# FCC and ISED Test Report

MiX Telematics International (Pty) Ltd Telematics Unit, Model: MiX 3400-B

# In accordance with FCC 47 CFR Part 15C, ISED **RSS-247 and ISED RSS-GEN** (2.4 GHz Bluetooth Low Energy)

Prepared for: MiX Telematics International (Pty) Ltd Blaauwklip Office Park 2 **Cnr Strand & Webersvalley Roads** Stellenbosch South Africa

Add value. **Inspire trust.** 

FCC ID: 2AFMS-3400XG IC: Not applicable

# COMMERCIAL-IN-CONFIDENCE

Document 75952029-07 Issue 01

| SIGNATURE      |                 |                      |                |
|----------------|-----------------|----------------------|----------------|
| 5 Mul          |                 |                      |                |
| NAME           | JOB TITLE       | RESPONSIBLE FOR      | ISSUE DATE     |
| Steve Marshall | Senior Engineer | Authorised Signatory | 11 August 2022 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

### **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR                                                   | NAME         | DATE                                                     | SIGNATURE   |
|-------------------------------------------------------------------|--------------|----------------------------------------------------------|-------------|
| Testing                                                           | Paul Dickson | 11 August 2022                                           | Collection- |
| Testing                                                           | Neil Rousell | 11 August 2022                                           | John        |
| FCC Accreditation<br>90987 Octagon House, Fareham Test Laboratory |              | SED Accreditation<br>2669A Octagon House, Fareham Test I | Laboratory  |

90987 Octagon House, Fareham Test Laboratory

#### **EXECUTIVE SUMMARY**

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C: 2020, ISED RSS-247: Issue 2 (02-2017) and ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021) for the tests detailed in section 1.3.



#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2022 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom







# Contents

| 1                        | Report Summary                                                                                               | 2                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------|----------------------|
| 1.1<br>1.2               | Report Modification Record                                                                                   | 2                    |
| 1.3                      | Brief Summary of Results                                                                                     | 3                    |
| 1.4                      | Manufacturer's Declared Variant(s)                                                                           | 4                    |
| 1.5                      | Application Form                                                                                             | 5                    |
| 1.6                      | Product Information                                                                                          | 9                    |
| 1.7                      | Deviations from the Standard                                                                                 | 9                    |
| 1.8                      | EUT Modification Record                                                                                      | 9                    |
| 1.9                      | Test Location                                                                                                | . 10                 |
| 2                        | Test Details                                                                                                 | . 11                 |
| 2.1<br>2.2<br>2.3<br>2.4 | Restricted Band Edges<br>Emission Bandwidth<br>Maximum Conducted Output Power<br>Spurious Radiated Emissions | 11<br>15<br>21<br>24 |
| 2.5                      | Authorised Band Edges                                                                                        | 37                   |
| 2.6                      | Power Spectral Density                                                                                       | 41                   |
| 3                        | Photographs                                                                                                  | 44                   |
| 3.1                      | Test Setup Photographs                                                                                       | . 44                 |
| 4                        | Measurement Uncertainty                                                                                      | 47                   |



# 1 Report Summary

# 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue  |
|-------|-----------------------|----------------|
| 1     | First Issue           | 11-August 2022 |

# Table 1

#### 1.2 Introduction

| Applicant                             | MiX Telematics International (Pty) Ltd                                                                         |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Manufacturer                          | MiX Telematics International (Pty) Ltd                                                                         |
| Model Number(s)                       | MiX 3400-B                                                                                                     |
| Manufacturer's Declared<br>Variant(s) | MiX 3400-B (TLA) U0140MT<br>MiX 3400-B (VZN) U0142MT                                                           |
| Serial Number(s)                      | 33000051, 33000052 and 33000054                                                                                |
| Hardware Version(s)                   | 1                                                                                                              |
| Software Version(s)                   | 5.2.x                                                                                                          |
| Number of Samples Tested              | 3                                                                                                              |
| Test Specification/Issue/Date         | FCC 47 CFR Part 15C: 2020<br>ISED RSS-247: Issue 2 (02-2017)<br>ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021) |
| Order Number<br>Date                  | P0094972<br>20-April-2021                                                                                      |
| Date of Receipt of EUT                | 26-May-2022                                                                                                    |
| Start of Test                         | 23-June-2022                                                                                                   |
| Finish of Test                        | 28-July-2022                                                                                                   |
| Name of Engineer(s)                   | Paul Dickson and Neil Rousell                                                                                  |
| Related Document(s)                   | ANSI C63.10 (2020)<br>ANSI C63.4 (2014)                                                                        |



# 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN is shown below.

| Section      | Specification Clause  |                  | se           | Test Description               | Deput  | Commente (Dooo Cton doud                                                                                    |  |
|--------------|-----------------------|------------------|--------------|--------------------------------|--------|-------------------------------------------------------------------------------------------------------------|--|
| Section      | FCC Part 15C          | RSS-247          | RSS-GEN      | Test Description               | Result | Comments/Base Standard                                                                                      |  |
| Configuratio | n and Mode: 2.4 G     | Hz Bluetooth Low | / Energy     |                                |        |                                                                                                             |  |
| -            | 15.203                | -                | -            | Antenna Requirment             | N/T    | The device complies with the provisions of this section, as it uses permanently attached integral antennas. |  |
| 2.1          | 15.205                | 3.3              | 8.10         | Restricted Band Edges          | Pass   |                                                                                                             |  |
| 2.2          | 15.247 (a)(2)         | 5.2              | 6.7          | Emission Bandwidth             | Pass   |                                                                                                             |  |
| 2.3          | 15.247 (b)            | 5.4              | 6.12         | Maximum Conducted Output Power | Pass   |                                                                                                             |  |
| 2.4          | 15.247 (d) and 15.209 | 3.3 and 5.5      | 6.13 and 8.9 | Spurious Radiated Emissions    | Pass   |                                                                                                             |  |
| 2.5          | 15.247 (d)            | 5.5              | -            | Authorised Band Edges          | Pass   |                                                                                                             |  |
| 2.6          | 15.247 (e)            | 5.2              | 6.12         | Power Spectral Density         | Pass   |                                                                                                             |  |

