FCC TEST REPORT

For

SHENZHEN KVD COMMUNICATIONS EQUIPMENT LIMITED

GSM/WCDMA Smartphone

Test Model: T3

Additional Model No.: T3 Plus, T3 Pro, T5

Prepared for : SHENZHEN KVD COMMUNICATIONS EQUIPMENT

LIMITED

Address : Room 13C, Block C, Electronics Science & Technology

Building, Shennan Road Middle, Shenzhen City, Guangdong

Province, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : March 29, 2016

Number of tested samples : 1

Sample number : 16032922

Date of Test : March 29, 2016 - April 08, 2016

Date of Report : April 08, 2016

FCC TEST REPORT FCC CFR 47 PART 15 C(15,247): 2015

Report Reference No.: LCS1603292430E

Date of Issue: April 08, 2016

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure......: Full application of Harmonised standards

Partial application of Harmonised standards \Box

Other standard testing method \Box

Applicant's Name.....: SHENZHEN KVD COMMUNICATIONS EQUIPMENT

LIMITED

Address : Room 13C,Block C,Electronics Science & Technology

Building, Shennan Road Middle, Shenzhen City, Guangdong

Province, China

Test Specification

Standard : FCC CFR 47 PART 15 C(15.247): 2015 / ANSI C63.10: 2013

Test Report Form No.....: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF..... : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: : GSM/WCDMA Smartphone

Trade Mark: DOOGEE

Test Model : T3

Ratings: DC 3.8V by Li-ion Battery(3200mAh)

Recharge Voltage: DC 5V/2000mA Adapter

Result : Positive

Compiled by:

Supervised by:

Approved by:

Calvin Weng/ File administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS1603292430E

April 08, 2016

Date of issue

Test Model..... : T3 EUT..... : GSM/WCDMA Smartphone Applicant.....:: SHENZHEN KVD COMMUNICATIONS EQUIPMENT LIMITED Address..... : Room 13C, Block C, Electronics Science & Technology Building, Shennan Road Middle, Shenzhen City, Guangdong Province, China Telephone..... Fax..... : / Manufacturer.....:: SHENZHEN KVD COMMUNICATIONS EQUIPMENT LIMITED Address..... : The second floor in A2 building, Silicon valley power new material industrial park, Zongyi Road, Dafu industrial park, Guanlan Guanguang Road, Baoan district, Shenzhen City Telephone..... : / Fax..... . / Factory.....:: SHENZHEN KVD COMMUNICATIONS EQUIPMENT LIMITED Address..... : The second floor in A2 building, Silicon valley power new material industrial park, Zongyi Road, Dafu industrial park, Guanlan Guanguang Road, Baoan district, Shenzhen City Telephone..... : / : / Fax....

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	2016-04-08	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	6
1.2. SUPPORT EQUIPMENT LIST	
1.3. External I/O	
1.4. DESCRIPTION OF TEST FACILITY	7
1.5. LIST OF MEASURING EQUIPMENT	
1.6. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
1.7. MEASUREMENT UNCERTAINTY	
1.8. DESCRIPTION OF TEST MODES	
2. TEST METHODOLOGY	11
2.1. EUT CONFIGURATION	11
2.2. EUT Exercise	
2.3. GENERAL TEST PROCEDURES	11
3. SYSTEM TEST CONFIGURATION	12
3.1. JUSTIFICATION	12
3.2. EUT EXERCISE SOFTWARE	
3.3. SPECIAL ACCESSORIES	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
3.6. TEST SETUP	12
4. SUMMARY OF TEST RESULTS	13
5. TEST RESULT	14
5.1. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	
5.2. POWER SPECTRAL DENSITY MEASUREMENT	
5.3. 6 dB Spectrum Bandwidth Measurement	
5.4. RADIATED EMISSIONS MEASUREMENT	
5.5. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST	
5.6. POWER LINE CONDUCTED EMISSIONS	
5.7. Antenna Requirements	71

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : GSM/WCDMA Smartphone

Model Number : T3, T3 Plus, T3 Pro, T5

Test Model : T3

Model Declaration : PCB board, structure and internal of these model(s) are the

same, So no additional models were tested.

