

Test Report

Report No.: MTi210628009-04E1

Date of issue: July 14, 2021

ShenZhen Powerqi Technology

Applicant:

Co., Ltd.

Desktop Magnetic Wireless

Product name:

Charger

Model(s): LC13

FCC ID: 2AFP2LC13

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- The report shall not be partially reproduced without the written consent of the laboratory;
- 2. The test results of this report are only responsible for the samples submitted:
- 3. This report is invalid without the seal and signature of the laboratory;
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization:
- 5. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of Contents

1	GENE	RAL INFORMATION	5
	1.2 TE	ATURE OF EQUIPMENT UNDER TEST (EUT)	5
	1.4 AN	CILLARY EQUIPMENT	5
2	SUMI	MARY OF TEST RESULT	6
	2.1 OF	ERATION CHANNEL LIST	6
	2.2 TE	ST CHANNEL	6
3	TEST	FACILITIES AND ACCREDITATIONS	7
	3.1 TE	ST LABORATORY	7
		VIRONMENTAL CONDITIONS	
	3.3 M	EASUREMENT UNCERTAINTY	7
4	LIST	OF TEST EQUIPMENT	8
5		RESULTS	
3			
		ITENNA REQUIREMENT	
	5.1.1	Standard requirement	
	5.1.2	EUT Antenna	
		NDUCTED EMISSION	
	5.2.1	Limits	
	5.2.2	Test Procedures	
	5.2.3	Test Setup	
	5.2.4	Test Result	
		DIATED EMISSION	
	5.3.1 5.3.2	Limits	
	5.3.2 5.3.3	Test Procedures Test Setup	
	5.3.4	Test Result	
		CUPIED BANDWIDTH	
	5.4.1	Test method	
	5.4.1 5.4.2	Test result	
	5 <u>-</u>		
		PHS OF THE TEST SETUP	_
PF	HOTOGRA	PHS OF THE EUT	25

TEST	ΓRES	JLT CERTIFICATION		
Applicant's name:	Shenz	Zhen Powerqi Technology Co., Ltd.		
Address:	Science	Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang District, Shenzhen, China		
Manufacturer's Name:	Shenz	Zhen Powerqi Technology Co., Ltd.		
Address:	Science	201, 302, 401 of A4 Building, Block A, Fangxing ce and Technology Park, No. 13 of Baonan Road, pang District, Shenzhen, China		
Product description				
Product name:	Deskt	op Magnetic Wireless Charger		
Trademark:	POWE	ERQI		
Model Name:	LC13			
Serial Model	N/A			
Standards:	FCC F	FCC Part 15C		
Test procedure:	ANSI	ANSI C63.10-2013		
Date of Test				
Date (s) of performance of tests	:	June 28, 2021 ~ July 14, 2021		
Test Result	:	Pass		
	st (EUT)	ted by Shenzhen Microtest Co., Ltd. and the test results is in compliance with the FCC requirements. And it is fied in the report.		
Testing Engineer	:	Danny An		
		(Danny Xu)		
Technical Manager	:	Leo Su		
		(Leo Su)		
Authorized Signatory	:	Tom Xue		
		(Tom Xue)		

1 GENERAL INFORMATION

1.1 Feature of equipment under test (EUT)

Product name:	Desktop Magnetic Wireless Charger
Model name:	LC13
Model difference:	N/A
Operation frequency:	115–205 kHz
Modulation type:	ASK
Max output power:	15W+5W
Antenna type:	Coil Antenna
Power supply:	DC 12V from adapter AC 120V/60Hz
Input:	5V/3A, 9V/3A, 12V/2.5A
Battery:	N/A
Adapter information:	N/A
EUT serial number:	MTi210628009-04-S0001

1.2 Test mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test mode	Description
Mode 1	Wireless Charging AirPods (5W)
Mode 2	Wireless Charging Phone (15W)
Mode 3	Wireless Charging AirPods&Phone (5W &15W)

Note:

- 1: The test modes were carried out for all operation modes. The final test mode of the EUT was the worst test mode for EMI, worst mode is Mode 3 and its test data was showed.
- 2: EUT is tested under full load.