Table 2



# 1.4 Manufacturer's Declared Variant(s)

The following information was provided by the customer:

| Modem | Technology       | P/N     | Model               | Model                                                                                                                  | Region/               | Network<br>operator |
|-------|------------------|---------|---------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|
| BG96  | LTE<br>Cat M1/2G | U0051MT | MiX 3400-B          | MiX 3400 Electronic<br>Unit (EU) with Backup<br>Battery and Quectel<br>BG96 modem                                      | 1 & 2                 | Various and<br>AT&T |
| BG96  | LTE<br>Cat M1/2G | U0140MT | МіХ 3400-В<br>(TLA) | MiX 3400 Electronic<br>Unit (EU) with Backup<br>Battery and Quectel<br>BG96 Cat M1 modem<br>(with Telstra modem<br>FW) | 3<br>Australia        | Telstra             |
| BG96  | LTE<br>Cat M1/2G | U0142MT | MiX 3400-B<br>(VZN) | MiX 3400 Electronic<br>Unit (EU) with Backup<br>Battery and Quectel<br>BG96 Cat M1 modem<br>(with Telstra modem<br>FW) | 2<br>North<br>America | Verizon             |

The models listed in the table above present the same electrical, physical and electro mechanics

characteristics e.g., the same layout, PCB, components, and enclosure.

The MiX 3400-B, MiX 3400-B (VZN) and MiX 3400-B (TLA) use the same modem hardware, but the modem firmware is specific to the regions and network operators listed above.



# 1.5 Application Form

# Equipment Description

| Technical Description:<br>(Please provide a brief description of the<br>intended use of the equipment including<br>the technologies the product supports) | <ul> <li>The MIX3000 series product, that is aimed on the easy-install and light fleet market. It consists mainly of an on-board-computer, modem, GNSS, accelerometer, Low Energy Bluetooth, 2 x analogue inputs, serial communication ports (3 x CAN, L &amp; K-Line, LIN, J1850/J1708 and RS232), 3 x LED's, switchable positive-drive and an audible buzzer.</li> <li>The range includes variants with LTE CAT1/2G and CAT M1/2G modems. All variants make use of the same PCB with the integrated modem, as the only discernible difference with the variant modems populated at the same location on a compatible PCB land pattern.</li> <li>MiX 3400-B Electronic Unit (EU) with Backup Battery and Quectel BG96 modem. MiX 3410 Electronic Unit (EU) with Backup Battery and Quectel EG912Y-EU modem.</li> </ul> |              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Manufacturer:                                                                                                                                             | MiX Telematics International (Pty) Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |  |
| Model:                                                                                                                                                    | MiX 3400-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |  |
| Part Number:                                                                                                                                              | U0051MT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |  |
| Hardware Version:                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |  |
| Software Version:                                                                                                                                         | 5.2.x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |
| FCC ID of the product under test – see guidar                                                                                                             | nce here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2AFMS-3400XG |  |
| IC ID of the product under test – see guidance here                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            |  |

# Table 3

# Intentional Radiators

| Technology                                                                               | LTE<br>Band 2   | LTE<br>Band 3   | LTE<br>Band 4   | LTE<br>Band 5   | LTE<br>Band 12  | LTE<br>Band 13  |
|------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Frequency Range<br>(MHz to MHz)                                                          | 1850-1910       | 1710-1785       | 1710-1755       | 824-849         | 699-716         | 777-787         |
| Conducted Declared Output<br>Power (dBm)                                                 | 23              | 23              | 23              | 23              | 23              | 23              |
| Antenna Gain (dBi)                                                                       | 2.07            | 1.46            | 1.46            | 0.21            | 0.76            | 1.39            |
| Supported Bandwidth(s) (MHz)<br>(e.g. 1 MHz, 20 MHz, 40 MHz)                             | 1.4             | 1.4             | 1.4             | 1.4             | 1.4             | 1.4             |
| Modulation Scheme(s)<br>(e.g. GFSK, QPSK etc)                                            | QPSK/<br>16-QAM | QPSK/<br>16-QAM | QPSK/<br>16-QAM | QPSK/<br>16-QAM | QPSK/<br>16-QAM | QPSK/<br>16-QAM |
| ITU Emission Designator<br>(see guidance here)<br>(not mandatory for Part 15<br>devices) | 1M40W7D         | 1M40W7D         | 1M40W7D         | 1M40W7D         | 1M40W7D         | 1M40W7D         |
| Bottom Frequency (MHz)                                                                   | 1850            | 1710            | 1710            | 824             | 699             | 777             |
| Middle Frequency (MHz)                                                                   | 1880            | 1747.5          | 1747.5          | 836.5           | 707.5           | 782             |
| Top Frequency (MHz)                                                                      | 1910            | 1785            | 1755            | 849             | 716             | 787             |

Table 4



| Technology                            | SRD2400   |
|---------------------------------------|-----------|
| Frequency Band (MHz)                  | 2400-2480 |
| Conducted Declared Output Power (dBm) | 4         |
| Antenna Gain (dBi)                    | 2.1       |
| Supported Bandwidth(s) (MHz)          | 1         |
| Modulation Scheme(s)                  | GFSK      |
| ITU Emission Designator               | 1M00F1D   |
| Bottom Frequency (MHz)                | 2402      |
| Middle Frequency (MHz)                | 2440      |
| Top Frequency (MHz)                   | 2480      |

# Table 5

# Un-intentional Radiators

| Highest frequency generated or used in the device or on which the device operates or tunes | 2690 MHz |  |  |  |
|--------------------------------------------------------------------------------------------|----------|--|--|--|
| Lowest frequency generated or used in the device or on which the device operates or tunes  | 699MHz   |  |  |  |
| Class A Digital Device (Use in commercial, industrial or business environment)             |          |  |  |  |
| Class B Digital Device (Use in residential environment only) $\boxtimes$                   |          |  |  |  |

