

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM170400312001 Page: 1 of 56

FCC REPORT

Application No.:	SZEM1704003120CR
Applicant:	Spigen Koren Co.,Ltd
Manufacturer:	Winners'Sun Plastic & Electronic (Shenzhen) Co., Ltd
Factory:	Winners'Sun Plastic & Electronic (Shenzhen) Co., Ltd
Product Name:	Velo [™] Wireless Selfie Stick
Model No.(EUT):	S530W
Trade Mark:	Velo TM
FCC ID:	2AFKNS530W
Standards:	47 CFR Part 15, Subpart C (2015)
Date of Receipt:	2016-11-21(for original report SZEM161100983901)
Date of Test:	2016-12-21 to 2016-12-23 (for original report SZEM161100983901)
Date of Issue:	2017-01-19 (for original report SZEM161100983901)
	2017-04-18(for new report SZEM170400312001)
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM161100983901 Page: 2 of 56

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2017-04-18		Original

Authorized for issue by:		
Tested By	Bill Chen /Project Engineer	2017-04-18
Checked By	Eric Fu Eric Fu /Reviewer	2017-04-18

Report No.: SZEM161100983901 Page: 3 of 56

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

Report No.: SZEM161100983901 Page: 4 of 56

4 Contents

1	СС	OVER PAGE	1
2	VE	ERSION	2
3		EST SUMMARY	
4		ONTENTS	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	Test Environment	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY	
	5.11	Equipment List	9
6	TE	EST RESULTS AND MEASUREMENT DATA	11
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20DB OCCUPY BANDWIDTH	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME Band-edge for RF Conducted Emissions	
	6.8 6.9	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.9 6.10	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
	6.11	RADIATED SPURIOUS EMISSION	
		11.1 Radiated Emission below 1GHz	
		11.2 Transmitter Emission above 1GHz	
	6.12	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PH	IOTOGRAPHS - EUT TEST SETUP	
	7.1	Conducted Emission	
	7.2	RADIATED EMISSION	
	7.3	RADIATED SPURIOUS EMISSION	
8	PH	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	56

Report No.: SZEM161100983901 Page: 5 of 56

5 General Information

5.1 Client Information

Applicant:	Spigen Koren Co.,Ltd	
Address of Applicant:	No.1709 STX-V TOWER, 371-37, GASAN-DONG, GEUMCHEON-GU, SEOUL, KOREA	
Manufacturer:	Winners'Sun Plastic & Electronic (Shenzhen) Co., Ltd	
Address of Manufacturer:	rer: E Zone, Yingtai Industrial Park, Dalang South Road, Dalang Stre Baoan District, Shenzhen, China	
Factory:	Winners'Sun Plastic & Electronic (Shenzhen) Co., Ltd	
Address of Factory:	E Zone, Yingtai Industrial Park, Dalang South Road, Dalang Street, Baoan District, Shenzhen, China	

5.2 General Description of EUT

Product Name:	Saint Angelo Bluetooth Selfie Stick
Model No.:	WS-SQB908B
Trade Mark:	Dispho
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V3.0
Modulation Type:	GFSK
Number of Channel:	79
Antenna Type:	Inverted F
Antenna Gain:	0dBi
Battery:	Rechargeable battery: DC 3.7V 60mAh (Charge by USB)
Test voltage:	AC 120V 60Hz

Remark:

Original model No. in report SZEM161100983901: WS-SQB908B

There are three colors for WS-SQB908B, only the sample WS-SQB908B with blue was tested in original report SZEM161100983901, since the electrical circuit design, layout, components used, internal wiring and functions were identical for all the above samples, only different on colors. New model No. in report SZEM170400312001:S530W

This report was an additional report copied from the report SZEM161100983901, just changed the information of applicant, product name, model No. and trade mark. Since the electrical circuit design, layout, components used and internal wiring for the model in the report SZEM161100983901 was exactly the same as the model in this report, only different on model name.

Additionally, just updated the below standards.

Original report standard

The newest report standard

47 CFR Part 15, Subpart C (2015)

47 CFR Part 15, Subpart C (2016)

Reviewed the updated standards, all the technical requirements for the EUT are identical between the original and the newest standards' version.

Therefore original data were kept in this report.

Report No.: SZEM161100983901 Page: 6 of 56

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM161100983901 Page: 7 of 56

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1020 mbar	

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
Laptop	Lenovo	T430u
Test board	Supply to SGS	FT232

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM161100983901 Page: 8 of 56

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty

1	Conduction emission	3.45dB (9kHz to 150kHz)
1		3.0dB (150kHz to 30MHz)
	De dista de missione	4.5dB (30MHz-1GHz)
2	Radiated emission	4.8dB (1GHz-6GHz)
3	Temperature test	1℃
4	Humidity test	3%
5	DC power test	0.5 %

Report No.: SZEM161100983901 Page: 9 of 56

5.11 Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8- 02	EMC0120	2016-09-28	2017-09-28
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4- 02	EMC0121	2016-09-28	2017-09-28
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2- 02	EMC0122	2016-09-28	2017-09-28
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM161100983901 Page: 10 of 56

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-10-09	2017-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM161100983901 Page: 11 of 56

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohib 15.247(b) (4) requirement: The conducted output power antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. In this specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Antonia
of the antenna is 0dBi.	n the main PCB and no consideration of replacement. The best case gain

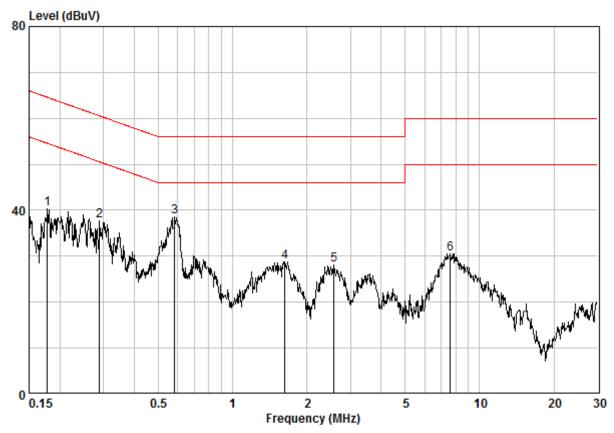
Report No.: SZEM161100983901 Page: 12 of 56

