

Test Report

Report No.: MTi211217001-04E1

Date of issue: Apr. 19, 2022

Applicant: Shenzhen Powerqi Technology Co., Ltd

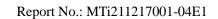
Product: Magnet Wireless Charger

LC12C, LC36C, LC33C, LC10C, LC19C, LC20C, LC21C, LC11C, LC28C, LC09C, LC69C Model(s):

FCC ID: 2AFP2-LC12C

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com


Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of the EUT	
2	Summary of Test Result	7
3	Test Facilities and accreditations	8
	3.1 Test laboratory	8
4	List of test equipment	9
5	Test Results	10
	5.1 Antenna requirements	10 11 14
6	Photographs of the test setup	26
7	Photographs of the EUT	27

Test Result Certification				
Applicant: Shenzhen Powerqi Technology Co., Ltd.				
Address: Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology No. 13 of Baonan Road, Longgang District, Shenzhen, China				
Manufacturer:	Shenzhen Powerqi Technology Co., Ltd.			
Address:	Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang District, Shenzhen, China			
Factory:	Shenzhen Powerqi Technology Co., Ltd.			
Address: Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology P No. 13 of Baonan Road, Longgang District, Shenzhen, China				
Product descrip	otion			
Product name:	Magnet Wireless Charger			
Trademark:	POWERQI			
Model name:	LC12C			
Serial Model:	LC36C, LC33C, LC10C, LC19C, LC20C, LC21C, LC11C, LC28C, LC09C, LC69C			
Standards:	FCC 47 CFR Part 15 Subpart C			
Test method:	ANSI C63.10-2013			
Date of Test				
Date of test:	2022-03-08 ~ 2022-04-18			
Test result:	Pass			

Test Engineer	:	Yanice Xie
		(Yanice Xie)
Reviewed By:	:	lear chen
		(Leon Chen)
Approved By:	:	tom Xue
		(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	Magnet Wireless Charger		
Model name:	LC12C		
Series Model:	LC36C, LC33C, LC10C, LC19C, LC20C, LC21C, LC11C, LC28C, LC09C, LC69C		
Model difference:	All the models above are identical in interior structure, electrical circuits and components, just the shell material and wire material. Model names for metal are LC12C,LC11C,LC36C,LC33C,LC10C,LC28C,LC09C. Model names for plastic are LC19C,LC20C,LC21C. Model names for wood are LC69C.		
Electrical rating:	Input: DC 5V3A, 9V2.22A, 12V1.67A Wireless Output: 5W/7.5W/10W/15W		
Accessories:	N/A		
Hardware version:	V11		
Software version:	V10		
RF specification:			
Operation frequency:	115 kHz – 205 kHz		
Modulation type:	ASK		
Antenna type:	Coil Antenna		

1.2 Description of test modes

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

No.	Emission test modes	
Mode 1	Wirless Output(5W)	
Mode 2	Wireless Output(7.5W)	
Mode 3	Wireless Output(10W)	
Mode 4	Wireless Output(15W)	
Mode 5	Stand-by	

The worst test mode of conducted emissions: Mode 2

The worst test mode of radiated emissions: Mode 4

Notes: All materials of the EUT had tested, which was shown two material the worst test datas.

1.3 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
Adapter	XY-PQ018E1	/	Dongguan Xu Yuan Electronic Technology Co., Ltd			
Load	YBZ1.1	Z1.1 / YBZ				
Support cable list						
Description	Length (m)	From	То			
/	/	/	/			

1.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C~35°C
Humidity:	20 % RH ~ 75 % RH
Atmospheric pressure:	98 kPa~101 kPa

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emission (9 kHz~30 MHz)	± 2.5 dB
Radiated emission (9 kHz ~ 30 MHz)	± 4.0dB
Radiated emission (30 MHz~1 GHz)	± 4.2 dB
Radiated emission (above 1 GHz)	± 4.3 dB
Occupied bandwidth	± 3 %
Temperature	±1 degree
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

2 Summary of Test Result

No.	FCC reference	Description of test	Result		
	Emission				
1	FCC Part 15.203	Antenna requirement	Pass		
2	FCC Part 15.207	AC power line Conducted emissions	Pass		
3	FCC Part 15.209	Radiated emissions	Pass		
4	FCC Part 15.215	Occupied bandwidth	Pass		