Hardware Version : V1.4

Software Version : X5613 DG A35 M V0.4.5 S0401

Power Supply : DC 3.8V by Li-ion Battery(3200mAh)

Recharge Voltage: DC 5V/2000mA

EUT Supports : GSM/GPRS/EGPRS

Radios Application 2.4GHz WIFI /Bluetooth/GPS(RX Only)

Bluetooth :

Frequency Range : 2402.00-2480.00MHz

Channel Spacing : 1MHz for Bluetooth V3.0 (DSS)

2MHz for Bluetooth V4.0 (DTS)

Channel Number : 79 channels for Bluetooth V3.0 (DSS)

40 channels for Bluetooth V4.0 (DTS)

Modulation Type : GFSK, Pi/4-DQPSK, 8-DPSK for Bluetooth V3.0 (DSS)

GFSK for Bluetooth V4.0 (DTS)

Bluetooth Version : V4.0

Antenna Description : PCB Antenna (AUX Port), 0dBi (Max.)

WIFI(2.4GHz Band)

Operating Frequency : 2412-2472MHz

Channel Spacing : 5MHz

Channel Number : 13 Channel for 20MHz bandwidth(2412~2472MHz)

9 channels for 40MHz bandwidth(2422~2462MHz)

Modulation Type : 802.11b: DSSS; 802.11g/n: OFDM

Antenna Description : PIFA Antenna, 0dBi (Max.) For 2.4GHz Band

1.2. Support Equipment List

	Manufacturer	Description	Model	Serial Number	Certificate
Ī	KUANTECH	AC ADAPTOR	KSA29B05002	/	VOC
	CO LTD	AC ADAPTOR	00D5	/	VOC

1.3. External I/O

I/O Port Description	Quantity	Cable
USB Port	1	1.0m, unshielded

1.4. Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

There is one 3m semi-anechoic chamber and one line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4: 2014, CISPR 22/EN 55022 and CISPR16-1-4: 2010 SVSWR requirements.

1.5. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18,2015	June 17,2016
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	July 16,2015	July 15,2016
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18,2015	June 17,2016
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18,2015	June 17,2016
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18,2015	June 17,2016
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18,2015	June 17,2016
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	30M-1GHz 3m	June 18,2015	June 17,2016
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18,2015	June 17,2016
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16,2015	July 15,2016
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16,2015	July 15,2016
Spectrum Analyzer	Agilent	E4407B	MY41440292	9k-26.5GHz	July 16,2015	July 15,2016
MAX Signal Analyzer	Agilent	N9020A	MY50510140	20Hz~26.5GHz	Oct. 27, 2015	Oct. 26, 2016
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18,2015	June 17,2016
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10,2015	June 09,2016
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10,2015	June 09,2016
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	June 10,2015	June 09,2016
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18,2015	June 17,2016
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18,2015	June 17,2016
Spectrum Meter	R&S	FSP 30	100023	9kHz-30GHz	July 16,2015	July 15,2016
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18,2015	June 17,2016
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 18,2015	June 17,2016
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18,2015	June 17,2016
RF CABLE-1m	ЈҮЕ Вао	RG142	CB034-1m	20MHz-7GHz	June 18,2015	June 17,2016
RF CABLE-2m	ЈҮЕ Вао	RG142	CB035-2m	20MHz-1GHz	June 18,2015	June 17,2016

Note: All equipment through GRGT EST calibration

1.6. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Description of Test Modes

The EUT has been tested under operating condition.

For pre-testing, when performed power line conducted emission measurement, the input Voltage/Frequency AC 120V/60Hz and AC 240V/60Hz were used. Only recorded the worst case in this report.

The EUT was set to transmit at 100% duty cycle. This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in Y position.

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was determined to be 802.11b mode (TX-Low Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was determined to be 802.11b mode (TX-Low Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

BLE 4.0: 1Mbps, GFSK

802.11b Mode: 1 Mbps, DSSS. 802.11g Mode: 6 Mbps, OFDM. 802.11n Mode HT20: MCS0, OFDM. 802.11n Mode HT40: MCS0, OFDM.

***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

Channel List & Frequency BLE 4.0

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2402	21	2442
	2	2404		
2402 2490MII-	3	2406		
2402~2480MHz			38	2476
			39	2478
	20	2440	40	2480

802.11b/g/n(HT20)

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2412	7	2442
	2	2417	8	2447
2412~2462MHz	3	2422	9	2452
2412~2402NITIZ	4	2427	10	2457
	5	2432	11	2462
	6	2437		

802.11n(HT40)

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1		7	2442
	2		8	2447
2422~2452MHz	3	2422	9	2452
2422~2432WITIZ	4	2427	10	
	5	2432	11	
	6	2437		

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas Guidance v03r04 is required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