1.3 EUT test setup

See photographs of the test setup in the report for the actual setup and connections between EUT and support equipment.

1.4 Ancillary equipment

Equipment Model S/N Manufacturer		urer	Manufacturer	S/N	Model	
----------------------------------	--	------	--------------	-----	-------	--

Adapter	A2244	/	Apple
AirPods	/	/	Apple
Load	YBZ1.1	/	YBZ

2 Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	FCC PART 15.203	Antenna requirement	Pass
2	FCC PART 15.207	Conducted emission	Pass
3	FCC PART 15.209	Radiated emission	Pass
4	FCC Part 15.215	20dB bandwidth	Pass

2.1 Operation channel list

Load:

au.		
Channel	Frequency (kHz)	
Low	115	
Middle	125	
High	205	

AirPods:

1 003.		
Channel	Frequency (kHz)	
Low	115	
Middle	118	
High	205	

2.2 Test channel

Load:

Channel	Frequency (kHz)
Middle	125

AirPods:

Channel	Frequency (kHz)
Middle	118

3 Test Facilities and Accreditations

3.1 Test laboratory

Test Laboratory	Shenzhen Microtest Co., Ltd
Location	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.
FCC Registration No.:	448573

3.2 Environmental conditions

Temperature:	15°C~35°C
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

4 List of test equipment

Equipmen t No.	Equipment Name	Manufact urer	Model	Serial No.	Calibration date	Due date
MTI-E043	EMI Test Receiver	Rohde≻ hwarz	ESCI7	101166	2021/06/02	2022/06/01
MTI-E044	TRILOG Broadband Antenna	schwarab eck	VULB 9163	9163-133 8	2021/05/30	2023/05/29
MTI-E047	Amplifier	Hewlett-P ackard	8447F	3113A061 50	2021/06/02	2022/06/01
MTI-E089	ESG Vector Signal Generator	Agilent	N5182A	MY49060 455	2021/06/02	2022/06/01
MTI-E058	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051 240	2021/06/02	2022/06/01
MTI-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350 296	2021/06/02	2022/06/01
MTI-E066	MXA Signal Analyzer	Agilent	N9020A	MY50143 483	2021/06/02	2022/06/01
MTI-E078	Synthesized Sweeper	Agilent	83752A	3610A019 57	2021/06/02	2022/06/01
MTI-E079	DC Power Supply	Agilent	E3632A	MY40027 695	2021/06/02	2022/06/01
MTI-E021	EMI Test Receiver	Rohde≻ hwarz	ESCS30	100210	2021/06/02	2022/06/01
MTI-E022	Pulse Limiter	Schwarzb eck	VSTD 9561-F	00679	2021/06/02	2022/06/01
MTI-E023	Artificial mains network	Schwarzb eck	NSLK 8127	NSLK 8127 #841	2021/06/02	2022/06/01
MTI-E046	Active Loop Antenna	Schwarzb eck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E048	Amplifier	Agilent	8449B	3008A024 00	2021/06/02	2022/06/01
MTI-E072	Thermometer Clock Humidity Monitor	-	HTC-1	/	2021/06/02	2022/06/01
MTI-E090	Test Loop Antenna	DATETEK	LA-001	77140963 4	2021/06/02	2022/06/01

Note: the calibration interval of the above test instruments is 12 or 24 months and the calibrations are traceable to international system unit (SI).

5 Test Results

5.1 Antenna requirement

5.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

5.1.2 EUT Antenna

The EUT	antenna is	s Coil Antenna.	It comply with the	standard	requirement.	In case of	replacement
of broker	n antenna t	he same antenr	na type must be u	sed.			

5.2 Conducted emission

5.2.1 Limits

For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50 μ H/50 ohms line impedance stabilization network (LISN).