# Table 6

# AC Power Source

| AC supply frequency:      | N/A | Hz |
|---------------------------|-----|----|
| Voltage                   | N/A | V  |
| Max current:              | N/A | А  |
| Single Phase  Three Phase |     |    |

# Table 7

# DC Power Source

| Nominal voltage:       | 13.8/27.6                                     | V |
|------------------------|-----------------------------------------------|---|
| Extreme upper voltage: | 32                                            | V |
| Extreme lower voltage: | 10.5                                          | V |
| Max current:           | 0.5A typical ; 2.5A absolute max (7.5A Fused) | A |

Table 8



# Battery Power Source

| Voltage:                                                | 3.2            |                              | V       |  |                                               |
|---------------------------------------------------------|----------------|------------------------------|---------|--|-----------------------------------------------|
| End-point voltage:                                      | 2.7            |                              | 2.7     |  | V (Point at which the battery will terminate) |
| Alkaline  Leclanche  Lithium  Nickel Cadmium  Lead Acid |                | $did* \square *(Vehicle reg$ | ulated) |  |                                               |
| Other                                                   | Please detail: |                              |         |  |                                               |

### Table 9

### Charging

| Can the EUT transmit whilst being charged | Yes 🛛 No 🗆 |
|-------------------------------------------|------------|
|-------------------------------------------|------------|

Table 10

# **Temperature**

| Minimum temperature: | -20 | °C |
|----------------------|-----|----|
| Maximum temperature: | 60  | °C |

Table 11

#### Cable Loss

| Adapter Oshla Lasa |    |
|--------------------|----|
| Adapter Cable Loss | dB |
| (Conducted sample) |    |

#### Table 12

# Antenna Characteristics

| Antenna connector                                                                                                      |         | State impedance |                 | Ohm |     |
|------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-----------------|-----|-----|
| Temporary antenna conn                                                                                                 | ector 🛛 |                 | State impedance | 50  | Ohm |
|                                                                                                                        |         | LTE             |                 | 3   |     |
| Integral antenna 🖂                                                                                                     | Type:   | BLE             | Gain            | 2.1 | dBi |
|                                                                                                                        |         | GNSS            |                 | 4   |     |
| External antenna                                                                                                       | Type:   |                 | Gain            |     | dBi |
| For external antenna only:                                                                                             |         |                 |                 |     |     |
| Standard Antenna Jack 🗆 If yes, describe how user is prohibited from changing antenna (if not professional installed): |         |                 | nstalled):      |     |     |
| Equipment is only ever professionally installed $\Box$                                                                 |         |                 |                 |     |     |
| Non-standard Antenna Jack 🗆                                                                                            |         |                 |                 |     |     |

Table 13



# Ancillaries (if applicable)

| Manufacturer: | MiX Telematics                                                   | Part Number:       | A0061MT      |
|---------------|------------------------------------------------------------------|--------------------|--------------|
| Model:        | MiX 3000 Universal<br>OBDII Plugin Harness<br>for light vehicles | Country of Origin: | South Africa |
|               |                                                                  |                    |              |
| Manufacturer: | MiX Telematics                                                   | Part Number:       | A0062MT      |
| Model:        | MiX 3000 Universal<br>J1939 Plugin Harness<br>for heavy vehicles | Country of Origin: | South Africa |
|               |                                                                  |                    |              |
| Manufacturer: | MiX Telematics                                                   | Part Number:       | 440FT0931    |
| Model:        | Serial Harness SR1                                               | Country of Origin: | South Africa |
|               |                                                                  |                    |              |

# Table 14

I hereby declare that the information supplied is correct and complete.

Name: Ben van der Merwe Position held: Senior Engineer Date: 27 May 2022



#### 1.6 Product Information

#### 1.6.1 Technical Description

The MiX3000 series product, that is aimed on the easy-install and light fleet market. It consists mainly of an on-board-computer, modem, GNSS, accelerometer, Low Energy Bluetooth, 2 x analogue inputs, serial communication ports (3 x CAN, L & K-Line, LIN, J1850/J1708 and RS232), 3 x LED's, switchable positive-drive and an audible buzzer.

The range includes variants with LTE CAT1/2G and CAT M1/2G modems. All variants make use of the same PCB with the integrated modem, as the only discernible difference with the variant modems populated at the same location on a compatible PCB land pattern.

MiX 3400-B Electronic Unit (EU) with Backup Battery and Quectel BG96 modem. MiX 3410 Electronic Unit (EU) with Backup Battery and Quectel EG912Y-EU modem.

#### 1.7 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

### 1.8 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State                         | Description of Modification still fitted to EUT | Modification Fitted By | Date Modification<br>Fitted |  |
|--------------------------------------------|-------------------------------------------------|------------------------|-----------------------------|--|
| Model: MiX 3400-B                          | Serial Number: 33000054                         |                        |                             |  |
| 0                                          | As supplied by the customer                     | Not Applicable         | Not Applicable              |  |
| Model: MiX 3400-B                          | Model: MiX 3400-B, Serial Number: 33000052      |                        |                             |  |
| 0 As supplied by the customer              |                                                 | Not Applicable         | Not Applicable              |  |
| Model: MiX 3400-B, Serial Number: 33000051 |                                                 |                        |                             |  |
| 1                                          | Power Setting changed in software to 0 dBm.     | Paul Dickson           | 28-July-2022                |  |

Table 15



# 1.9 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

| Test Name                                          | Name of Engineer(s)                                  | Accreditation |  |  |
|----------------------------------------------------|------------------------------------------------------|---------------|--|--|
| Configuration and Mode: 2.4 GHz Bluetooth Low Ener | Configuration and Mode: 2.4 GHz Bluetooth Low Energy |               |  |  |
| Restricted Band Edges                              | Paul Dickson                                         | UKAS          |  |  |
| Emission Bandwidth                                 | Neil Rousell                                         | UKAS          |  |  |
| Maximum Conducted Output Power                     | Neil Rousell                                         | UKAS          |  |  |
| Spurious Radiated Emissions                        | Paul Dickson                                         | UKAS          |  |  |
| Authorised Band Edges                              | Paul Dickson                                         | UKAS          |  |  |
| Power Spectral Density                             | Neil Rousell                                         | UKAS          |  |  |

# Table 16

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom



# 2 Test Details

### 2.1 Restricted Band Edges

# 2.1.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.205 ISED RSS-247, Clause 3.3 ISED RSS-GEN, Clause 8.10

# 2.1.2 Equipment Under Test and Modification State

MiX 3400-B, S/N: 33000054 - Modification State 0

#### 2.1.3 Date of Test

05-July-2022 to 09-July-2022

## 2.1.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.10.5 and 11.12.1.

Plots for average measurements were taken in accordance with ANSI C63.10, clause 11.12.2.5.2.

