

Page 1 of 21

Report No.: AiTSZ-240912001W3

TEST REPORT

Product Name	:	Qi2.0 Wireless Car Charger
Brand Name	:	POWERQI
Model	:	MC25
Series Model	:	N/A
FCC ID	:	2AFP2-MC25
Applicant Address	:	Shenzhen Powerqi Technology Co., Ltd. Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang Community, Longgang District, Shenzhen City
Manufacturer	:	Shenzhen Powerqi Technology Co., Ltd.
Address	:	Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang
		Community, Longgang District, Shenzhen City
Factory 1	:	Community, Longgang District, Shenzhen City Shenzhen Powerqi Technology Co., Ltd.
Factory 1 Address	:	
-	:	Shenzhen Powerqi Technology Co., Ltd. Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang
Address	:	Shenzhen Powerqi Technology Co., Ltd. Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang Community, Longgang District, Shenzhen City
Address Factory 2	:	 Shenzhen Powerqi Technology Co., Ltd. Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang Community, Longgang District, Shenzhen City SEOSIN ELECTRONICS VINA CO., LTD Chau Son Industrial Park, Le Chan Road, Le Hong Phong Ward,
Address Factory 2 Address	:	 Shenzhen Powerqi Technology Co., Ltd. Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang Community, Longgang District, Shenzhen City SEOSIN ELECTRONICS VINA CO., LTD Chau Son Industrial Park, Le Chan Road, Le Hong Phong Ward, Phu Ly City, Ha Nam Province, Viet Nam FCC CFR Title 47 Part 15 Subpart C
Address Factory 2 Address Standard(s)	:	 Shenzhen Powerqi Technology Co., Ltd. Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang Community, Longgang District, Shenzhen City SEOSIN ELECTRONICS VINA CO., LTD Chau Son Industrial Park, Le Chan Road, Le Hong Phong Ward, Phu Ly City, Ha Nam Province, Viet Nam FCC CFR Title 47 Part 15 Subpart C

Issued By:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street,

Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639

Fax.: +86 0755-230967639

Jeon 11 Approved by: _____ Reviewed by: Leon.yi

Note: This device has been tested and found to comply with the standard(s) listed, this test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited. If there is a need to alter or revise this document, the right belongs to Guangdong Asia Hongke Test Technology Limited, and it should give a prior written notice of the revision document. This test report must not be used by the client to claim product endorsement.

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Page 2 of 21 Report No.: AiTSZ-240912001W3

Report Revise Record					
Report Version	Issued Date	Notes			
M1	Sept.19, 2024	Initial Release			

Contents

1	TEST	SUMMARY	4
	1.1	Test Standards	4
	1.2	TEST SUMMARY	
	1.3	TEST FACILITY	
	1.4	MEASUREMENT UNCERTAINTY	
2	GEN	GENERAL INFORMATION	6
	2.1	ENVIRONMENTAL CONDITIONS	6
	2.2	GENERAL DESCRIPTION OF EUT	
	2.3	DESCRIPTION OF THE TEST MODE	
	2.3	SPECIAL ACCESSORIES	
	2.5	EQUIPMENT LIST FOR THE TEST	
	-		
3	TEST	CONDITIONS AND RESULTS	9
	3.1	CONDUCTED EMISSIONS TEST	9
	3.2	Radiated Emissions	
	3.3	20dB Bandwidth	
	3.4	ANTENNA REQUIREMENT	
4	TEST	SETUP PHOTOGRAPHS OF EUT	21
5	EXTE	ERNAL PHOTOGRAPHS OF EUT	21
6	INTE	RNAL PHOTOGRAPHS OF EUT	21

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards: FCC Rules Part 15.207,15.209, 15.215(c)

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

1.2 Test Summary

Test Item	Section in CFR 47	Test Result
Electric Field Radiated Emissions	FCC Part 15 C (Section15.209)	PASS
20dB Bandwidth/99% Bandwidth	FCC Part 15 C (Section15.215(c))	PASS
AC Power Line Conducted Emission	FCC Part 15 C (Section15.207)	PASS
Antenna Requirement	FCC Part 15 C (Section15.203	PASS

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

1.4 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Guangdong Asia Hongke Test Technology Limited's quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Asia Hongke laboratory is reported:

Test	Measurement Uncertainty	Notes
Power Line Conducted Emission	150KHz~30MHz ±1.20 dB	(1)
Radiated Emission	9KHz~30Hz ±3.10dB	(1)
Radiated Emission	9KHz~1GHz \pm 3.75dB	(1)
Radiated Emission	1GHz~18GHz ±3.88 dB	(1)
Radiated Emission	18GHz-40GHz ±3.88dB	(1)
RF power, conducted	30MHz~6GHz \pm 0.16dB	(1)
RF power density, conducted	\pm 0.24dB	(1)
Spurious emissions, conducted	\pm 0.21dB	(1)
Temperature	±1℃	(1)
Humidity	±3%	(1)
DC and low frequency voltages	±1.5%	(1)
Time	±2%	(1)
Duty cycle	±2%	(1)

The report uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty Multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

2 GENGENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Name:	Qi2.0 Wireless Car Charger				
Model/Type reference:	MC25				
Serial Model:	N/A				
Power Supply:	Input: 5V-3A,9V-2.22A,12V-1.67A Output: 15W MAX				
Hardware Version:	V1.0				
Software Version:	V1.0				
Sample(s) Status:	AiTSZ-240912001-01(Normal sample) AiTSZ-240912001-02(Engineer sample)				
Wireless Charger:					
Operation frequency:	113-205Khz, 360Khz				
Modulation Technology:	ASK				
Antenna Type:	Loop coil Antenna				
Antenna gain:	0dBi				
Remark: The above DUT's inform					

description, please refer to the manufacturer's specifications or the User's Manual.

2.3 Description of the test mode

Equipment under test was operated during the measurement under the following conditions: \Box Charging and communication mode

Test Modes:					
Mode 1	AC/DC Adapter+ EUT + phone(Battery Status:< 1%)	Record			
Mode 2	AC/DC Adapter+ EUT + phone(Battery Status:< 50%)	Pre-tested			
Mode 3	AC/DC Adapter+ EUT + phone(Battery Status:< 99%)	Pre-tested			
Mode 4	Stand-by mode.	Pre-tested			
Note: All test modes were pre-tested, but we only recorded the worst case in this report.					

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Serial No.	Provided by	Other
Adapter	HNT	HNT-QC530	/	Test lab	/
Phone	OSCAL	PILOT2	/	Test lab	15W

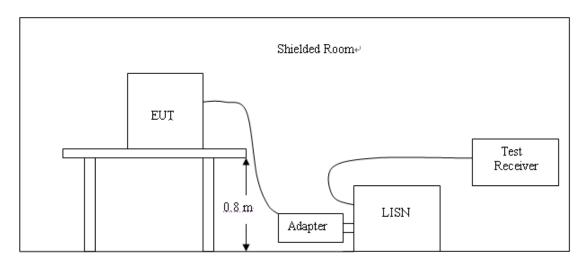
2.5 Equipment List for the Test

No	Test Equipment	Manufacturer	Model No	Serial No	Pre.Cal. Date	New Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2023.09.08	2024.09.07	2025.09.06
2	Spectrum Analyzer	Keysight	N9020A	MY51280643	2023.09.08	2024.09.07	2025.09.06
3	EMI Measuring Receiver	R&S	ESR	101660	2023.09.08	2024.09.07	2025.09.06
4	Low Noise Pre-Amplifier	HP	HP8447E	1937A01855	2023.09.08	2024.09.07	2025.09.06
5	Low Noise Pre-Amplifier	Tsj	MLA-0120- A02-34	2648A04738	2023.09.08	2024.09.07	2025.09.06
6	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03	2026.09.06
7	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28	2027.08.27
8	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28	2027.08.27
9	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170367d	2021.08.29	2024.08.28	2027.08.27
10	EMI Measuring Receiver	R&S	ESR	101160	2023.09.13	2024.09.12	2025.09.11
11	LISN	SCHWARZBECK	NNLK 8129	8130179	2023.10.29	2024.10.28	2025.10.27
12	Pulse Limiter	R&S	ESH3-Z2	102789	2023.09.13	2024.09.12	2025.09.11
13	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA08112501	2023.09.08	2024.09.07	2025.09.06
14	RF Automatic Test system	MW	MW100- RFCB	21033016	2023.09.08	2024.09.07	2025.09.06
15	Signal Generator	Agilent	N5182A	MY50143009	2023.09.08	2024.09.07	2025.09.06
16	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2023.09.08	2024.09.07	2025.09.06

Page 8 of 21 Report No.: AiTSZ-240912001W3

17	RF Automatic Test system	MW	MW100- RFCB	21033016	2023.09.08	2024.09.07	2025.09.06
18	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	N/A	N/A	N/A
19	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A	N/A
20	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A	N/A
21	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A	N/A
22	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A	N/A
Note	Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.						