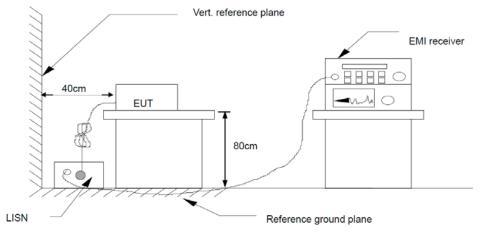
Frequency	Conducted li	mit (dBµV)
(MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.5 -5	56	46
5 -30	60	50

Note:

the limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

5.2.2 Test Procedures

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.


Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item – photographs of the test setup.

5.2.3 Test Setup

5.2.4 Test Result

EUT:	Desktop Magnetic Wireless Charger	Model Name:	LC13
Pressure:		Phase:	L
est voltage:	DC 12V from adapter AC 120V/60Hz	Test mode:	Mode 3
80.0 dBuV			
70			
60		FCCPart15 ClassB AC	Conduction(QP)
50 3		FCCPart15 ClassB AC	Conduction(AVG)
40 2 1	1 June 10 Z	9 JI	
30	S S S S S S S S S S S S S S S S S S S	A A A A A A A A A A A A A A A A A A A	Markey Company
20			peak AVG
10	The state of the s	Mirror di de a	Linu nillililili, "Alla" i i
0			
-10			
-20			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1700	44.82	10.98	55.80	64.96	-9.16	QP
2		0.1700	31.38	10.98	42.36	54.96	-12.60	AVG
3		0.2300	39.55	10.98	50.53	62.45	-11.92	QP
4		0.2300	24.08	10.98	35.06	52.45	-17.39	AVG
5		0.3020	35.30	10.99	46.29	60.19	-13.90	QP
6		0.3020	17.14	10.99	28.13	50.19	-22.06	AVG
7		1.0740	24.53	13.43	37.96	56.00	-18.04	QP
8		1.0740	10.62	13.43	24.05	46.00	-21.95	AVG
9		3.6780	32.22	11.42	43.64	56.00	-12.36	QP
10		3.6780	20.94	11.42	32.36	46.00	-13.64	AVG
11		4.4380	30.76	11.46	42.22	56.00	-13.78	QP
12		4.4380	20.96	11.46	32.42	46.00	-13.58	AVG

0.150

0.500

0.800

Report No.: MTi210628009-04E1

30.000

EUT:	Desktop Magnetic Wireless Charger	Model Name:	LC13	
Pressure:	101kPa	Phase:	N	
est voltage:	DC 12V from adapter AC 120V/60Hz	Test mode:	Mode 3	
80.0 dBuV				
70				
60		FCCPart15 ClassB AC	Conduction(QP)	
50		FCCPart15 ClassB AC	Conduction(AVG)	
40 3 4	A TAMMANAMANA	3	11 (2	
30	6		Managara Jangara	
20 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			peak	
10	" A A A A A A A A A A A A A A A A A A A	The state of the s	AAC	
0				
-10				
-20				

(MHz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1660	43.86	10.93	54.79	65.16	-10.37	QP
2		0.1660	29.39	10.93	40.32	55.16	-14.84	AVG
3		0.2300	37.91	10.92	48.83	62.45	-13.62	QP
4		0.2300	21.50	10.92	32.42	52.45	-20.03	AVG
5		0.4860	30.24	10.90	41.14	56.24	-15.10	QP
6		0.4860	12.70	10.90	23.60	46.24	-22.64	AVG
7		1.2820	24.17	13.82	37.99	56.00	-18.01	QP
8		1.2820	8.02	13.82	21.84	46.00	-24.16	AVG
9		4.4380	29.91	11.39	41.30	56.00	-14.70	QP
10		4.4380	22.18	11.39	33.57	46.00	-12.43	AVG
11		9.5860	24.04	11.52	35.56	60.00	-24.44	QP
12		9.5860	20.84	11.52	32.36	50.00	-17.64	AVG