47 CFR Part 15C Section 15.207					
ANSI C63.10: 2013					
150kHz to 30MHz					
	Limit (c	lBuV)			
Frequency range (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithn	n of the frequency.				
 The mains terminal disturbution. The EUT was connected to Impedance Stabilization Nation impedance. The power calls connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Lie exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An of the EUT shall be 0.4 m for the EUT shall be 0.4 m for the test and bonded mounted on top of the ground the ground reference plane. The LISN unit under test and bonded mounted on top of the ground the	bance voltage test was bance voltage test was back power source thro etwork) which provides bles of all other units of SN 2, which was bonde he way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metallie nd for floor-standing ar round reference plane, th a vertical ground ref from the vertical ground plane was bonded to th 1 was placed 0.8 m fro d to a ground reference und reference plane. The of the LISN 1 and the quipment was at least (bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω linear if the EUT were d to the ground or the unit being d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2.			
	 ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm 1) The mains terminal disturber room. 2) The EUT was connected to Impedance Stabilization N impedance. The power calls connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single L exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An unit under test and bonded mounted on top of the group reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated equipment and all of the impediate of the impediate of the maximule equipment and all of the impediate of the province of the maximule equipment and all of the impediate of the province of the group between the closest points the EUT and associated equipment and all of the impediate of the province of the pro	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) Limit (c Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 60 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was room. 2) The EUT was connected to AC power source through the provides impedance. The power cables of all other units of connected to a second LISN 2, which was bonder reference plane in the same way as the LISN 1 for measured. A multiple socket outlet strip was used power cables to a single LISN provided the rating			

6.2 Conducted Emissions

Report No.: SZEM161100983901 Page: 13 of 56

Test Setup:	Shielding Room Test Receiver Test	
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Charge + Transmitting mode.	
Final Test Mode:	 Through Pre-scan, find the DH1 of data type and GFSK modulation at the lowest channel is the worst case. Charge + Transmitting mode Only the worst case is recorded in the report. 	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	

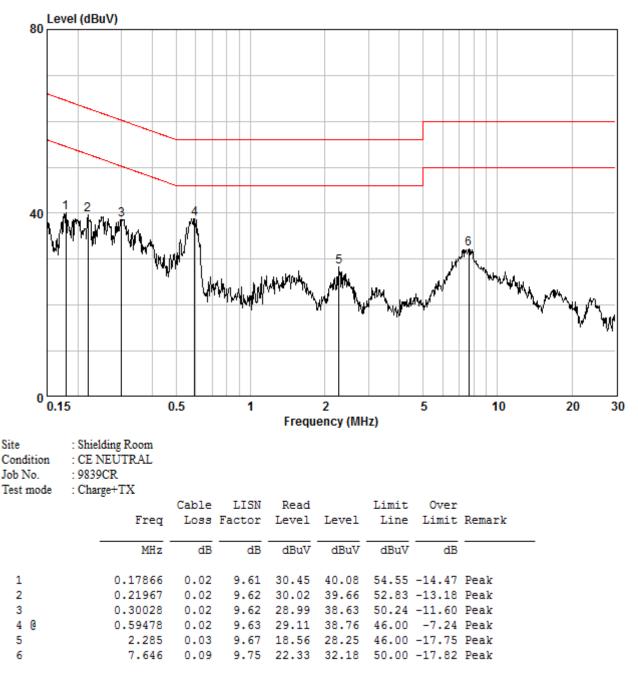

Report No.: SZEM161100983901 Page: 14 of 56

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:


Site : Shielding Room Condition : CE LINE Job No. : 9839CR Test mode : Charge+TX

	Freq		LISN Factor			Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.17772	0.02	9.60	30.70	40.32	54.59	-14.27	Peak
2	0.28935	0.02	9.59	28.19	37.80	50.54	-12.74	Peak
3 @	0.58231	0.02	9.61	28.90	38.53	46.00	-7.47	Peak
4	1.628	0.03	9.60	19.26	28.88	46.00	-17.12	Peak
5	2.581	0.03	9.62	18.43	28.08	46.00	-17.92	Peak
6	7.606	0.09	9.69	20.65	30.43	50.00	-19.57	Peak

Report No.: SZEM161100983901 Page: 15 of 56

Neutral line:

Notes:

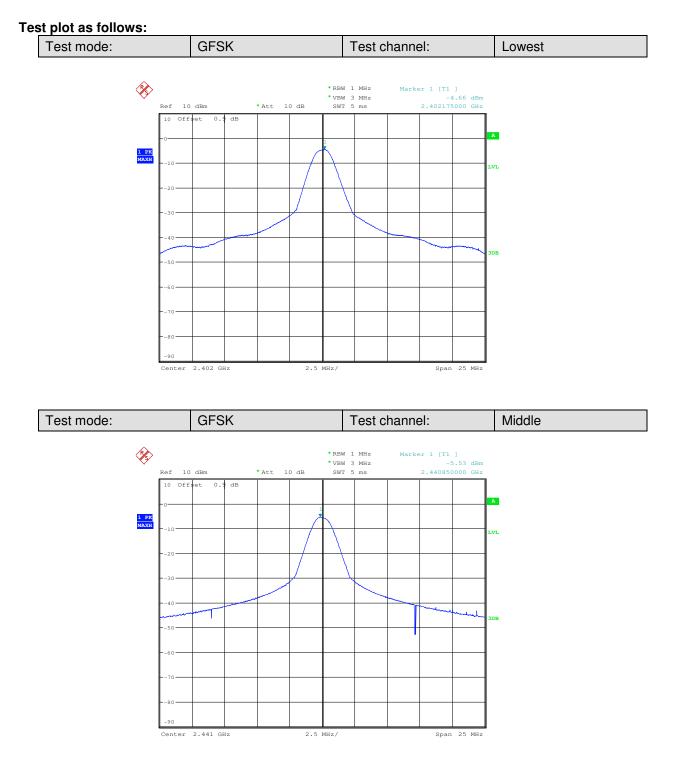
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM161100983901 Page: 16 of 56