3 TEST CONDITIONS AND RESULTS

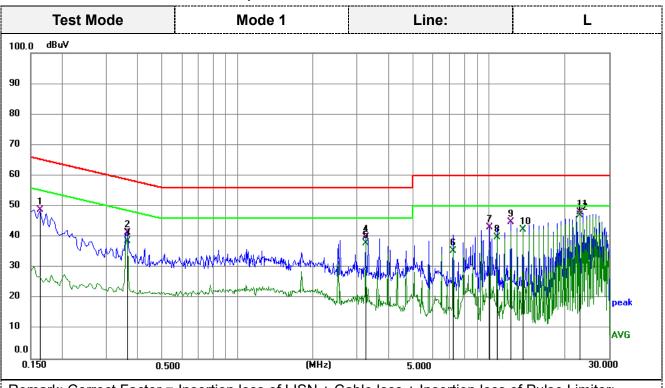

3.1 Conducted Emissions Test

<u>LIMIT</u>

Frequency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

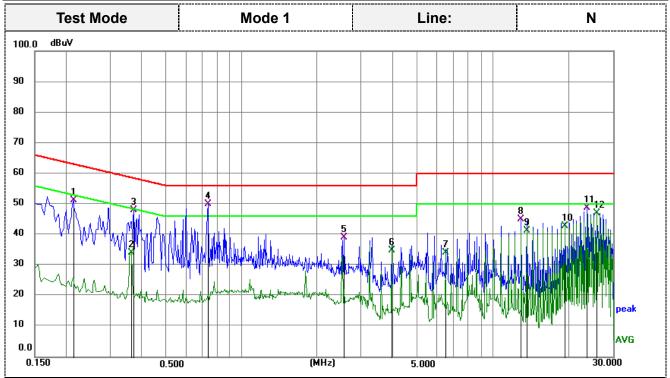
TEST CONFIGURATION


TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

<u>TEST RESULTS</u>

Remark: Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor;

Margin = Measurement Result- Limit

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		
1	0.1635	38.12	10.67	48.79	65.28	-16.49	QP	
2	0.3615	30.74	10.69	41.43	58.69	-17.26	QP	
3	0.3615	27.79	10.69	38.48	48.69	-10.21	AVG	
4	3.2370	28.99	10.83	39.82	56.00	-16.18	QP	
5	3.2370	27.13	10.83	37.96	46.00	-8.04	AVG	
6	7.1880	24.31	11.05	35.36	50.00	-14.64	AVG	
7	10.0680	32.07	11.02	43.09	60.00	-16.91	QP	
8	10.7880	28.79	11.15	39.94	50.00	-10.06	AVG	
9	12.2235	33.57	11.29	44.86	60.00	-15.14	QP	
10	13.6635	30.93	11.41	42.34	50.00	-7.66	AVG	
11	23.0100	36.19	11.75	47.94	60.00	-12.06	QP	
12	23.0100	35.26	11.75	47.01	50.00	-2.99	AVG	

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor;

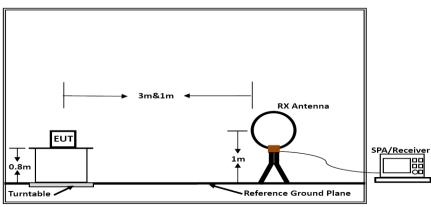
		Margin =	Measurement	Result-	Limit
--	--	----------	-------------	---------	-------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2130	40.53	10.69	51.22	63.09	-11.87	QP
2	0.3615	23.39	10.68	34.07	48.69	-14.62	AVG
3	0.3704	37.43	10.69	48.12	58.49	-10.37	QP
4	0.7350	39.42	10.66	50.08	56.00	-5.92	QP
5	2.5665	28.23	10.79	39.02	56.00	-16.98	QP
6	3.9570	23.85	10.99	34.84	46.00	-11.16	AVG
7	6.4725	23.01	11.01	34.02	50.00	-15.98	AVG
8	12.9435	33.63	11.32	44.95	60.00	-15.05	QP
9	13.6635	29.95	11.38	41.33	50.00	-8.67	AVG
10	19.4145	31.09	11.64	42.73	50.00	-7.27	AVG
11	23.7300	37.00	11.68	48.68	60.00	-11.32	QP
12	25.8855	35.25	11.71	46.96	50.00	-3.04	AVG