0.150

0.500

Report No.: MTi210628009-04E1

30.000

EUT:	Desktop Magnetic Wireless Charger	Model Name:	LC13
Pressure:	101kPa	Phase:	L
est voltage:	DC 12V from adapter AC 240V/60Hz	Test mode:	Mode 3
80.0 dBuV			
70			
60		FCCPart15 ClassB /	AC Conduction(QP)
50	5	FCCPart15 ClassB /	AC Conduction(AVG)
40 2 4	6 Mada sasa	La Maria La	11 本2 開始
30			peal
20			AVG
10	A (1.10.11.11.11.11.11.11.11.11.11.11.11.11		L. I. Illinghali
0			
-10			
-20			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2060	43.10	10.97	54.07	63.37	-9.30	QP
2		0.2060	23.14	10.97	34.11	53.37	-19.26	AVG
3		0.3020	39.83	10.99	50.82	60.19	-9.37	QP
4		0.3020	22.32	10.99	33.31	50.19	-16.88	AVG
5	*	0.3780	38.21	11.00	49.21	58.32	-9.11	QP
6		0.3780	22.71	11.00	33.71	48.32	-14.61	AVG
7		0.7500	29.61	11.13	40.74	56.00	-15.26	QP
8		0.7500	16.53	11.13	27.66	46.00	-18.34	AVG
9		4.4220	32.55	11.46	44.01	56.00	-11.99	QP
10		4.4220	23.73	11.46	35.19	46.00	-10.81	AVG
11		9.5500	27.39	11.59	38.98	60.00	-21.02	QP
12		9.5500	23.90	11.59	35.49	50.00	-14.51	AVG

0.150

0.500

Report No.: MTi210628009-04E1

30.000

EUT:	Desktop Magnetic Wireless Charger	Model Name:	LC13
Pressure:	101kPa	Phase:	N
est voltage:	DC 12V from adapter AC 240V/60Hz	Test mode:	Mode 3
80.0 dBuV			
70			
60		FCCPart15 ClassB	AC Conduction(QP)
50	5	FCCPart15 ClassB	AC Conduction(AVG)
40	W.A. 7	3	11
30	s VVV A A A A A A A A A A A A A A A A A		
W \ \\			peal
20			AVG
10	A.D. A.	1 1/9 2	
0			
-10			
-20			

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.2260	41.82	10.92	52.74	62.60	-9.86	QP
2	0.2260	25.80	10.92	36.72	52.60	-15.88	AVG
3	0.3020	38.75	10.92	49.67	60.19	-10.52	QP
4	0.3020	22.30	10.92	33.22	50.19	-16.97	AVG
5	0.3740	35.82	10.90	46.72	58.41	-11.69	QP
6	0.3740	18.38	10.90	29.28	48.41	-19.13	AVG
7	1.1420	24.11	13.52	37.63	56.00	-18.37	QP
8	1.1420	11.73	13.52	25.25	46.00	-20.75	AVG
9	4.9380	31.42	11.39	42.81	56.00	-13.19	QP
10	4.9380	23.05	11.39	34.44	46.00	-11.56	AVG
11	9.4940	25.50	11.51	37.01	60.00	-22.99	QP
12	9.4940	23.51	11.51	35.02	50.00	-14.98	AVG

5.3 Radiated emission

5.3.1 Limits

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)			
FREQUENCT (MITZ)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

The limit for radiated test was performed according to FCC PART 15C.

The tighter limit applies at the band edges.

Emission level (dBuV/m)=20log Emission level (uV/m).

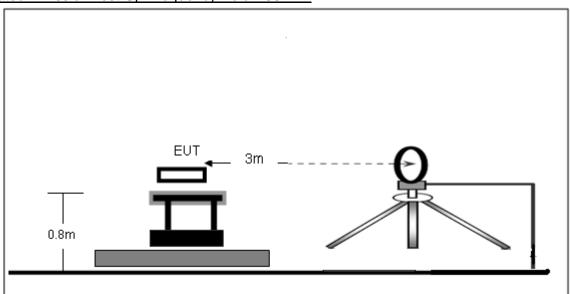
FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)				
Below 1.705	30				
1.705 – 108	1000				
108 – 500	2000				
500 – 1000	5000				
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower				