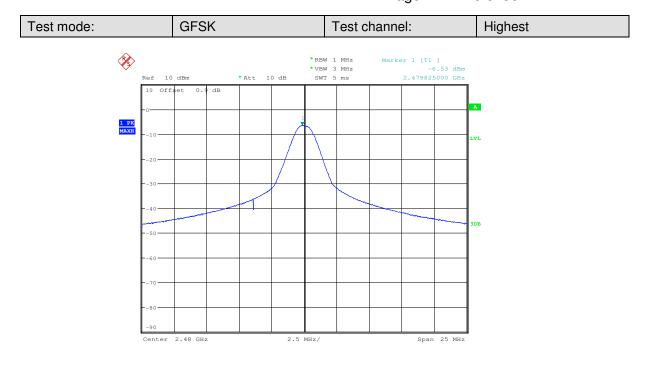
6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.5	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	20.97dBm	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.	
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	


Report No.: SZEM161100983901 Page: 17 of 56

Measurement Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-4.66	20.97	Pass		
Middle	-5.53	20.97	Pass		
Highest	-6.53	20.97	Pass		

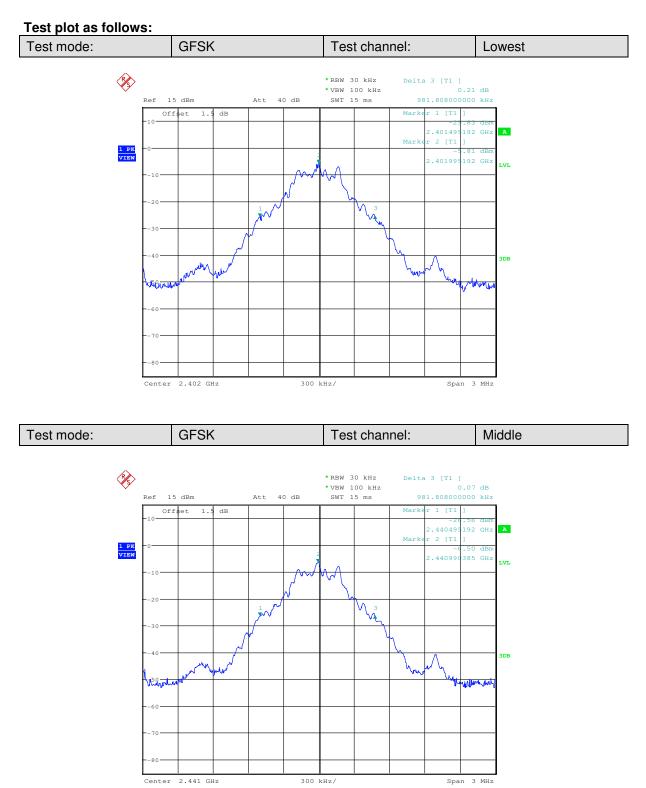


Report No.: SZEM161100983901 Page: 18 of 56

Report No.: SZEM161100983901 Page: 19 of 56

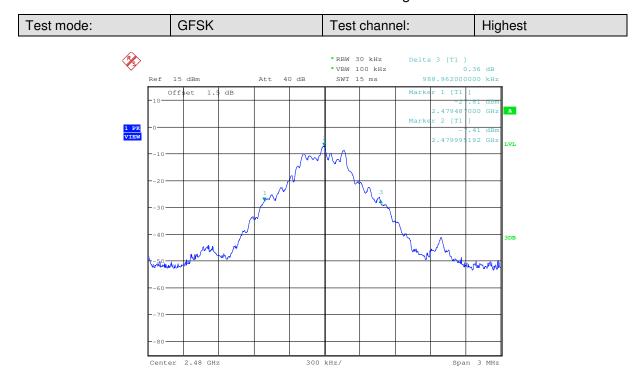
Report No.: SZEM161100983901 Page: 20 of 56

6.4 20dB Occupy Bandwidth


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.7		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Measurement Data

	20dB Occupy Bandwidth (kHz)
Test channel	GFSK
Lowest	981.808
Middle	981.808
Highest	988.962



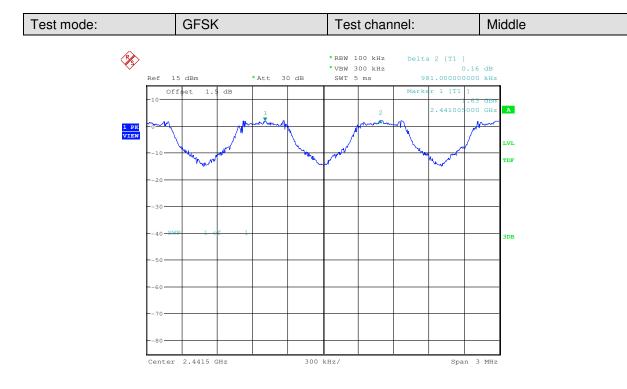
Report No.: SZEM161100983901 Page: 21 of 56

Report No.: SZEM161100983901 Page: 22 of 56

Report No.: SZEM161100983901 Page: 23 of 56

6.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.2
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Limit:	2/3 of the 20dB bandwidth
	Remark: the transmission power is less than 0.125W.
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM161100983901 Page: 24 of 56

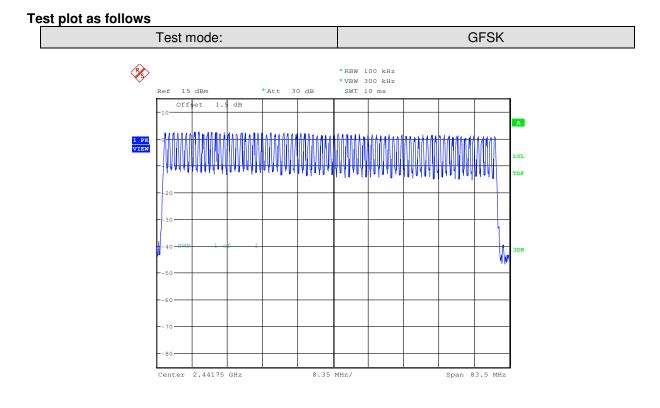
	GFSK mod	e	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Middle	981	659.308	Pass
Note: According to section	6.4,		
	OOdD has deviate (1.1.1-)		

Mode	20dB bandwidth (kHz)	Limit (kHz)
WODE	(worse case)	(Carrier Frequencies Separation)
GFSK	988.962	659.308