The following conversion can be applied to convert from dBµV/m to  $\mu$ V/m: 10^(Field Strength in dBµV/m/20).

### 2.1.5 Environmental Conditions

| Ambient Temperature | 19.3 - 23.4 °C |
|---------------------|----------------|
| Relative Humidity   | 42.0 - 60.4 %  |



# 2.1.6 Test Results

# 2.4 GHz Bluetooth Low Energy

| Modulation | Frequency (MHz) | Band Edge Frequency<br>(MHz) | Peak Level<br>(dBµV/m) | Average Level<br>(dBµV/m) |
|------------|-----------------|------------------------------|------------------------|---------------------------|
| GFSK       | 2402            | 2390                         | 51.50                  | 39.81                     |
| GFSK       | 2480            | 2483.5                       | 50.69                  | 39.17                     |



#### Table 17

Figure 1 - GFSK - 2402 MHz - Band Edge Frequency 2390 MHz





# Figure 2 - GFSK - 2480 MHz - Band Edge Frequency 2483.5 MHz

# FCC 47 CFR Part 15, Limit Clause 15.209

| Frequency (MHz) | Field Strength ( $\mu$ V/m at 3 m) |
|-----------------|------------------------------------|
| 30 to 88        | 100                                |
| 88 to 216       | 150                                |
| 216 to 960      | 200                                |
| Above 960       | 500                                |

# Table 18

#### ISED RSS-GEN, Limit Clause 8.9

| Frequency (MHz) | Field Strength (µV/m at 3 m) |
|-----------------|------------------------------|
| 30 to 88        | 100                          |
| 88 to 216       | 150                          |
| 216 to 960      | 200                          |
| Above 960*      | 500                          |

### Table 19

\*Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.



# 2.1.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                     | Manufacturer    | Type No                | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|--------------------------------|-----------------|------------------------|-------|-----------------------------------|------------------------|
| DC Power Supply                | Hewlett Packard | 6269B                  | 1909  | -                                 | O/P Mon                |
| True RMS Multimeter            | Fluke           | 179                    | 4006  | 12                                | 29-Mar-2023            |
| Cable (SMA to SMA, 2 m)        | Rhophase        | 3PS-1801A-2000-<br>3PS | 4113  | 12                                | 27-Jan-2023            |
| Emissions Software             | TUV SUD         | EmX V3.1.2             | 5125  | -                                 | Software               |
| Cable (N-Type to N-Type, 8 m)  | Teledyne        | PR90-088-8MTR          | 5212  | 12                                | 06-Sep-2022            |
| Cable (N-Type to N-Type, 8 m)  | Teledyne        | PR90-088-8MTR          | 5450  | 6                                 | 06-Oct-2022            |
| Thermo-Hygro-Barometer         | PCE Instruments | PCE-THB 40             | 5605  | 12                                | 23-Sep-2022            |
| Antenna (DRG 1-<br>10.5GHz)    | Schwarzbeck     | BBHA9120B              | 5611  | 12                                | 15-Oct-2022            |
| Turntable & Mast<br>Controller | Maturo Gmbh     | NCD/498/2799.01        | 5612  | -                                 | TU                     |
| Tilt Antenna Mast              | Maturo Gmbh     | TAM 4.0-P              | 5613  | -                                 | TU                     |
| Turntable                      | Maturo Gmbh     | Turntable 1.5 SI-2t    | 5614  | -                                 | TU                     |
| Screened Room (12)             | MVG             | EMC-3                  | 5621  | 36                                | 11-Aug-2023            |
| EMI Test Receiver              | Rohde & Schwarz | ESW44                  | 5912  | 12                                | 17-Feb-2023            |

Table 20

TU - Traceability Unscheduled



#### 2.2 Emission Bandwidth

#### 2.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (a)(2) ISED RSS-247, Clause 5.2 ISED RSS-GEN, Clause 6.7

# 2.2.2 Equipment Under Test and Modification State

MiX 3400-B, S/N: 33000052 - Modification State 0

#### 2.2.3 Date of Test

23-June-2022

# 2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.8.1 for 6 dB BW and 6.9.3 for 99% occupied bandwidth measurements.

# 2.2.5 Environmental Conditions

Ambient Temperature23.1 °CRelative Humidity43.6 %



# 2.2.6 Test Results

# 2.4 GHz Bluetooth Low Energy

| Test Configuration       |                                 |                 |                               |
|--------------------------|---------------------------------|-----------------|-------------------------------|
| Frequency Range:         | 2400-2483.5 MHz                 | Band:           | 2.4 GHz                       |
| Limit Clause(s):         | 15.247 (a)(2)<br>RSS-247 5.2 a) | Test Method(s): | C63.10 6.9.3<br>C63.10 11.8.1 |
| Additional Reference(s): | -                               |                 |                               |

| DUT Configuration      |                  |                          |   |  |  |  |  |  |  |
|------------------------|------------------|--------------------------|---|--|--|--|--|--|--|
| Mode:                  | BLE GFSK (LE 1M) | Duty Cycle (%):          | - |  |  |  |  |  |  |
| Antenna Configuration: | SISO             | DCCF (dB):               | - |  |  |  |  |  |  |
| Active Port(s):        | A (A)            | Peak Antenna Gain (dBi): | - |  |  |  |  |  |  |

| Test Frequency |       | Limit |   |   |        |
|----------------|-------|-------|---|---|--------|
| (MHZ)          | А     | В     | С | D | (KHZ)  |
| 2402           | 0.752 | -     | - | - | ≥500.0 |
| 2440           | 0.752 | -     | - | - | ≥500.0 |
| 2480           | 0.732 | -     | - | - | ≥500.0 |