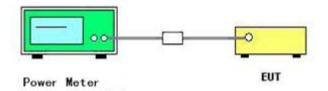
Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C							
FCC Rules	FCC Rules Description of Test						
§15.247(b)(3)	§15.247(b)(3) Maximum Conducted Output Power						
§15.247(e)	§15.247(e) Power Spectral Density						
§15.247(a)(2)	Compliant						
§15.209, §15.247(d) Radiated and Conducted Spurious Emissions		Compliant					
§15.205	Compliant						
§15.207(a)	§15.207(a) Line Conducted Emissions						
§15.203 Antenna Requirements Compliant							
Note: This is a DTS test report for GSM/WCDMA Smartphone (T3)							

5. TEST RESULT

5.1. Maximum Conducted Output Power Measurement


5.1.1. Standard Applicable

According to §15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850MHz bands: 1 Watt.

5.1.2. Test Procedures

The transmitter output (antenna port) was connected to the power meter.

5.1.3. Test Setup Layout

5.1.4. EUT Operation during Test

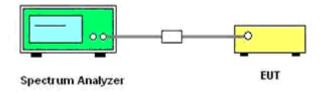
The EUT was programmed to be in continuously transmitting mode.

5.1.5. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	60%
Test Engineer	Leo	Configurations	BLE 4.0; 802.11b/g/n

Mode	Channel	Frequency (MHz)	Conducted Power (dBm, Peak)	Max. Limit (dBm)	Result
	1	2402	-3.55	30	Complies
BLE 4.0	20	2440	-2.16	30	Complies
	40	2480	-4.86	30	Complies
	1	2412	17.53	30	Complies
802.11b	6	2437	17.87	30	Complies
	11	2462	17.07	30	Complies
802.11g	1	2412	16.27	30	Complies
	6	2437	16.91	30	Complies
	11	2462	16.31	30	Complies
202.44	1	2412	16.25	30	Complies
802.11n HT20	6	2437	16.99	30	Complies
ПІ20	11	2462	16.15	30	Complies
802.11n HT40	3	2422	16.67	30	Complies
	6	2437	16.42	30	Complies
	9	2452	16.03	30	Complies

5.2. Power Spectral Density Measurement


5.2.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5 2 2 Test Procedures

- 1) The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2) The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3) Set the RBW = 3 kHz.
- 4) Set the VBW \geq 3*RBW
- 5) Set the span to 1.5 times the DTS channel bandwidth.
- 6) Detector = peak.
- 7) Sweep time = auto couple.
- 8) Trace mode = \max hold.
- 9) Allow trace to fully stabilize.
- 10) Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

5.2.3. Test Setup Layout

5.2.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.5. Test Result of Power Spectral Density

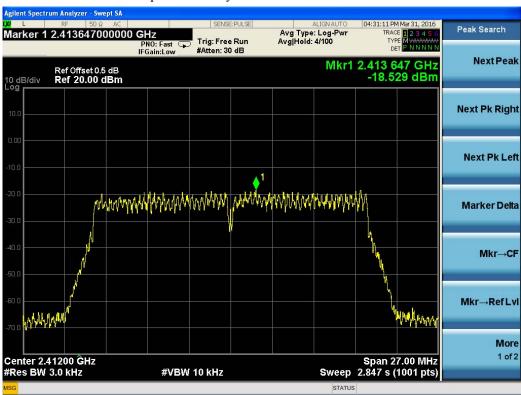
Temperature	25°C	Humidity	60%
Test Engineer	Leo	Configurations	BLE 4.0; 802.11b/g/n

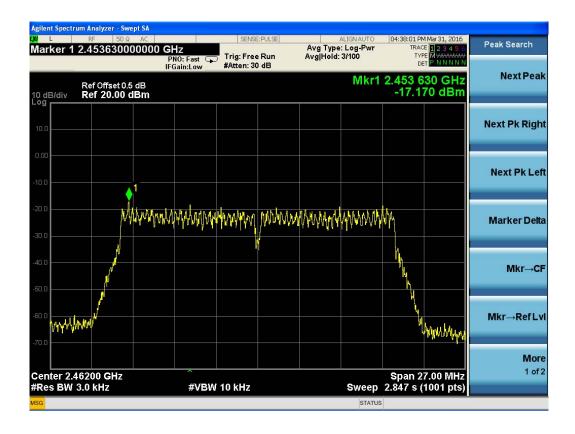
Mode	Channel	Frequency (MHz)	Power Density (dBm/3KHz)	Max. Limit (dBm/3KHz)	Result
	1	2402	-18.509	8	Complies
BLE 4.0	20	2440	-18.309	8	Complies
	40	2480	-19.306	8	Complies
	1	2412	-8.773	8	Complies
802.11b	6	2437	-8.920	8	Complies
	11	2462	-7.931	8	Complies
802.11g	1	2412	-17.934	8	Complies
	6	2437	-17.408	8	Complies
	11	2462	-17.652	8	Complies
	1	2412	-18.529	8	Complies
802.11n HT20	6	2437	-17.795	8	Complies
	11	2462	-17.170	8	Complies
802.11n HT40	3	2422	-20.950	8	Complies
	6	2437	-20.502	8	Complies
	9	2452	-20.215	8	Complies