Test plot as follows:

Report No.: SZEM161100983901 Page: 25 of 56

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) **Test Method:** ANSI C63.10:2013 Section 7.8.3 Test Setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane** Limit: At least 15 channels Hopping transmitting with all kind of modulation Test Mode: Instruments Used: Refer to section 5.10 for details Test Results: Pass


6.6 Hopping Channel Number

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15

Report No.: SZEM161100983901 Page: 26 of 56

Report No.: SZEM161100983901 Page: 27 of 56

6.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.4
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 5.10 for details
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.14	≤0.4
GFSK	DH3	0.25	≤0.4
	DH5	0.29	≤0.4

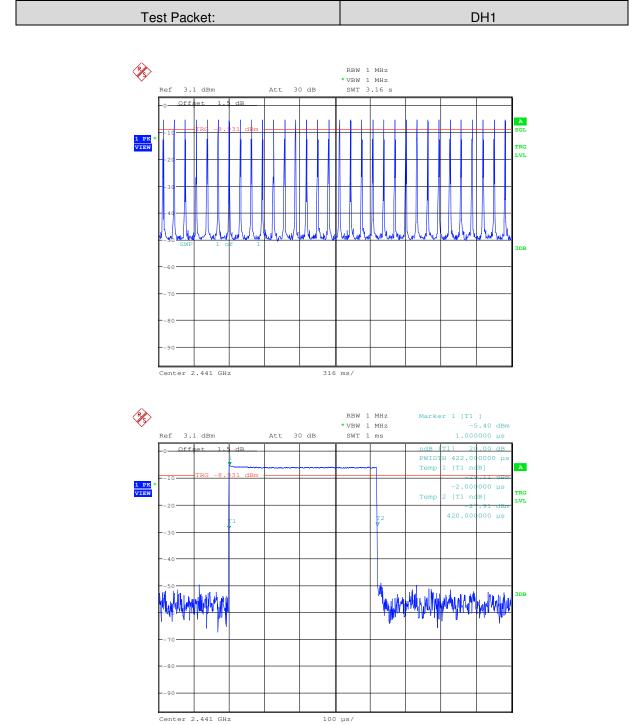
Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

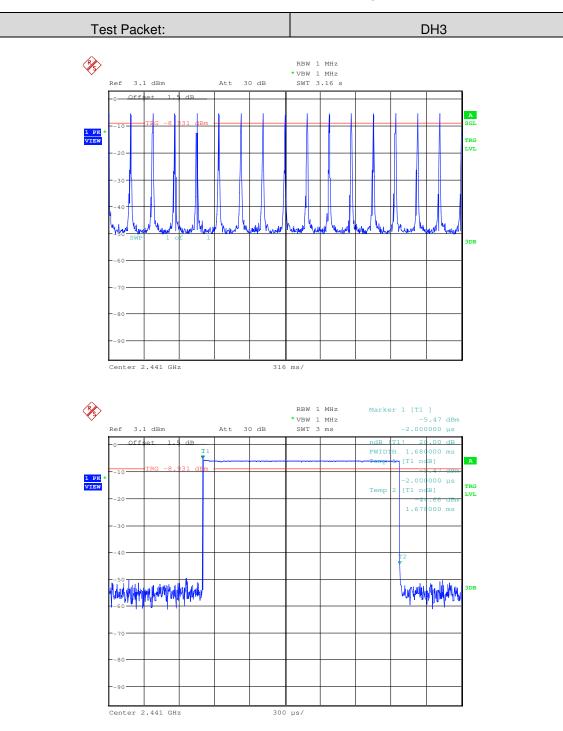
On (ms)*total number=dwell time (ms)

The middle channel (2441MHz), as below:

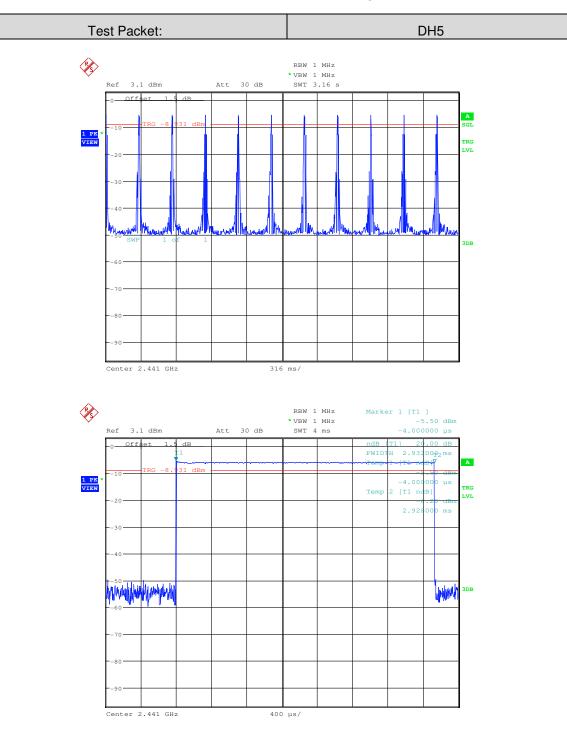
DH1 time slot=0.422 (ms)*total number=135.04 (ms)


DH3 time slot=1.680 (ms)* total number = 252.00 (ms)

DH5 time slot=2.932 (ms)* total number = 293.20 (ms)

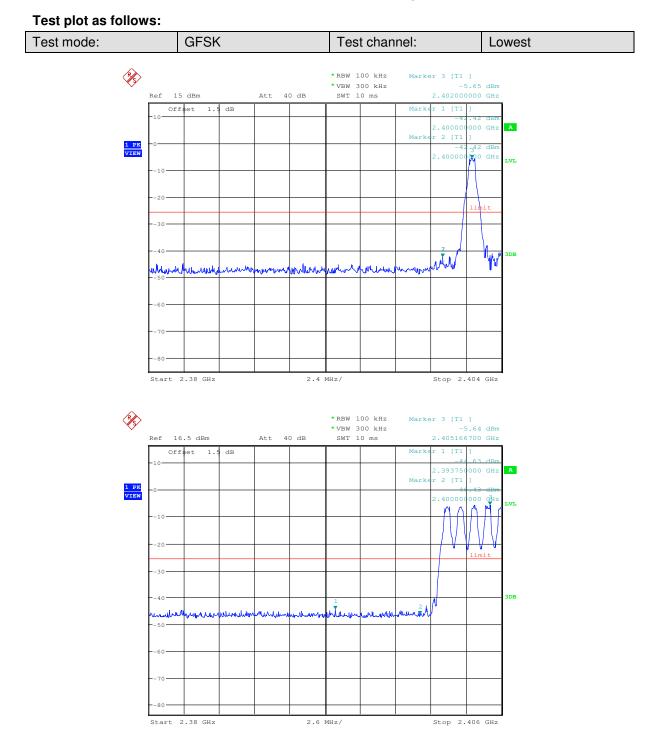

Report No.: SZEM161100983901 Page: 28 of 56

Test plot as follows:



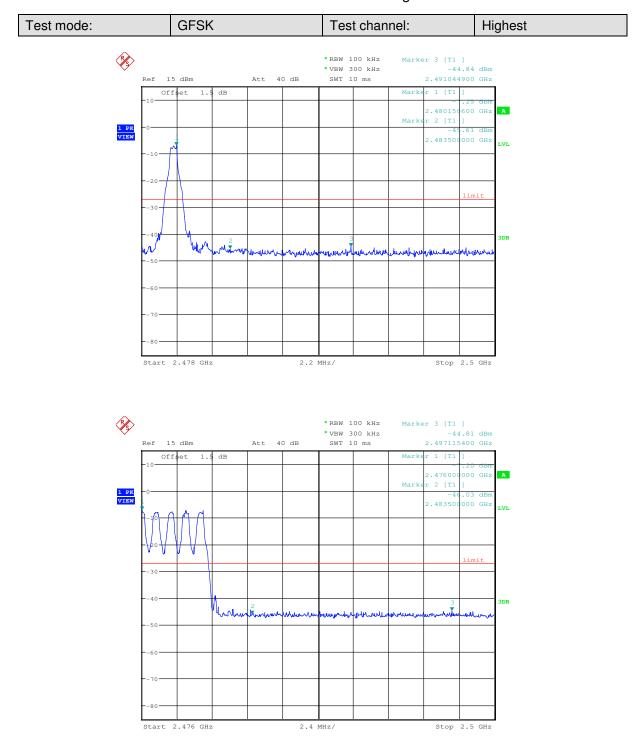
Report No.: SZEM161100983901 Page: 29 of 56

Report No.: SZEM161100983901 Page: 30 of 56


Report No.: SZEM161100983901 Page: 31 of 56

Test Requirement: 47 CFR Part 15C Section 15.247 (d) Test Method: ANSI C63.10:2013 Section 7.8.6 Test Setup: Spectrum Analyzer E.U.T 6 Non-Conducted Table **Ground Reference Plane** Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Exploratory Test Mode: Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type Through Pre-scan, find the DH1 of data type is the worst case of GFSK Final Test Mode: modulation type. Instruments Used: Refer to section 5.10 for details Test Results: Pass

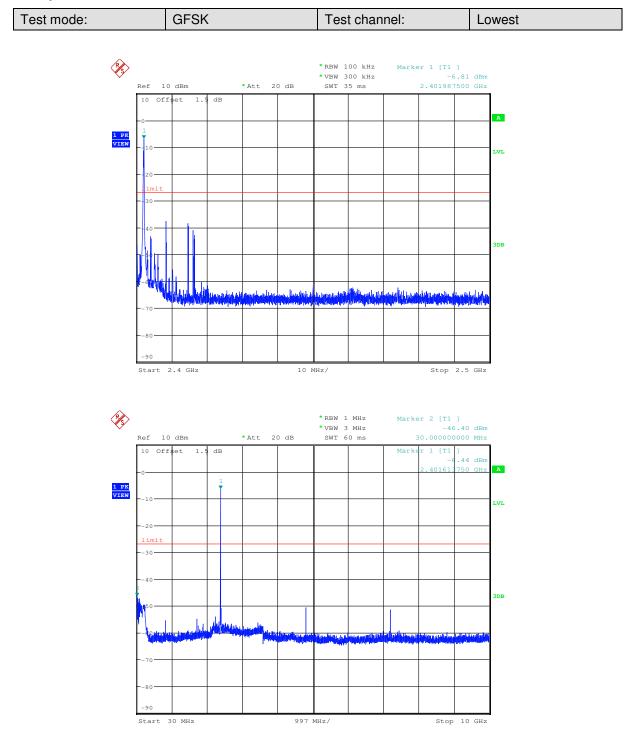
6.8 Band-edge for RF Conducted Emissions



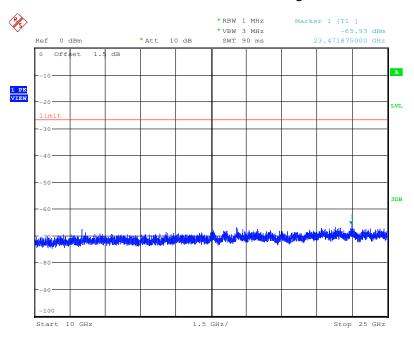
Report No.: SZEM161100983901 Page: 32 of 56

Report No.: SZEM161100983901 Page: 33 of 56

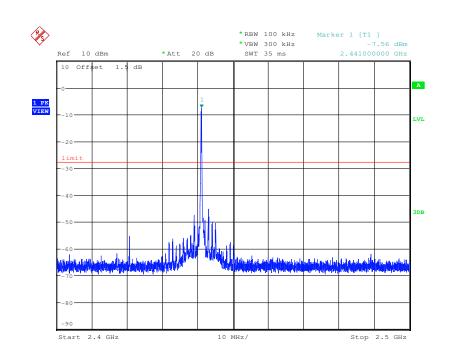
Report No.: SZEM161100983901 Page: 34 of 56