Note: N/A means not applicable.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory: Shenzhen Microtest Co., Ltd.	
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 List of test equipment

			I	I	I	I
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTi-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2022/04/15	2023/04/14
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E122	MXA signal analyzer	Agilent	N9020A	MY5444085 9	2021/05/06	2022/05/05
MTi-E001	Artificial Mains Network	R&S	ESH2-Z5	100263	2021/06/02	2022/06/01
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTi-E026	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	NTFM 8158 #199	2021/06/02	2022/06/01
MTi-E021	EMI Test Receiver	R&S	ESCS30	100210	2021/06/02	2022/06/01
MTi-E024	Artificial power network	Schwarzbeck	NSLK8127	01001	2021/06/02	2022/06/01

5 Test Results

5.1 Antenna requirements

15.203 requirement

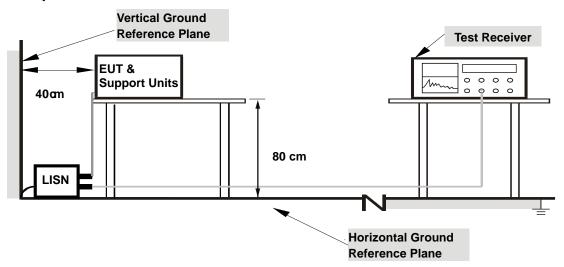
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the EUT antenna

The antenna of EUT is coil antenna, which is integrated on the main PCB of the EUT and no consideration of replacement.

5.2 AC power line conducted emissions

5.2.1 Limits


Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5	Average / 9 kHz	66 to 56	56 to 46
0.5 -5		56	46
5 -30		60	50

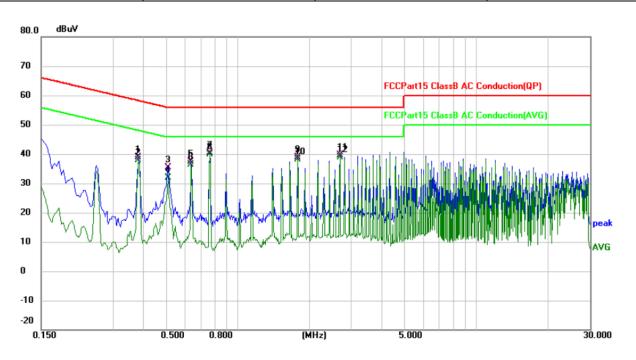
Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

- a) The test setup is refer to the standard ANSI C63.10-2013.
- b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).
- c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.
- d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.
- e) The test data of the worst-case condition(s) was recorded.

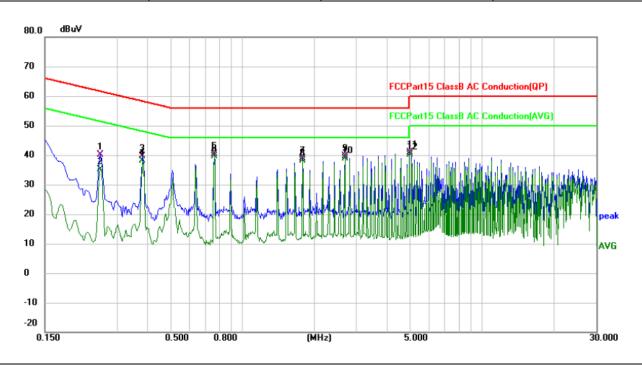
5.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.


5.2.4 Test Result

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) - Limit (dB μ V)



Test mode:	Mode 2	Phase:	L
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1

		Reading	Correct	Measure-		_	
No. M	k. Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.3820	27.83	10.97	38.80	58.24	-19.44	QP
2	0.3820	26.94	10.97	37.91	48.24	-10.33	AVG
3	0.5100	24.20	11.07	35.27	56.00	-20.73	QP
4	0.5100	20.73	11.07	31.80	46.00	-14.20	AVG
5	0.6380	26.25	11.08	37.33	56.00	-18.67	QP
6	0.6380	25.29	11.08	36.37	46.00	-9.63	AVG
7	0.7660	29.22	11.12	40.34	56.00	-15.66	QP
8 *	0.7660	28.73	11.12	39.85	46.00	-6.15	AVG
9	1.7900	24.01	14.97	38.98	56.00	-17.02	QP
10	1.7900	23.27	14.97	38.24	46.00	-7.76	AVG
11	2.6820	28.15	11.40	39.55	56.00	-16.45	QP
12	2.6820	27.40	11.40	38.80	46.00	-7.20	AVG

