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	non Mathewski

	Customer Name		
Distribution :	Shenzhen LCS		
	Compliance Testing		
	Laboratory Ltd.		

Issue	Date	Modifications	
A	10/14/2015	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 93 of 110 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AFPY-X9PRO

No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

TABLE OF CONTENTS

1	Inte	oduction4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Va	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2		7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 94 of 110

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE		
Manufacturer Satimo			
Model	SID2450		
Serial Number	SN 07/14 DIP 2G450-306		
Product Condition (new / used) New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 95 of 110

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

F	requency band	Expanded Uncertainty on Return Lo		
3	400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

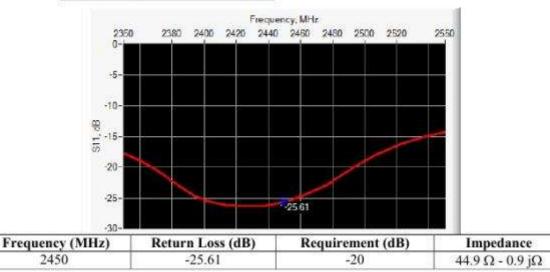
Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 96 of 110

No.: LCS1610191292E



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.8.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	Lmm hmm		m	d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %,	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3±1%.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7±1%.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0±1%.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1%.		26.4 ±1 %		3.6 ±1 %,	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 97 of 110

Ref: ACR.287.8.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductiv	ity (ơ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

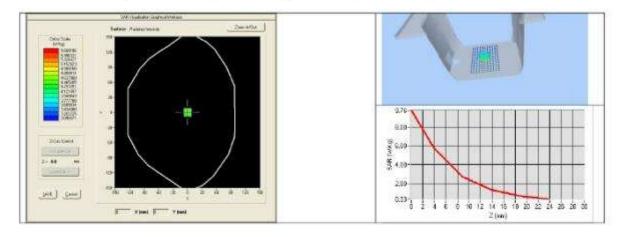
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps' : 39.0 sigma : 1.77		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 98 of 110



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.8.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR	1 g SAR (W/kg/W)		(W/kg/W)
SALLAR.	required	measured	required	measured
300	2.85		1.94	
450	4.58	1	3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4	l	19.3	
1800	38.4	1	20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.89 (5.39)	24	24.15 (2.42
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1	l i	25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 99 of 110

No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.8.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductivity (a) 5/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96±5%	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	_
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

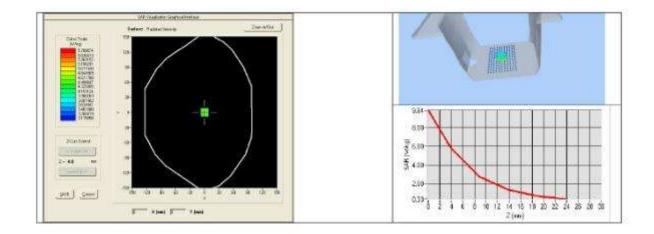
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps' : 53.0 sigma : 1.93		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 100 of 110


No.: LCS1610191292E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	54.65 (5.46)	24.58 (2.46)	

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 101 of 110

Ref: ACR.287.8,14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.			
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016			
Calipers	Carrera	CALIPER-01	12/2013	12/2016			
Reference Probe	Satimo	EPG122 SN 18/11	10/2015	10/2016			
Multimeter	Keithley 2000	1188656	12/2013	12/2016			
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	12/2013	12/2016			
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016			

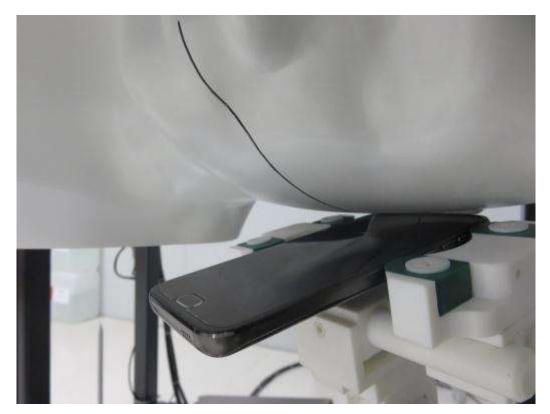
Page: 11/11

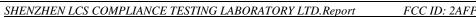
This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 102 of 110

6.EUT TEST PHOTOGRAPHS

Photograph of the depth in the Head Phantom


Photograph of the depth in the Body Phantom

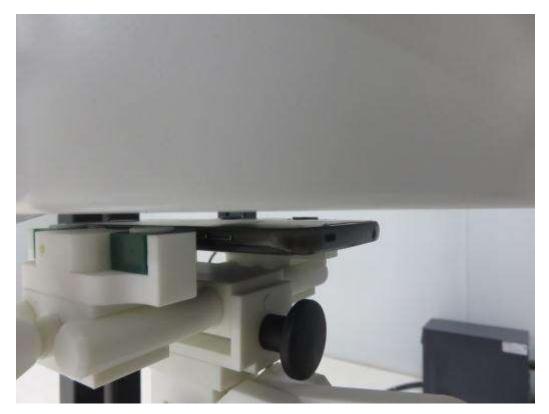

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 103 of 110

Head Setup Photo(Left Tilt)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 104 of 110

No.: LCS1610191292E

Head Setup Photo(Right Cheek)



Head Setup Photo(Right Tilt)



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 105 of 110

10mm body-worn Back Side Setup Photo(hotspot)

10mm body-worn Front Side Setup Photo(hotspot)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 106 of 110

10mm body-worn Left Side Setup Photo(hotspot)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 107 of 110

10mm body-worn Right Side Setup Photo(hotspot)

10mm body-worn Top Side Setup Photo(hotspot)

10mm body-worn Bottom Side Setup Photo(hotspot)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 108 of 110

7.EUT Photographs

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 109 of 110 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report FCC ID: 2AFPY-X9PRO No.: LCS1610191292E 52 招 **BT/WLAN** 54 /GPS Antenna ぷ 56 . 19946 57 58 59 60 61 DOOGEE 2 83 64 3 66 5 21 2. 11 20 26 27 28 29 44 31 GSM/UMTS 5 16 17 18 19 20 21 Antenna

.....The End of Test Report.....

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 110 of 110