#### Table 21 - 6 dB Bandwidth Results

| Test Frequency |       | Limit |   |   |       |
|----------------|-------|-------|---|---|-------|
| (MHZ)          | А     | В     | С | D | (KHZ) |
| 2402           | 1.080 | -     | - | - | -     |
| 2440           | 1.080 | -     | - | - | -     |
| 2480           | 1.080 | -     | - | - | -     |

# Table 22 - 99% Bandwidth Results





Figure 3 - A (A) 2402 MHz (CH37) 99% Bandwidth



Figure 4 - A (A) 2402 MHz (CH37) 6 dB Bandwidth









Figure 6 - A (A) 2440 MHz (CH17) 6 dB Bandwidth





Figure 7 - A (A) 2480 MHz (CH39) 99% Bandwidth

![](_page_19_Figure_4.jpeg)

Figure 8 - A (A) 2480 MHz (CH39) 6 dB Bandwidth

FCC 47 CFR Part 15, Limit Clause 15.247(a)(2) and ISED RSS-247, Clause 5.2(a)

The minimum 6 dB Bandwidth shall be at least 500 kHz.

![](_page_20_Picture_1.jpeg)

# 2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

| Instrument                      | Manufacturer          | Туре No                 | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|---------------------------------|-----------------------|-------------------------|-------|-----------------------------------|------------------------|
| True RMS Multimeter             | Fluke                 | 179                     | 4006  | 12                                | 29-Mar-2023            |
| Thermo-Hygro-Barometer          | PCE Instruments       | PCE-THB-40              | 5475  | 12                                | 25-Apr-2023            |
| MXA Signal Analyser             | Keysight Technologies | N9020B                  | 5528  | 24                                | 21-Mar-2024            |
| Signal Conditioning Unit        | TUV SUD               | SCU001                  | 5546  | 12                                | 06-Apr-2023            |
| USB Power Sensor                | Boonton               | RTP5008                 | 5820  | 12                                | 06-Apr-2023            |
| Climatic Chamber                | Weiss Technik         | TempEvent<br>T/180/40/3 | 5894  | 12                                | 27-May-2023            |
| DC Power Module 60V<br>20A 300W | Keysight Technologies | N6754A                  | 5970  | -                                 | O/P Mon                |

# Table 23

O/P Mon - Output Monitored using calibrated equipment

![](_page_21_Picture_1.jpeg)

### 2.3 Maximum Conducted Output Power

# 2.3.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (b) ISED RSS-247, Clause 5.4 ISED RSS-GEN, Clause 6.12

#### 2.3.2 Equipment Under Test and Modification State

MiX 3400-B, S/N: 33000052 - Modification State 0

#### 2.3.3 Date of Test

23-June-2022

# 2.3.4 Test Method

The test was performed in accordance with ANSI C63.10 clause 11.9.1.3 Method PKPM1.

### 2.3.5 Environmental Conditions

Ambient Temperature23.1 °CRelative Humidity43.6 %

![](_page_22_Picture_1.jpeg)

# 2.3.6 Test Results

# 2.4 GHz Bluetooth Low Energy

| Test Configuration       |                                 |                 |                 |
|--------------------------|---------------------------------|-----------------|-----------------|
| Frequency Range:         | 2400-2483.5 MHz                 | Band:           | 2.4 GHz         |
| Limit Clause(s):         | 15.247 (b)(3)<br>RSS-247 5.4 d) | Test Method(s): | C63.10 11.9.1.2 |
| Additional Reference(s): | -                               |                 |                 |

| DUT Configuration      |                  |                          |       |  |  |  |  |  |  |
|------------------------|------------------|--------------------------|-------|--|--|--|--|--|--|
| Mode:                  | BLE GFSK (LE 1M) | Duty Cycle (%):          | 100.0 |  |  |  |  |  |  |
| Antenna Configuration: | SISO             | DCCF (dB):               | -     |  |  |  |  |  |  |
| Active Port(s):        | A (A)            | Peak Antenna Gain (dBi): | 2.10  |  |  |  |  |  |  |

| Test Frequency | Ν    | /laximum Con | Limit | Margin |   |       |        |
|----------------|------|--------------|-------|--------|---|-------|--------|
| (MHZ)          | А    | В            | С     | D      | Σ | (aBm) | (dB)   |
| 2402           | 5.10 | -            | -     | -      | - | 30.00 | -24.90 |
| 2440           | 5.00 | -            | -     | -      | - | 30.00 | -25.00 |
| 2480           | 4.88 | -            | -     | -      | - | 30.00 | -25.12 |

#### Table 24 - FCC Maximum Conducted (peak) Output Power Results

| Test Frequency | t Frequency Maximum Conducted Output Power (dBm) Lin |   | Limit | Margin | EIRP | EIRP  | EIRP   |       |       |        |
|----------------|------------------------------------------------------|---|-------|--------|------|-------|--------|-------|-------|--------|
| (MHZ)          | А                                                    | В | С     | D      | Σ    | (dBm) | (dB)   | (dBm) | (dBm) | (dB)   |
| 2402           | 5.10                                                 | - | -     | -      | -    | 30.00 | -24.90 | 7.20  | 36.00 | -28.80 |
| 2440           | 5.00                                                 | - | -     | -      | -    | 30.00 | -25.00 | 7.10  | 36.00 | -28.90 |
| 2480           | 4.88                                                 | - | -     | -      | -    | 30.00 | -25.12 | 6.98  | 36.00 | -29.02 |

#### Table 25 - ISED Maximum Conducted (peak) Output Power Results

# FCC 47 CFR Part 15, Limit Clause 15.247 (b)(3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

#### ISED RSS-247, Limit Clause 5.4 (d)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e) of the specification.

![](_page_23_Picture_1.jpeg)