3.2 Radiated Emissions

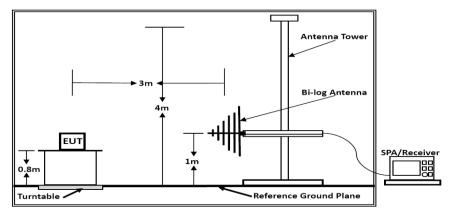
<u>Limit</u>


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

·	INau		
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Radiated emission limits


TEST CONFIGURATION

Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Below 1GHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

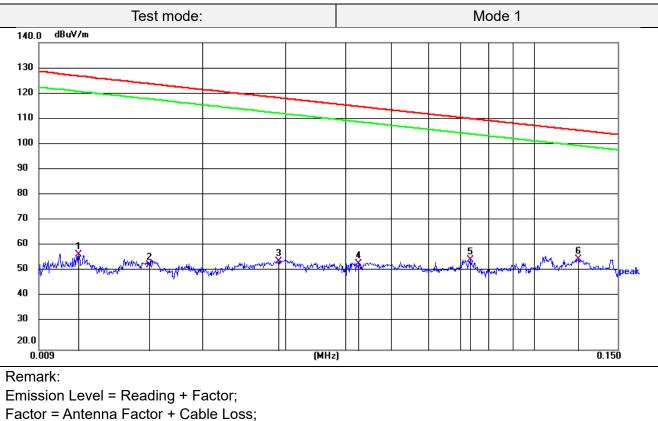
Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°℃ to 360°℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP


TEST RESULTS

Remark:

All test modes descripted in section 2.3 has been tested, only the worst result of Mode 1 is recorded as below:

For 9KHz-150KHz

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	0.0110	35.79	21.36	57.15	126.78	-69.63	QP
2	0.0154	32.08	21.09	53.17	123.85	-70.68	QP
3	0.0290	33.36	21.34	54.70	118.36	-63.66	QP
4	0.0425	31.54	22.15	53.69	115.04	-61.35	QP
5	0.0734	32.62	22.68	55.30	110.29	-54.99	QP
6 *	0.1237	33.29	22.16	55.45	105.76	-50.31	QP

4 *

5

6

1.6800

6.6977

20.1623

25.32

26.42

24.82

22.46

23.06

24.34

47.78

49.48

49.16

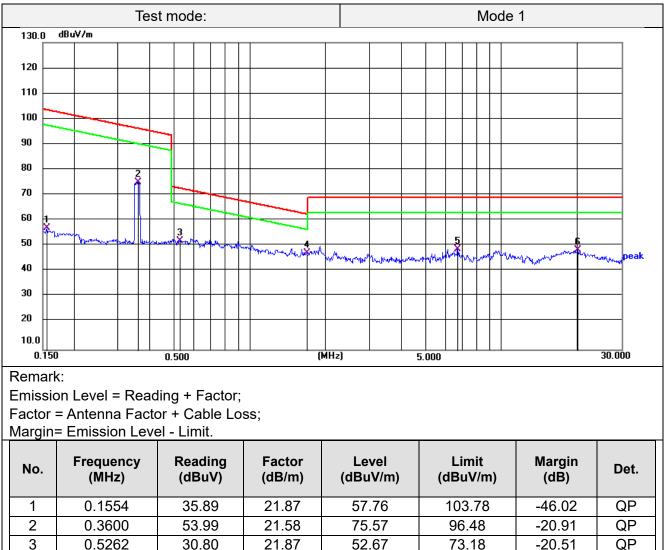
63.10

69.54

69.54

QP

QP


QP

-15.32

-20.06

-20.38

For 150KHz-30MHz

For 30MHz-1GHz

	Test	m	ode	:				ſ	Mode 1		Polari	zation:			I	Hor	izor	nta	
30.0	dBu¥∕	m								_									
'0 -		+					+	\vdash									+	\neg	
io								<u> </u>											
																		Ы	
0																		Ħ	
10							1			_					alana har	5			oeak
30			4				1				4 ×				man	a fair and	a dentre		
			Jan 1	We wanter		2			www.h. www. Autobelander	x	walnuman	warman .	a the set of the set	att annual					
20 -	WHIN MILLING	-		AL MAN	- Aller	w f	home	hund	Within the many with the should be an all and	7	Management July 1	47 -	NN YY					\neg	
0	Market									\parallel									
'										Ħ									
10							-	<u> </u>		+								_	
20																			
20										Π									
30						\vdash		-		+								\neg	
40																			
30	.000			60).00		1	I	(MHz)		30	0.00	1	I	L		10)00.0	000