Test mode:	Mode 2	Phase:	N
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2540	29.10	10.91	40.01	61.63	-21.62	QP
2	0.2540	24.30	10.91	35.21	51.63	-16.42	AVG
3	0.3820	28.74	10.90	39.64	58.24	-18.60	QP
4	0.3820	27.29	10.90	38.19	48.24	-10.05	AVG
5	0.7660	29.16	11.10	40.26	56.00	-15.74	QP
6	0.7660	28.41	11.10	39.51	46.00	-6.49	AVG
7	1.7900	23.95	14.94	38.89	56.00	-17.11	QP
8	1.7900	23.14	14.94	38.08	46.00	-7.92	AVG
9	2.6820	28.16	11.38	39.54	56.00	-16.46	QP
10	2.6820	27.44	11.38	38.82	46.00	-7.18	AVG
11	4.9820	29.40	11.39	40.79	56.00	-15.21	QP
12 *	4.9820	28.67	11.39	40.06	46.00	-5.94	AVG

5.3 Radiated emissions

5.3.1 Limits

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

According to ANSI C63.10, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
	5th harmonic of the highest frequency or 40 GHz, whichever is lower

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / 120 kHz

5.3.2 Test Procedures

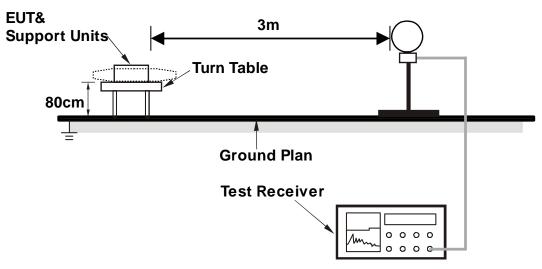
The EUT is placed on a non-conducting table 80cm above the ground plane for measurement blew 1 GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10-2013.

For measurement blew 1 GHz, the resolution bandwidth is set as item 5.4.2.

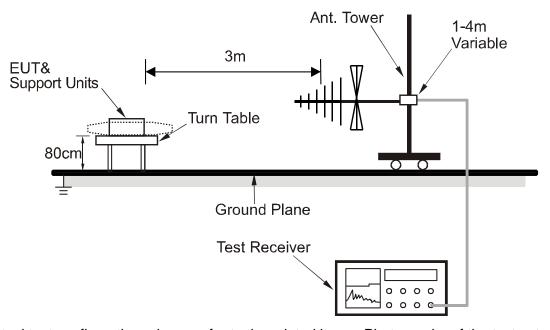
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned form 1 to 4m meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and horizontal positions.

Special requirements for 9 kHz to 30 MHz:

The lowest height of the magnetic antenna shall be 1 m above the ground


When the EUT contains a loop antenna that can only be placed in a vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, and then orthogonal to the axis. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.

When the EUT contains a loop antenna that can be placed in a horizontal or vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, orthogonal to the axis, and then with the measurement antenna horizontal. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.