# 2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

| Instrument                      | Manufacturer          | Type No                 | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|---------------------------------|-----------------------|-------------------------|-------|-----------------------------------|------------------------|
| True RMS Multimeter             | Fluke                 | 179                     | 4006  | 12                                | 29-Mar-2023            |
| Thermo-Hygro-Barometer          | PCE Instruments       | PCE-THB-40              | 5475  | 12                                | 25-Apr-2023            |
| MXA Signal Analyser             | Keysight Technologies | N9020B                  | 5528  | 24                                | 21-Mar-2024            |
| Signal Conditioning Unit        | TUV SUD               | SCU001                  | 5546  | 12                                | 06-Apr-2023            |
| USB Power Sensor                | Boonton               | RTP5008                 | 5820  | 12                                | 06-Apr-2023            |
| Climatic Chamber                | Weiss Technik         | TempEvent<br>T/180/40/3 | 5894  | 12                                | 27-May-2023            |
| DC Power Module 60V<br>20A 300W | Keysight Technologies | N6754A                  | 5970  | -                                 | O/P Mon                |

# Table 26

O/P Mon - Output Monitored using calibrated equipment

![](_page_24_Picture_1.jpeg)

#### 2.4 Spurious Radiated Emissions

#### 2.4.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (d) and 15.209 ISED RSS-247, Clause 3.3 and 5.5 ISED RSS-GEN, Clause 6.13 and 8.9

#### 2.4.2 Equipment Under Test and Modification State

MiX 3400-B, S/N: 33000054 - Modification State 0 MiX 3400-B, S/N: 33000051 - Modification State 1

#### 2.4.3 Date of Test

05-July-2022 to 28-July-2022

#### 2.4.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.3, 6.5 and 6.6.

For frequencies > 1 GHz, plots for average measurements were taken in accordance with ANSI C63.10, clause 11.12.2.5.2.

The EUT was placed on the non-conducting platform in a manner typical of a normal installation.

Ports on the EUT were terminated with loads as described in ANSI C63.4 clause 6.2.4. For EUT's with multiple connectors of the same type, additional interconnecting cables were connected, and pre-scans performed to determine whether the level of the emissions were increased by >2 dB.

The plots shown are the characterisation of the EUT. The limits on the plots represent the most stringent case for restricted bands, (74/54 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

The following conversion can be applied to convert from  $dB\mu V/m$  to  $\mu V/m$ :

10<sup>(Field Strength in dBµV/m/20).</sup>

Above 18 GHz, the measurement distance was reduced to 1 m. The limit line was increased by 20\*LOG(3/1) = 9.54 dB.

![](_page_25_Picture_1.jpeg)

### 2.4.5 Example Test Setup Diagram

![](_page_25_Figure_3.jpeg)

Figure 9

# 2.4.6 Environmental Conditions

| Ambient Temperature | 19.3 - 23.4 °C |
|---------------------|----------------|
| Relative Humidity   | 42.0 - 60.4 %  |

![](_page_26_Picture_1.jpeg)

# 2.4.7 Test Results

# 2.4 GHz Bluetooth Low Energy

| Frequency (MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| 4803.891        | 45.0              | 54.0              | -8.9        | RMS      | 140       | 121         | Vertical     |
| 4804.106        | 49.0              | 54.0              | -4.9        | RMS      | 36        | 286         | Horizontal   |

# Table 27 - 2402 MHz (CH37), LE1M, 30 MHz to 25 GHz

No other emissions found within 10 dB of the limit.

![](_page_26_Figure_7.jpeg)

Figure 10 - 2402 MHz (CH37), LE1M, 30 MHz to 1 GHz, Horizontal (Peak)

![](_page_26_Figure_9.jpeg)

Figure 11 - 2402 MHz (CH37), LE1M, 1 GHz to 25 GHz, Horizontal (Peak)

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

Figure 12 - 2402 MHz (CH37), LE1M, 1 GHz to 25 GHz, Horizontal (rms)

![](_page_27_Figure_4.jpeg)

Figure 13 - 2402 MHz (CH37), LE1M, 30 MHz to 1 GHz, Vertical (Peak)

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

Figure 14 - 2402 MHz (CH37), LE1M, 1 GHz to 25 GHz, Vertical (Peak)

![](_page_28_Figure_4.jpeg)

Figure 15 - 2402 MHz (CH37), LE1M, 1 GHz to 25 GHz, Vertical (rms)

![](_page_29_Picture_1.jpeg)

| Frequency (MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| 4879.908        | 49.1              | 54.0              | -4.9        | RMS      | 140       | 110         | Horizontal   |

# Table 28 - 2440 MHz (CH17), LE1M, 30 MHz to 25 GHz

No other emissions found within 6 dB of the limit.

![](_page_29_Figure_5.jpeg)

Figure 16 - 2440 MHz (CH17), LE1M, 30 MHz to 1 GHz, Horizontal (Peak)

![](_page_29_Figure_7.jpeg)

Figure 17 - 2440 MHz (CH17), LE1M, 1 GHz to 25 GHz, Horizontal (Peak)

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

Figure 18 - 2440 MHz (CH17), LE1M, 1 GHz to 25 GHz, Horizontal (rms)

![](_page_30_Figure_4.jpeg)

Figure 19 - 2440 MHz (CH17), LE1M, 30 MHz to 1 GHz, Vertical (Peak)

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)

Figure 20 - 2440 MHz (CH17), LE1M, 1 GHz to 25 GHz, Vertical (Peak)

![](_page_31_Figure_4.jpeg)

Figure 21 - 2440 MHz (CH17), LE1M, 1 GHz to 25 GHz, Vertical (rms)

![](_page_32_Picture_1.jpeg)

| Frequency (MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *               |                   |                   |             |          |           |             |              |

# Table 29 - 2480 MHz (CH39), LE1M, 30 MHz to 25 GH

\*No emissions found within 6 dB of the limit.