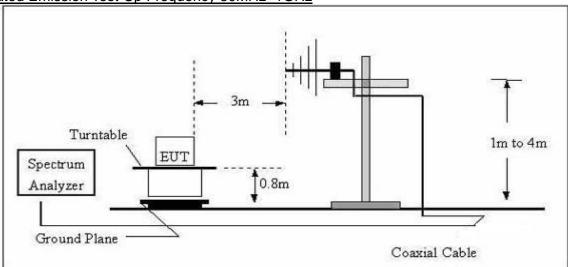
Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

5.3.2 Test Procedures


- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
- h. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

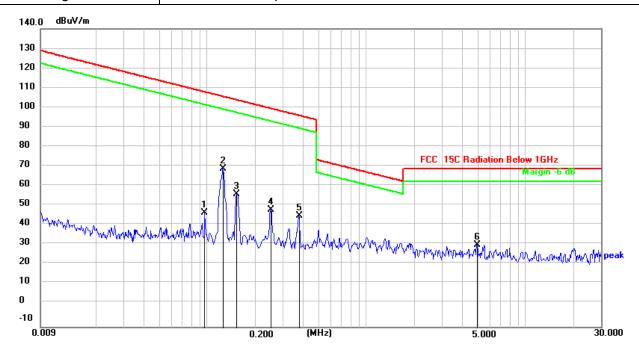
Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



5.3.3 Test Setup

Radiated Emission Test-Up Frequency Below 30MHz

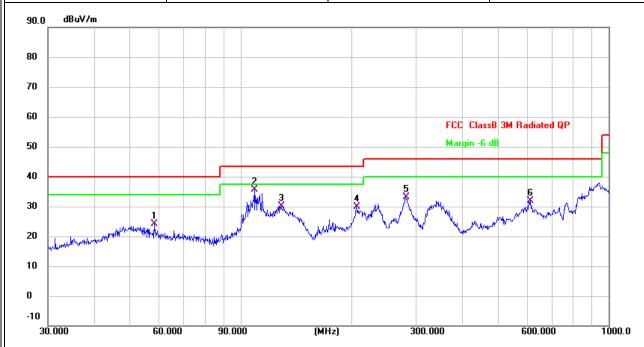
Radiated Emission Test-Up Frequency 30MHz~1GHz


5.3.4 Test Result

Frequency range (9kHz - 30MHz)

	Desktop Magnetic Wireless Charger	Model Name:	LC13
Pressure:	101kPa	Test mode:	Mode 3

Test voltage: DC 12V from adapter AC 120V/60Hz



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.0969	25.24	22.34	47.58	107.88	-60.30	QP
2 *	0.1257	47.66	21.92	69.58	105.62	-36.04	QP
3	0.1539	35.07	21.84	56.91	103.86	-46.95	QP
4	0.2524	27.19	21.95	49.14	99.56	-50.42	QP
5	0.3787	24.32	21.80	46.12	96.04	-49.92	QP
6	4.9550	9.64	21.76	31.40	69.50	-38.10	QP

Frequency range (30MHz - 1GHz)

EUT:	Desktop Magnetic Wireless Charger	Model Name:	LC13
Pressure:	101kPa	Polarization:	Vertical
Test voltage:	DC 12V from adapter AC 120V/60Hz	Test mode:	Mode 3

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		58.4074	38.64	-14.48	24.16	40.00	-15.84	QP
2	*	109.0286	48.20	-12.54	35.66	43.50	-7.84	QP
3		129.0146	45.20	-15.08	30.12	43.50	-13.38	QP
4		206.3976	41.70	-11.90	29.80	43.50	-13.70	QP
5		281.0075	43.53	-10.28	33.25	46.00	-12.75	QP
6		614.2142	36.92	-4.98	31.94	46.00	-14.06	QP