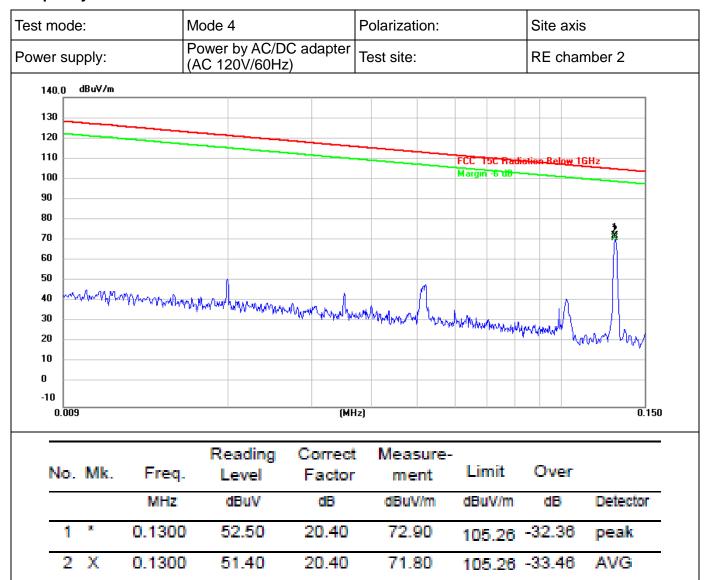
5.3.3 Test Setup

Blew 30 MHz:

Blew 1 GHz:

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.3.4 Test result


Calculation formula:

Measurement (dB μ V/m) = Reading Level (dB μ V) + Correct Factor (dB/m) Over (dB) = Measurement (dB μ V/m) – Limit (dB μ V/m)

Note: For 9 kHz - 30 MHz testing, all the required orthogonal orientations of the measurement loop antenna were performed for pre-scan, the maximum radiated transmissions (Site axis) were recorded.

Main model data:LC12C Frequency 9 kHz ~ 150 kHz

30.000

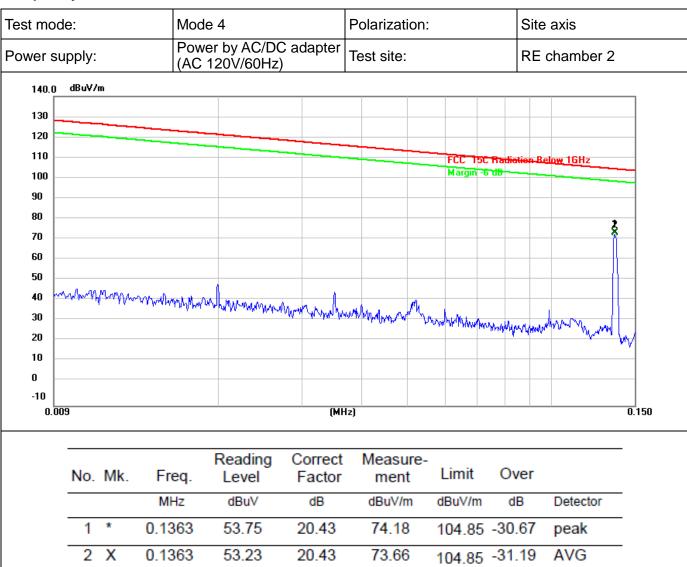
Frequency 150 kHz ~ 30 MHz

-10 -20 -30 0.150

0.500

0.800

est mode:	Mode 4	Polarization:	Site axis	
ower supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2	
120.0 dBuV/m				
110				
100				
90				
80				
70		FCC 15C Radiation Below 1GHz		
60 3 B				
50 2 3 8	7 8			
40	U 4 4			
30	or of the manufacture of the second	W. C	restrict to the second	
20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ANGER CONTRACTOR CONTRACTOR OF THE PROPERTY OF	
10				


(MHz)

5.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		0.2029	28.20	20.51	48.71	101.42	-52.71	peak
2	Х	0.2029	27.89	20.51	48.40	101.42	-53.02	AVG
3		0.2589	33.84	20.53	54.37	99.31	-44.94	peak
4	Х	0.2589	33.27	20.53	53.80	99.31	-4 5.51	AVG
5		0.3893	32.89	20.57	53.46	95.79	-42.33	peak
6	Х	0.3893	32.64	20.57	53.21	95.79	-42.58	AVG
7		0.5210	22.94	20.61	43.55	73.27	-29.72	QP
8	*	0.6474	25.51	20.66	46.17	71.39	-25.22	QP
9		0.9039	19.90	20.76	40.66	68.50	-27.84	QP