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss – Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1 *	44.2752	48.74	-13.23	35.51	40.00	-4.49	QP
2	76.5121	37.59	-15.43	22.16	40.00	-17.84	QP
3	191.7450	37.77	-11.63	26.14	43.50	-17.36	QP
4	287.9904	46.65	-14.48	32.17	46.00	-13.83	QP
5	731.9203	37.39	-0.90	36.49	46.00	-9.51	QP
6	906.4824	36.78	1.84	38.62	46.00	-7.38	QP

		mode	e :				Ν	Node 1		Polar	ization:				Ve	ertica	al	
80.0	dBuV/r	n 	1								1						_	
70																		
60																		
																	_	
50																	Ħ	
40	1	2				-									1.	and the	\$	peak
30	APPRIM					3		4		5			and and the second	when	effil/ener	····	+	
20	Methic Line of	N ^m Vr	hunder	Marian	sources/	×,		ma Allowald	2. March 1000 March	white	-	and a stand of the state of the					\parallel	
10							, T										Ц	
0																		
																	Π	
-10																	Π	
-20						+											Η	
-30						-											+	
-40																		
30	0.000		60	0.00					(MHz)	3	00.00					10	00.0	000
Rei	mark:																	

Emission Level = Reading + Factor;

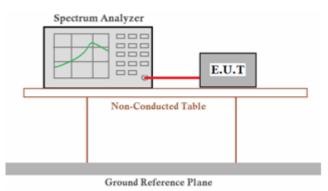
Factor = Antenna Factor + Cable Loss – Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1 *	33.7986	47.29	-13.60	33.69	40.00	-6.31	QP
2	44.1202	45.82	-12.87	32.95	40.00	-7.05	QP
3	83.8156	45.49	-19.30	26.19	40.00	-13.81	QP
4	143.8295	43.74	-14.22	29.52	43.50	-13.98	QP
5	287.9904	38.92	-14.61	24.31	46.00	-21.69	QP
6	955.4381	37.68	1.53	39.21	46.00	-6.79	QP

3.3 20dB Bandwidth

<u>Limit</u>


The 20dB bandwidth shall be less than 80% of the permitted frequency band.

Test Procedure

- 1. Set RBW = 30Hz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

<u>Test setup</u>

Test Results

Mode	Frequency (KHz)	20dB Bandwidth (KHz)	99% OBW (KHz)	Conclusion
Tx Mode	190.1	0.096	-	PASS
Tx Mode	360.0	0.091	-	PASS

Keysight Spectrum Analyzer - Occupied BW RF 50 Ω ▲ DC Center Freq 190.100 kHz		vse:PULSE Center Freq: 190.100 kHz Trig: Free Run #Atten: 6 dB	Avg Hold:>10/10	11:39:17 AM Sep 11, 2024 Radio Std: None Radio Device: BTS
15 dB/dlv Ref 0.00 dBm	#FGein:Low	#Atten: 6 dB		Radio Device: BTS
Occupied Bandwidth		Total Power	-26.2 dBm	
Transmit Freq Error x dB Bandwidth	83 Hz 1 Hz 96 Hz	% of OBW Power x dB	99.00 % -20.00 dB	
MSG			STATUS J. DC Coupled	
Keysight Spectrum Analyzer - Occupied BW				- # ×
ଅଜ୍ୟାରୁ ଅନ୍ୟୁକ୍ତର ସହର ଅନ୍ୟୁକ୍ତର ସହର ଅନ୍ୟୁକ୍ତର ଅନ୍ୟୁକ୍ତ	#FGain:Low	NSE:PULSE Center Freq: 360.000 kHz Trig: Free Run #Atten: 6 dB	Avg Hold:>10/10	11:37:50 AM Sep 11, 2024 Radio Std: None Radio Device: BTS
Stability Ref 0.00 dBm Log	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Center 360 kHz #Res BW 30 Hz		#VBW 91 Hz		Span 5 kHz Sweep FFT
Occupied Bandwidth	79 Hz	Total Power	-25.8 dBm	
Transmit Freq Error x dB Bandwidth	7 Hz 91 Hz	% of OBW Power x dB	99.00 % -20.00 dB	

3.4 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

Confirmation

The EUT's antenna is an Inductive Loop coil Antenna, the best case gain of the antenna is 0dBi.

4 Test Setup Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

5 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

6 Internal Photographs of EUT

Please refer to separated files for Internal Photos of the EUT.