EUT:	T: Desktop Magnetic Wireless Charger				Model Name:			L	LC13				
Pressu	ure:		101kl			Pola	arization:		ŀ	Horizontal			
Test v	oltage:		DC 1: AC 1:	2V fro 20V/6	om adapter 60Hz	Test	mode:		ľ	Mode 3			
90.0	dBuV/m												
80													
70													
60						_		FCC	Classi	3M Ra	idiated QP		
50								Marg	jin -6 d	В			
40	1	X			3		_				e	not on	
30	Land and San Application of the San Applicati	arranda, bestaffiqili,	% L	mad and when the	made de la companya d	الملاديين	mathing my	5 hrdim	مرينسال ر	V Mayor N	*~~~	M	
20				- chu.		Althour You.		J. ~~~V	alt and				
10													
0													
-10	.000	60.0		90.00		Hz)		00.000			00.000	100	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		35.0048	-25.24	56.51	31.27	40.00	-8.73	QP
2	*	60.2801	49.43	-12.90	36.53	40.00	-3.47	QP
3		126.7723	53.44	-15.99	37.45	43.50	-6.05	QP
4	2	231.7179	36.22	-9.27	26.95	46.00	-19.05	QP
5	(355.4273	35.71	-9.59	26.12	46.00	-19.88	QP
6	(612.0642	31.72	-0.58	31.14	46.00	-14.86	QP

5.4 Occupied bandwidth

5.4.1 Test method

Use the following spectrum analyzer settings:

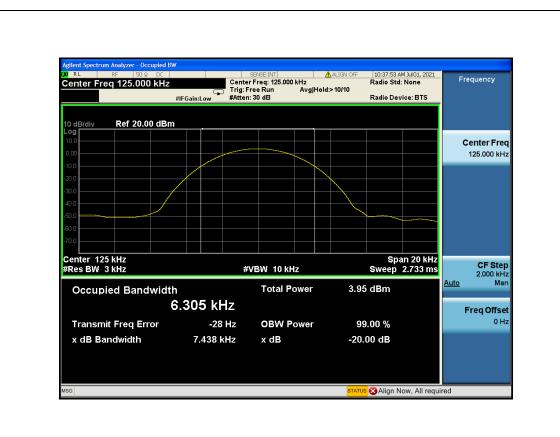
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥1% of the 20 dB bandwidth

VBW ≥RBW

Sweep = auto

Detector function = peak

Trace = max hold


The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth and 99% occupied bandwidth of the emission.

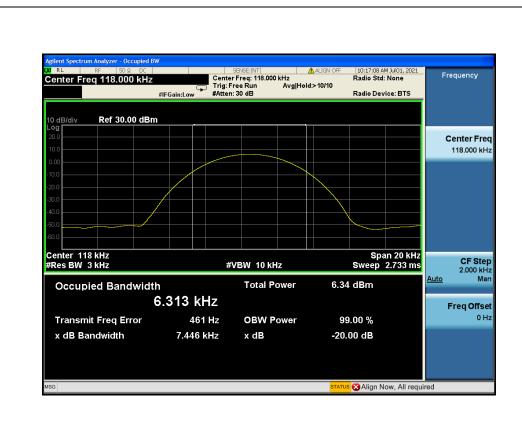
5.4.2 Test result

Load:

Frequency (kHz)	20dB emission bandwidth (kHz)	99% occupied bandwidth (kHz)
125	7.438	6.305

Test plots as below:

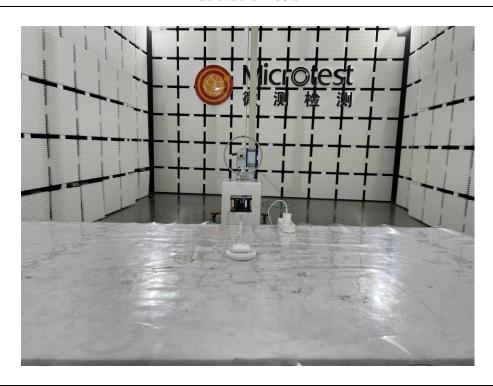
AirPods:


20dB emission bandwidth 99% occupied bandwidth

Report No.: MTi210628009-04E1

118 (kHz) (kHz) (kHz) (kHz) (6.313

Test plots as below:


Frequency (kHz)

Photographs of the Test Setup

Radiated emission

Conducted emission

Photographs of the EUT See the APPENDIX 1- EUT PHOTO. ----END OF REPORT----