Serial model data:LC19C Frequency 9 kHz ~ 150 kHz

30.000

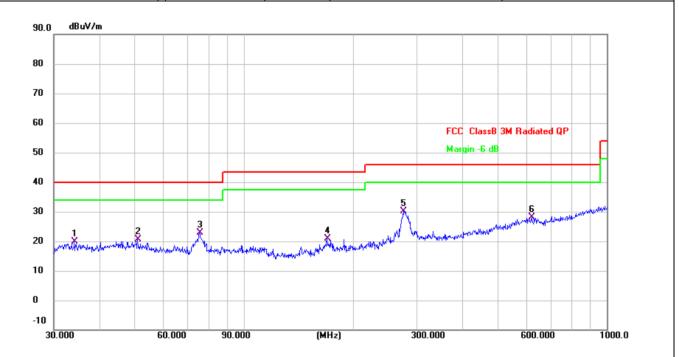
Frequency 150 kHz ~ 30 MHz

-20 -30 0.150

0.500

0.800

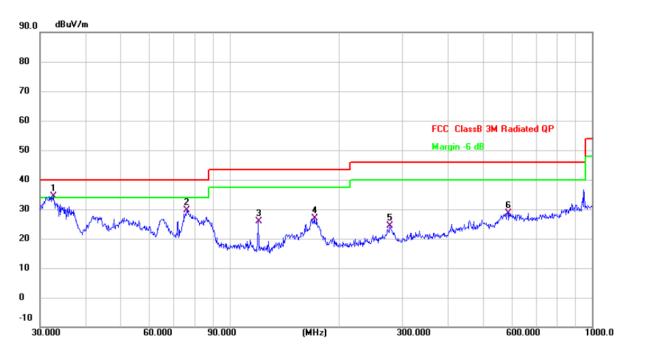
est mode:	Mode 4	Polarization:	Site axis		
ower supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2		
120.0 dBuV/m					
110					
100					
90					
80					
70			tion Below 1GHz		
60		Margin -6 dB			
50	5 7				
40 May 100	8				
30	when the property of the prope	andre and a second seco			
20	the transfer study the	and the second	htpl://dd.th.deltr.co.detviner.htterp.etviner.co.		
10					
0					
-10					


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		0.3034	31.59	20.54	52.13	97.94	-45.81	peak
2	X	0.3034	30.59	20.54	51.13	97.94	-46.81	AVG
3		0.3891	29.39	20.57	49.96	95.79	-45.83	peak
4	X	0.3891	28.05	20.57	48.62	95.79	-47.17	AVG
5		0.4539	25.11	20.59	45.70	94.46	-48.76	peak
6	Χ	0.4539	22.91	20.59	43.50	94.46	-50.96	AVG
7	*	0.7832	25.71	20.71	46.42	69.74	-23.32	QP
8		1.1653	17.10	20.81	37.91	66.30	-28.39	QP

(MHz)

Main model data:LC12C Frequency 30 MHz ~ 1 GHz

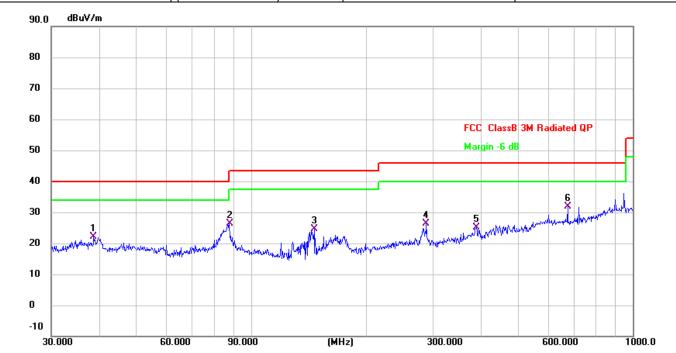
Test mode:	Mode 4	Polarization:	Horizontal
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2



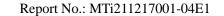
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		34.1561	28.04	-8.25	19.79	40.00	-20.21	QP
2		50.9420	28.38	-7.82	20.56	40.00	-19.44	QP
3		75.4464	33.08	-10.12	22.96	40.00	-17.04	QP
4		169.5990	30.56	-9.62	20.94	43.50	-22.56	QP
5	*	275.1570	35.87	-5.62	30.25	46.00	-15.75	QP
6		620.7096	28.10	-0.07	28.03	46.00	-17.97	QP

Frequency 30 MHz ~ 1 GHz

Test mode:	Mode 4	Polarization:	Vertical
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2