![](_page_32_Figure_5.jpeg)

Figure 22 - 2480 MHz (CH39), LE1M, 30 MHz to 1 GHz, Horizontal (Peak)

![](_page_32_Figure_7.jpeg)

Figure 23 - 2480 MHz (CH39), LE1M, 1 GHz to 25 GHz, Horizontal (Peak)

![](_page_33_Picture_1.jpeg)

![](_page_33_Figure_2.jpeg)

Figure 24 - 2480 MHz (CH39), LE1M, 1 GHz to 25 GHz, Horizontal (rms)

![](_page_33_Figure_4.jpeg)

Figure 25 - 2480 MHz (CH39), LE1M, 30 MHz to 1 GHz, Vertical (Peak)

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

Figure 26 - 2480 MHz (CH39), LE1M, 1 GHz to 25 GHz, Vertical (Peak)

![](_page_34_Figure_4.jpeg)

Figure 27 - 2480 MHz (CH39), LE1M, 1 GHz to 25 GHz, Vertical (rms)

![](_page_35_Picture_1.jpeg)

# FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

#### ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in RSS-GEN, clause 8.10, must also comply with the radiated emission limits specified in RSS-GEN clause 8.9.

![](_page_36_Picture_1.jpeg)

# 2.4.8 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                                          | Manufacturer    | Туре No                         | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|-----------------------------------------------------|-----------------|---------------------------------|-------|-----------------------------------|------------------------|
| Antenna with attenuator<br>(Bilog, 30 MHz to 3 GHz) | Schaffner       | CBL6143                         | 287   | 24                                | 14-Oct-2022            |
| DC Power Supply                                     | Hewlett Packard | 6269B                           | 1909  | -                                 | O/P Mon                |
| Comb Generator                                      | Schaffner       | RSG1000                         | 3034  | -                                 | TU                     |
| True RMS Multimeter                                 | Fluke           | 179                             | 4006  | 12                                | 29-Mar-2023            |
| Cable (SMA to SMA, 2 m)                             | Rhophase        | 3PS-1801A-2000-<br>3PS          | 4113  | 12                                | 27-Jan-2023            |
| Cable (N-Type to N-Type, 1 m)                       | Rosenberger     | LU7-036-1000                    | 5031  | 12                                | 09-Aug-2022            |
| Emissions Software                                  | TUV SUD         | EmX V3.1.2                      | 5125  | -                                 | Software               |
| Cable (N-Type to N-Type, 8 m)                       | Teledyne        | PR90-088-8MTR                   | 5212  | 12                                | 06-Sep-2022            |
| Antenna (DRG, 15 GHz to 40 GHz)                     | Scwarzbeck      | BBHA 9170                       | 5217  | 12                                | 25-Jan-2023            |
| Pre-Amplifier (18 GHz to 40 GHz)                    | Scwarzbeck      | BBV 9721                        | 5218  | 12                                | 25-Jan-2023            |
| Pre-Amplifier (1 GHz to 18 GHz)                     | Schwarzbeck     | BBV 9718 C                      | 5350  | 12                                | 22-Sep-2022            |
| Thermo-hygro-Barometer                              | PCE Instruments | PCE-THB-40                      | 5472  | 12                                | 25-Mar-2023            |
| 3 GHz High pass Filter                              | Wainwright      | WHKX12-2580-<br>3000-18000-80SS | 5547  | 12                                | 11-May-2023            |
| Antenna (DRG, 7.5 GHz to 18 GHz)                    | Schwarzbeck     | HWRD750                         | 5610  | 12                                | 15-Oct-2022            |
| Antenna (DRG 1-<br>10.5GHz)                         | Schwarzbeck     | BBHA9120B                       | 5611  | 12                                | 15-Oct-2022            |
| Turntable & Mast<br>Controller                      | Maturo Gmbh     | NCD/498/2799.01                 | 5612  | -                                 | ти                     |
| Tilt Antenna Mast                                   | Maturo Gmbh     | TAM 4.0-P                       | 5613  | -                                 | TU                     |
| Turntable                                           | Maturo Gmbh     | Turntable 1.5 SI-2t             | 5614  | -                                 | TU                     |
| Screened Room (12)                                  | MVG             | EMC-3                           | 5621  | 36                                | 11-Aug-2023            |
| Test Receiver                                       | Rohde & Schwarz | ESW44                           | 5914  | 12                                | 21-Feb-2023            |

Table 30

TU - Traceability Unscheduled

![](_page_37_Picture_1.jpeg)

# 2.5 Authorised Band Edges

#### 2.5.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (d) ISED RSS-247, Clause 5.5

# 2.5.2 Equipment Under Test and Modification State

MiX 3400-B, S/N: 33000054 - Modification State 0

#### 2.5.3 Date of Test

05-July-2022 to 09-July-2022

# 2.5.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

# 2.5.5 Environmental Conditions

| Ambient Temperature | 19.3 - 23.4 °C |
|---------------------|----------------|
| Relative Humidity   | 42.0 - 60.4 %  |

![](_page_38_Picture_1.jpeg)

### 2.5.6 Test Results

# 2.4 GHz Bluetooth Low Energy

| Modulation | Frequency (MHz) | Band Edge Frequency (MHz) | Level (dBc) |
|------------|-----------------|---------------------------|-------------|
| GFSK       | 2402            | 2400                      | -50.38      |
| GFSK       | 2480            | 2483.5                    | -49.30      |

![](_page_38_Figure_5.jpeg)

#### Table 31

Figure 28 - GFSK, 2480 MHz - Band Edge Frequency 2483.5 MHz

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

Figure 29 - GFSK, 2402 MHz - Band Edge Frequency 2400 MHz

# FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

### ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

![](_page_40_Picture_1.jpeg)