6.9 Spurious RF Conducted Emissions

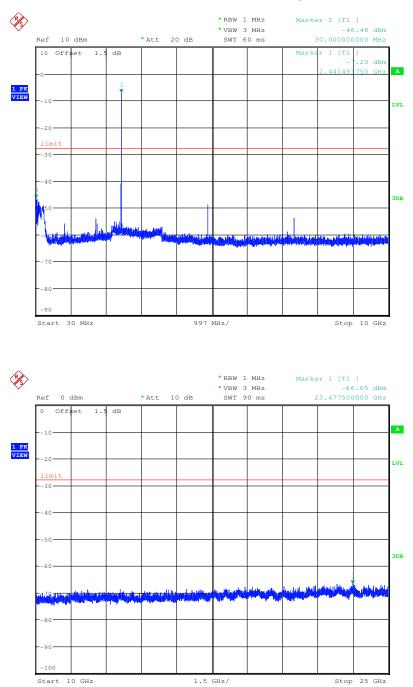
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.8
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass


Report No.: SZEM161100983901 Page: 35 of 56

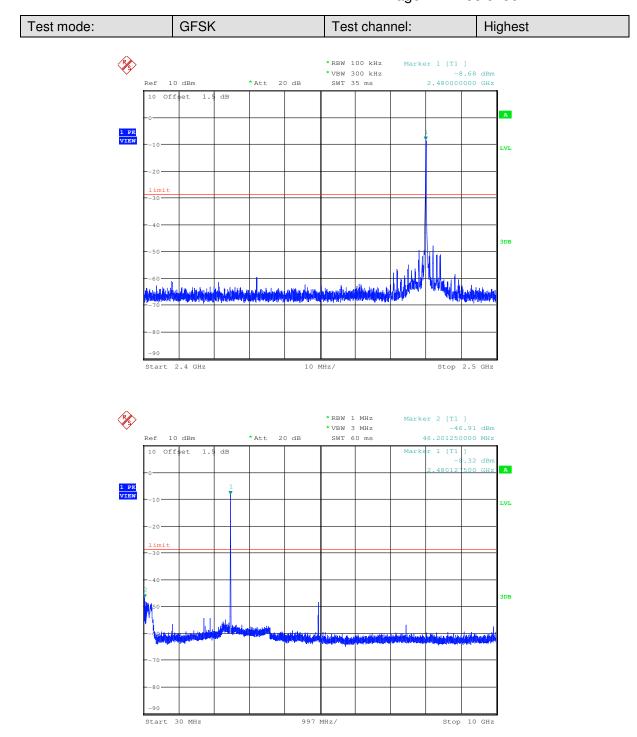
Test plot as follows:

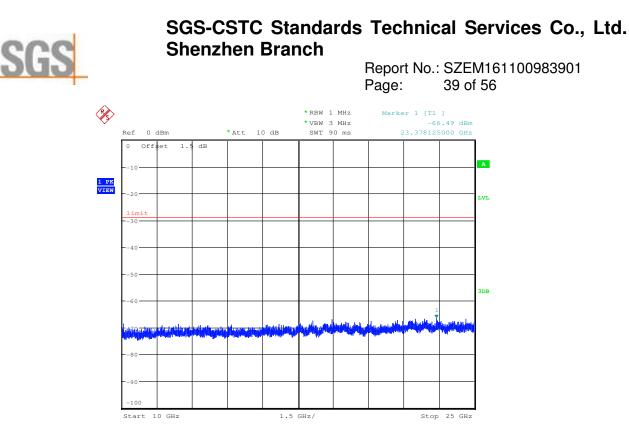


Report No.: SZEM161100983901 Page: 36 of 56



I est mode: GFSK I est channel: Middle
--




Report No.: SZEM161100983901 Page: 37 of 56

Report No.: SZEM161100983901 Page: 38 of 56

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

Report No.: SZEM161100983901 Page: 40 of 56

6.10 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:							
rate from a Pseudorandom o on the average by each trans hopping channel bandwidths	The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.							
channels during each transm receiver, must be designed t transmitter be presented with employing short transmission	Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.							
the system to recognize othe independently chooses and The coordination of frequence	The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.							
Compliance for section 15.	247(a)(1)							
stage shift register whose 5th outputs are added in a modu	lo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: $2^9 - 1 = 511$ bits							
Linear Feedback S	hift Register for Generation of the PRBS sequence							
An example of Pseudorando 20 62 46 77	m Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1							
According to Bluetooth Core bandwidths that match the	on the average by each transmitter. Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.							
Compliance for section 15.								

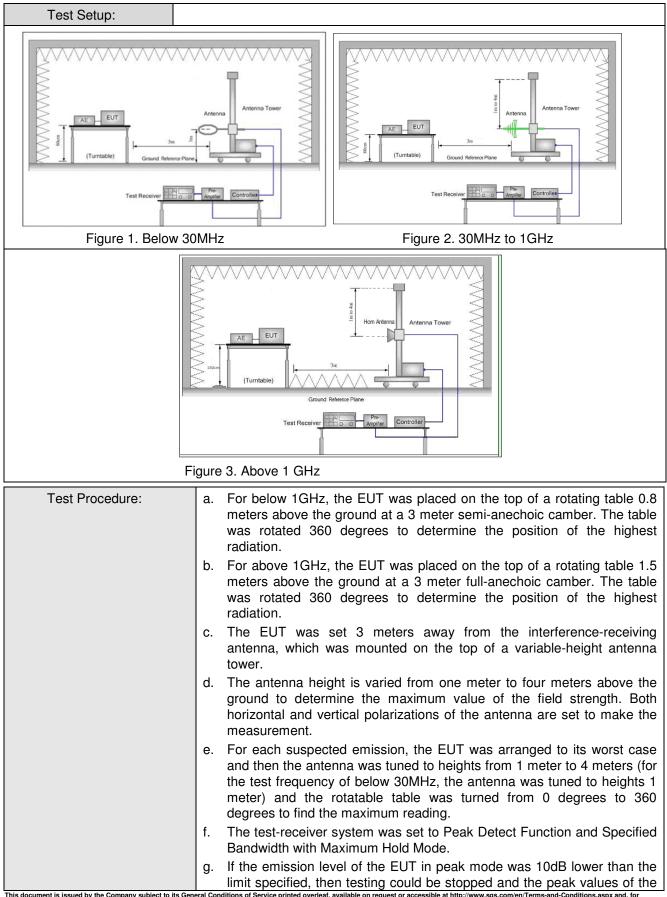
Report No.: SZEM161100983901 Page: 41 of 56