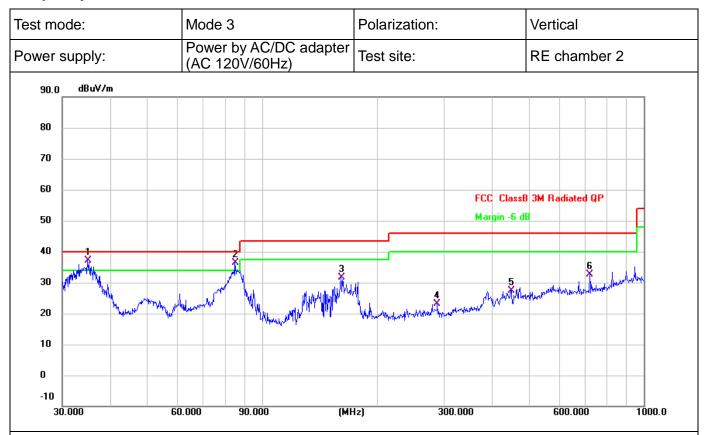


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	32.6340	42.97	-8.49	34.48	40.00	-5.52	QP
2		76.2442	39.66	-10.14	29.52	40.00	-10.48	QP
3		119.8556	36.04	-10.21	25.83	43.50	-17.67	QP
4		171.3926	36.36	-9.50	26.86	43.50	-16.64	QP
5	:	277.0935	30.10	-5.65	24.45	46.00	-21.55	QP
6	:	586.8437	28.63	-0.07	28.56	46.00	-17.44	QP



Series Model data:LC19C Frequency 30 MHz ~ 1 GHz

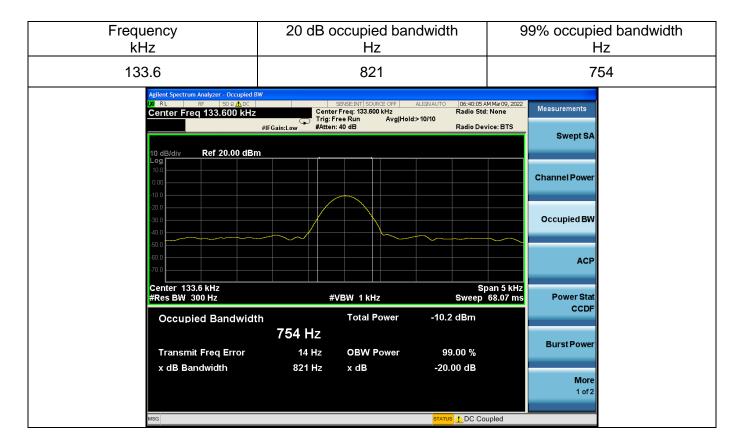
Test mode:	Mode 4	Polarization:	Horizontal
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2
90.0 dBuV/m			



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dΒ	Detector
1		38.7516	30.18	-8.17	22.01	40.00	-17.99	QP
2	*	87.7248	35.71	-9.21	26.50	40.00	-13.50	QP
3		146.3735	35.10	-10.55	24.55	43.50	-18.95	QP
4		287.9904	32.13	-5.76	26.37	46.00	-19.63	QP
5		389.3548	29.46	-4.44	25.02	46.00	-20.98	QP
6		675.2080	32.05	-0.28	31.77	46.00	-14.23	QP

Frequency 30 MHz ~ 1 GHz

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	34.8823	45.29	-8.13	37.16	40.00	-2.84	QP
2	į	84.9995	45.83	-9.57	36.26	40.00	-3.74	QP
3		160.9089	41.47	-9.82	31.65	43.50	-11.85	QP
4		287.9904	28.80	-5.76	23.04	46.00	-22.96	QP
5		449.5558	30.90	-3.51	27.39	46.00	-18.61	QP
6		721.7258	32.20	0.35	32.55	46.00	-13.45	QP


5.4 Occupied bandwidth test

5.4.1 Test Procedures

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.
- d) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement
- e) Set detection mode to peak and trace mode to max hold.
- f) Determine the "-xx dB down amplitude" using [(reference value) xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

5.4.2 Test Result

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

6 Photographs of the test setup

See the Appendix – Test Setup Photos.

7 Photographs of the EUT

See the Appendix - EUT Photos.

----End of Report----

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com