# 2.5.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                     | Manufacturer    | Туре No                | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|--------------------------------|-----------------|------------------------|-------|-----------------------------------|------------------------|
| DC Power Supply                | Hewlett Packard | 6269B                  | 1909  | -                                 | O/P Mon                |
| True RMS Multimeter            | Fluke           | 179                    | 4006  | 12                                | 29-Mar-2023            |
| Cable (SMA to SMA, 2 m)        | Rhophase        | 3PS-1801A-2000-<br>3PS | 4113  | 12                                | 27-Jan-2023            |
| Emissions Software             | TUV SUD         | EmX V3.1.2             | 5125  | -                                 | Software               |
| Cable (N-Type to N-Type, 8 m)  | Teledyne        | PR90-088-8MTR          | 5212  | 12                                | 06-Sep-2022            |
| Cable (N-Type to N-Type, 8 m)  | Teledyne        | PR90-088-8MTR          | 5450  | 6                                 | 06-Oct-2022            |
| Thermo-Hygro-Barometer         | PCE Instruments | PCE-THB 40             | 5605  | 12                                | 23-Sep-2022            |
| Antenna (DRG 1-<br>10.5GHz)    | Schwarzbeck     | BBHA9120B              | 5611  | 12                                | 15-Oct-2022            |
| Turntable & Mast<br>Controller | Maturo Gmbh     | NCD/498/2799.01        | 5612  | -                                 | ти                     |
| Tilt Antenna Mast              | Maturo Gmbh     | TAM 4.0-P              | 5613  | -                                 | ΤU                     |
| Turntable                      | Maturo Gmbh     | Turntable 1.5 SI-2t    | 5614  | -                                 | ΤU                     |
| Screened Room (12)             | MVG             | EMC-3                  | 5621  | 36                                | 11-Aug-2023            |
| EMI Test Receiver              | Rohde & Schwarz | ESW44                  | 5912  | 12                                | 17-Feb-2023            |

Table 32

TU - Traceability Unscheduled

![](_page_41_Picture_1.jpeg)

# 2.6 Power Spectral Density

# 2.6.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (e) ISED RSS-247, Clause 5.2 ISED RSS-GEN, Clause 6.12

### 2.6.2 Equipment Under Test and Modification State

MiX 3400-B, S/N: 33000052 - Modification State 0

#### 2.6.3 Date of Test

23-June-2022

# 2.6.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.10.2.

### 2.6.5 Environmental Conditions

Ambient Temperature23.1 °CRelative Humidity43.6 %

![](_page_42_Picture_1.jpeg)

# 2.6.6 Test Results

# 2.4 GHz Bluetooth Low Energy

| Test Configuration       |                              |                 |                |  |  |  |  |  |
|--------------------------|------------------------------|-----------------|----------------|--|--|--|--|--|
| Frequency Range:         | 2400-2483.5 MHz              | Band:           | 2.4 GHz        |  |  |  |  |  |
| Limit Clause(s):         | 15.247 (e)<br>RSS-247 5.2 b) | Test Method(s): | C63.10 11.10.2 |  |  |  |  |  |
| Additional Reference(s): | -                            |                 |                |  |  |  |  |  |

| DUT Configuration      |                  |                          |       |  |  |  |  |  |
|------------------------|------------------|--------------------------|-------|--|--|--|--|--|
| Mode:                  | BLE GFSK (LE 1M) | Duty Cycle (%):          | 100.0 |  |  |  |  |  |
| Antenna Configuration: | SISO             | DCCF (dB):               | -     |  |  |  |  |  |
| Active Port(s):        | A (A)            | Peak Antenna Gain (dBi): | -     |  |  |  |  |  |

| Test Frequency | RBW   |       | PS | Limit | Margin |   |                |        |
|----------------|-------|-------|----|-------|--------|---|----------------|--------|
| (MHz)          | (KHZ) | А     | В  | С     | D      | Σ | (dBm/3<br>kHz) | (aB)   |
| 2402           | 3.0   | -7.48 | -  | -     | -      | - | 8.00           | -15.48 |
| 2440           | 3.0   | -6.70 | -  | -     | -      | - | 8.00           | -14.70 |
| 2480           | 3.0   | -6.80 | -  | -     | -      | - | 8.00           | -14.80 |

#### **Table 33 - Maximum Power Spectral Density Results**

#### FCC 47 CFR Part 15, Limit Clause 15.247 (e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### ISED RSS-247, Limit Clause 5.2(b)

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

![](_page_43_Picture_1.jpeg)

# 2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

| Instrument                      | Manufacturer          | Туре No                 | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|---------------------------------|-----------------------|-------------------------|-------|-----------------------------------|------------------------|
| True RMS Multimeter             | Fluke                 | 179                     | 4006  | 12                                | 29-Mar-2023            |
| Thermo-Hygro-Barometer          | PCE Instruments       | PCE-THB-40              | 5475  | 12                                | 25-Apr-2023            |
| MXA Signal Analyser             | Keysight Technologies | N9020B                  | 5528  | 24                                | 21-Mar-2024            |
| Signal Conditioning Unit        | TUV SUD               | SCU001                  | 5546  | 12                                | 06-Apr-2023            |
| USB Power Sensor                | Boonton               | RTP5008                 | 5820  | 12                                | 06-Apr-2023            |
| Climatic Chamber                | Weiss Technik         | TempEvent<br>T/180/40/3 | 5894  | 12                                | 27-May-2023            |
| DC Power Module 60V<br>20A 300W | Keysight Technologies | N6754A                  | 5970  | -                                 | O/P Mon                |

# Table 34

O/P Mon - Output Monitored using calibrated equipment

![](_page_44_Picture_1.jpeg)

# 3 Photographs

# 3.1 Test Setup Photographs

![](_page_44_Picture_4.jpeg)

Figure 30 - Test Setup - 30 MHz to 1 GHz

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

Figure 31 - Test Setup - 1 GHz to 18 GHz

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

Figure 32 - Test Setup - 18 GHz to 25 GHz

![](_page_47_Picture_1.jpeg)

# 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                      | Measurement Uncertainty                                |
|--------------------------------|--------------------------------------------------------|
| Restricted Band Edges          | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |
| Emission Bandwidth             | ± 50.1 kHz                                             |
| Maximum Conducted Output Power | ± 1.38 dB                                              |
| Spurious Radiated Emissions    | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |
| Authorised Band Edges          | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |
| Power Spectral Density         | ± 1.49 dB                                              |

#### Table 35

#### Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2007, Clause 4.4.3 and 4.5.1. (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.