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

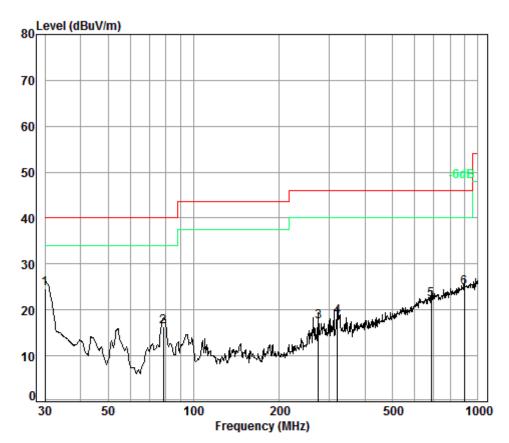

Report No.: SZEM161100983901 Page: 42 of 56

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10: 2013									
Test Site:	Below 1GHz:									
	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Above 1GHz:									
	Measurement Distance	: 3m	n (Full-Anecho	ic Chamber	,		1			
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark				
	0.009MHz-0.090MH	Z	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average	ĺ			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak	ĺ			
	Abaura 1011-		Peak	1MHz	3MHz	Peak				
	Above 1GHz		Peak	1MHz	10Hz	Average	ĺ			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m				
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30				
	1.705MHz-30MHz		30	-	-	30				
	30MHz-88MHz		100	40.0	Quasi-peak	x 3				
	88MHz-216MHz		150	43.5	Quasi-peak	x 3				
	216MHz-960MHz		200	46.0	Quasi-peak	x 3				
	960MHz-1GHz		500	54.0	Quasi-peak	к З				
	Above 1GHz		500	54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio f emissions is 20dB above the maximum permitted average em applicable to the equipment under test. This peak limit applies peak emission level radiated by the device.									

6.11 Radiated Spurious Emission

Report No.: SZEM161100983901 Page: 43 of 56

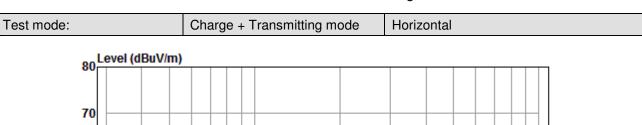
Report No.: SZEM161100983901 Page: 44 of 56

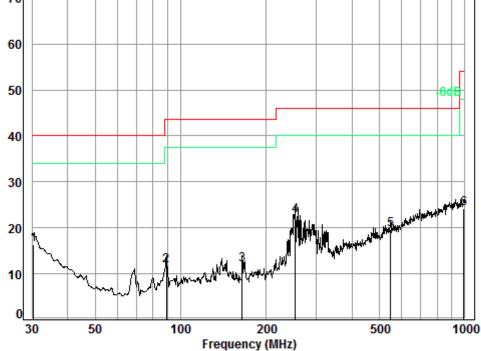

	 EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
	Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM161100983901 Page: 45 of 56

6.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting mode	Vertical




Condition: 3m VERTICAL Job No. : 9839CR Test Mode: Charge + TX

noue. Cha	rge +						
	Cable	Ant	Preamp	Read		Limit	0ver
Freq	Loss	Factor	Factor	Level	Level	Line	Limit
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
30.00	0.60	18.70	27.36	32.73	24.67	40.00	-15.33
78.41	1.05	7.57	27.23	34.96	16.35	40.00	-23.65
274.19	1.79	12.78	26.47	29.23	17.33	46.00	-28.67
321.06	1.97	14.66	26.56	28.38	18.45	46.00	-27.55
684.75	2.87	21.48	27.43	25.33	22.25	46.00	-23.75
897.00	3.59	23.18	26.78	24.81	24.80	46.00	-21.20
	Freq MHz 30.00 78.41 274.19 321.06 684.75	Cable Freq Loss MHz dB 30.00 0.60 78.41 1.05 274.19 1.79 321.06 1.97 684.75 2.87	Freq Loss Factor MHz dB dB/m 30.00 0.60 18.70 78.41 1.05 7.57 274.19 1.79 12.78 321.06 1.97 14.66 684.75 2.87 21.48	Cable Ant Preamp Freq Loss Factor Factor MHz dB dB/m dB 30.00 0.60 18.70 27.36 78.41 1.05 7.57 27.23 274.19 1.79 12.78 26.47 321.06 1.97 14.66 26.56 684.75 2.87 21.48 27.43	Cable Ant Preamp Read Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 30.00 0.60 18.70 27.36 32.73 78.41 1.05 7.57 27.23 34.96 274.19 1.79 12.78 26.47 29.23 321.06 1.97 14.66 26.56 28.38 684.75 2.87 21.48 27.43 25.33	Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 30.00 0.60 18.70 27.36 32.73 24.67 78.41 1.05 7.57 27.23 34.96 16.35 274.19 1.79 12.78 26.47 29.23 17.33 321.06 1.97 14.66 26.56 28.38 18.45 684.75 2.87 21.48 27.43 25.33 22.25	Cable Ant Preamp Read Limit Freq Loss Factor Factor Level Level Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m 30.00 0.60 18.70 27.36 32.73 24.67 40.00 78.41 1.05 7.57 27.23 34.96 16.35 40.00 274.19 1.79 12.78 26.47 29.23 17.33 46.00 321.06 1.97 14.66 26.56 28.38 18.45 46.00 684.75 2.87 21.48 27.43 25.33 22.25 46.00

Report No.: SZEM161100983901 Page: 46 of 56

Condition:	3m HORIZONTAL
Job No. :	9839CR
Test Mode:	Charge + TX

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 pp 5 6	30.42 89.28 164.91 252.95 547.10	1.34 1.69 2.65	8.63 9.55 12.36 18.85	27.36 27.22 26.84 26.53 27.62 26.37	29.34 27.99 35.16 25.68	11.85 12.04 22.68 19.56	43.50 43.50 46.00 46.00	-31.65 -31.46 -23.32 -26.44