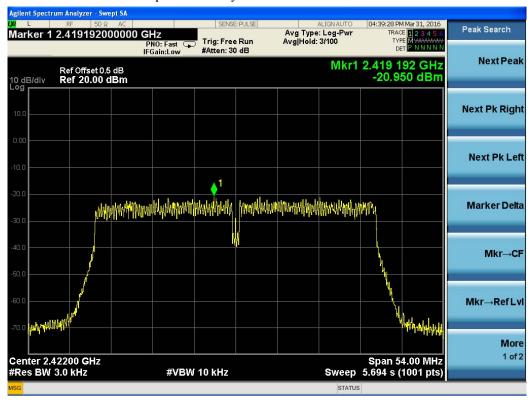
Note: The measured power density (dBm) has the offset with cable loss already.

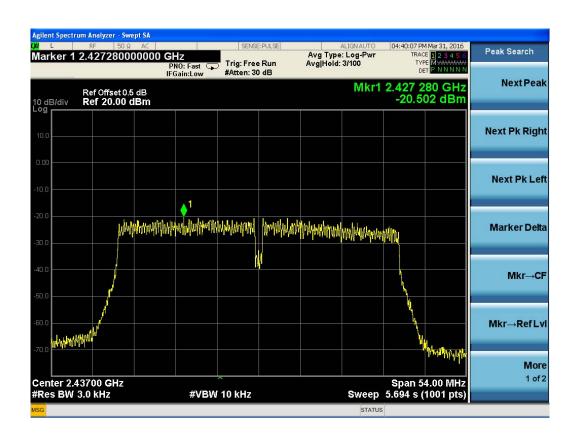
BLE 4.0 power density

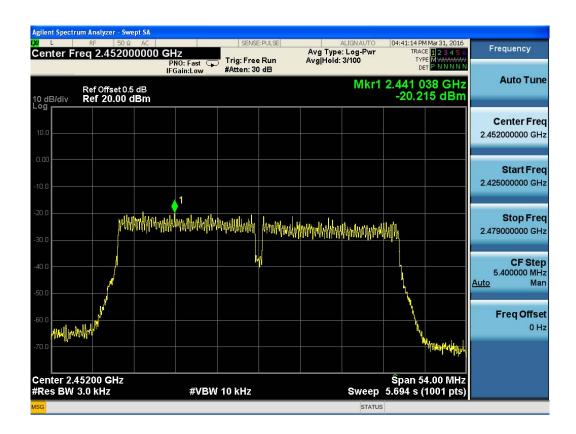
802.11b power density


802.11g power density




802.11n HT20 power density





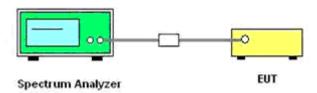
802.11n HT40 power density

5.3. 6 dB Spectrum Bandwidth Measurement

5.3.1. Standard Applicable

According to §15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.2. Instruments Setting


The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.3.3. Test Procedures

- 1) The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2) The resolution bandwidth and the video bandwidth were set according to KDB558074 D01 DTS Meas. Guidance v03r04.
- 3) Measured the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

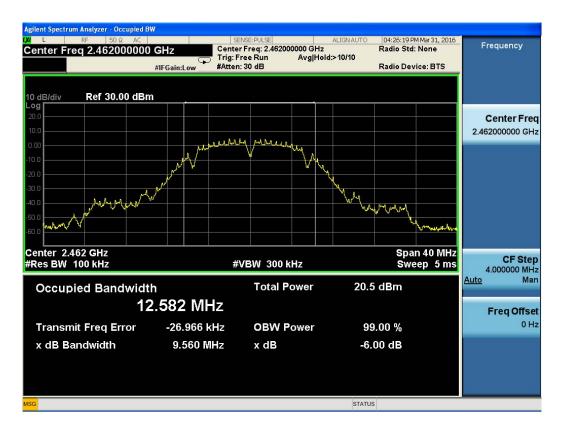
The EUT was programmed to be in continuously transmitting mode.

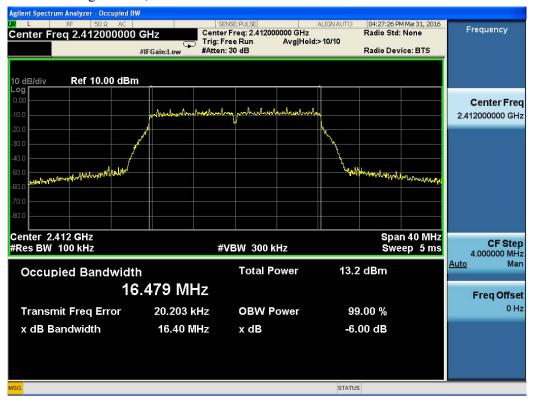
5.3.6. Test Result of Spectrum Bandwidth

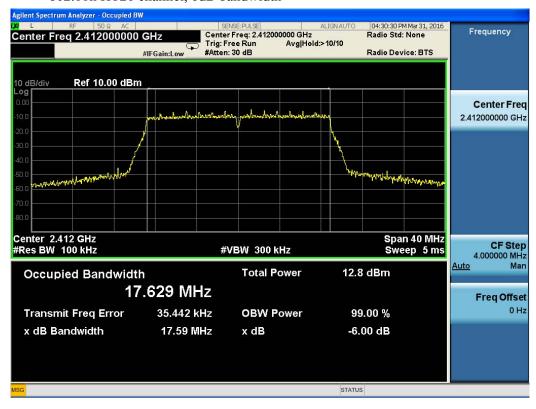
Temperature	25°C	Humidity	60%
Test Engineer	Leo	Configurations	BLE4.0; 802.11b/g/n

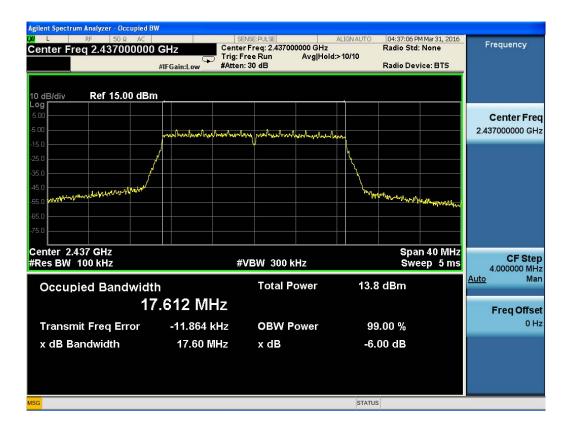
Mode	Channel	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Result
	1	2402	0.68	500	Complies
BLE 4.0	20	2440	0.68	500	Complies
	40	2480	0.68	500	Complies
	1	2412	8.38	500	Complies
802.11b	6	2437	8.44	500	Complies
	11	2462	8.74	500	Complies
	1	2412	16.35	500	Complies
802.11g	6	2437	16.46	500	Complies
	11	2462	16.37	500	Complies
000.44=	1	2412	17.39	500	Complies
802.11n HT20	6	2437	17.62	500	Complies
	11	2462	17.35	500	Complies
802.11n HT40	3	2422	35.21	500	Complies
	6	2437	35.22	500	Complies
	9	2452	35.17	500	Complies

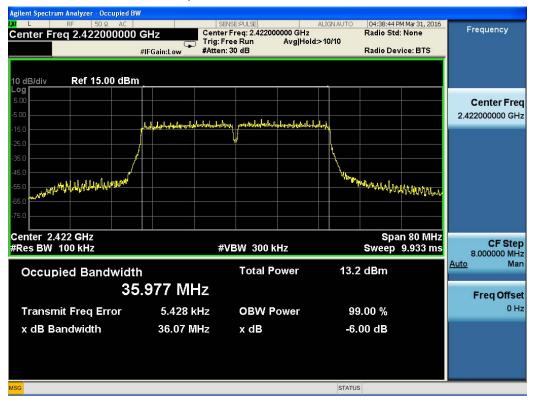
BLE 4.0 channel, 6dB bandwidth




802.11b channel, 6dB bandwidth


802.11g channel, 6dB bandwidth




802.11n HT20 channel, 6dB bandwidth

802.11n HT40 channel, 6dB bandwidth

5.4. Radiated Emissions Measurement

5.4.1. Standard Applicable

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.4.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

The following those is the setting of spectrum that year that receiver.		
Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average	
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.4.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with OP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.