Report No.: SZEM161100983901 Page: 47 of 56

6.11.2 Transmitter Emission above 1GHz

Test mode:	G	GFSK(DH1) Test channel: Lowest		Rema	rk:	Peak		
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	38.63	45.95	48.26	74.00	-25.74	Vertical
4804.000	34.16	8.87	39.03	46.32	50.32	74.00	-23.68	Vertical
6016.949	34.71	10.54	38.99	44.76	51.02	74.00	-22.98	Vertical
7206.000	36.42	10.68	38.18	43.56	52.48	74.00	-21.52	Vertical
9608.000	37.52	12.50	36.99	40.41	53.44	74.00	-20.56	Vertical
12694.780	38.86	14.70	39.00	38.51	53.07	74.00	-20.93	Vertical
3792.453	33.04	7.74	38.61	45.05	47.22	74.00	-26.78	Horizontal
4804.000	34.16	8.87	39.03	46.73	50.73	74.00	-23.27	Horizontal
5778.052	34.57	9.94	39.02	45.77	51.26	74.00	-22.74	Horizontal
7206.000	36.42	10.68	38.18	43.89	52.81	74.00	-21.19	Horizontal
9608.000	37.52	12.50	36.99	40.56	53.59	74.00	-20.41	Horizontal
12243.770	38.75	14.36	38.55	38.44	53.00	74.00	-21.00	Horizontal

Test mode:		GFSK(DH1)		Test	channel:	Middle		Remark:		Peak
Frequency (MHz)	Antenn factors (dB/m	Loss	Lo	able oss IB)	Reading Level (dBµV)	Emission Level (dBµV/m)		imit uV/m)	Over limit (dB)	Polarization
3754.236	32.94	7.72	38	5.59	46.78	48.85	74	1.00	-25.15	Vertical
4882.000	34.30	8.98	39	.06	44.80	49.02	74	1.00	-24.98	Vertical
5828.433	34.60	10.08	39	.02	45.55	51.21	74	1.00	-22.79	Vertical
7323.000	36.37	10.72	38	8.06	43.12	52.15	74	1.00	-21.85	Vertical
9764.000	37.55	12.58	36	5.91	39.62	52.84	74	1.00	-21.16	Vertical
12512.420	38.90	14.19	38	.82	39.23	53.50	74	1.00	-20.50	Vertical
3814.467	33.10	7.75	38	8.62	45.46	47.69	74	1.00	-26.31	Horizontal
4882.000	34.30	8.98	39	.06	45.52	49.74	74	1.00	-24.26	Horizontal
6193.614	34.86	10.31	38	8.88	44.86	51.15	74	1.00	-22.85	Horizontal
7323.000	36.37	10.72	38	8.06	44.38	53.41	74	1.00	-20.59	Horizontal
9764.000	37.55	12.58	36	5.91	40.55	53.77	74	74.00 -2		Horizontal
12261.500	38.76	14.34	38	8.57	39.07	53.60	74	74.00 -20.4		Horizontal

Report No.: SZEM161100983901 Page: 48 of 56

Test mode:		GF	SK(DH1)		Test	channel:	Highest		Remark:		Peak
Frequency (MHz)	Antenn factors (dB/m	s	Cable Loss (dB)	fac	amp ctor IB)	Reading Level (dBµV)	Emission Level (dBµV/m)		mit ≀V/m)	Over limit (dB)	Polarization
3748.808	32.92		7.72	38	.59	45.87	47.92	74	.00	-26.08	Vertical
4960.000	34.43		9.09	39	.09	45.19	49.62	74	.00	-24.38	Vertical
6043.124	34.74		10.50	38	.97	44.77	51.04	74	.00	-22.96	Vertical
7440.000	36.32		10.77	37	.94	44.24	53.39	74	.00	-20.61	Vertical
9920.000	37.58		12.67	36	.84	39.11	52.52	74	.00	-21.48	Vertical
12350.530	38.81		14.27	38	.66	38.73	53.15	74	.00	-20.85	Vertical
3898.160	33.33		7.78	38	.66	45.23	47.68	74	.00	-26.32	Horizontal
4960.000	34.43		9.09	39	.09	45.51	49.94	74	.00	-24.06	Horizontal
6131.199	34.81		10.39	38	.92	44.73	51.01	74	.00	-22.99	Horizontal
7440.000	36.32		10.77	37	.94	43.06	52.21	74	.00	-21.79	Horizontal
9920.000	37.58		12.67	36	.84	39.77	53.18	74	74.00 -20.		Horizontal
12694.780	38.86		14.70	39	.00	39.04	53.60	74	.00	-20.40	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

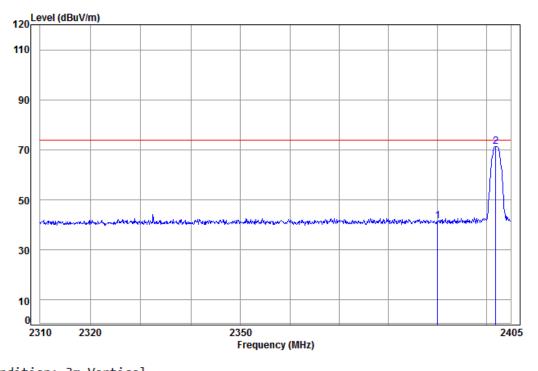
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM161100983901 Page: 49 of 56

6.12 Restricted bands around fundamental frequency

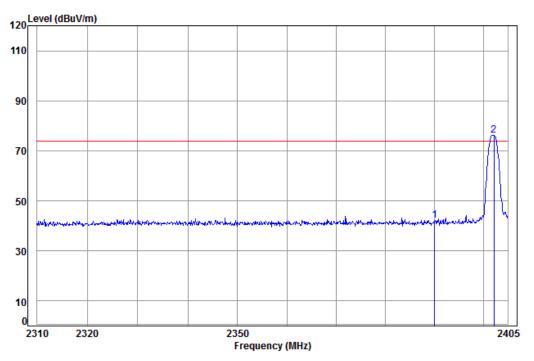
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Below 1GHz:							
	Measurement Distance: 3m	(Semi-Anechoic Chamber	r)					
	Above 1GHz:							
	Measurement Distance: 3m	(Full-Anechoic Chamber)						
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
	Above TGHZ	74.0	Peak Value					
Test Setup:								
AE EUT Ground Reference Test Receiver	Plane Controllen	AE EUT Internet	Antenna Tower					
Figure 1. 30MH	Iz to 1GHz	Figure 2. Abov	e 1 GHz					


Report No.: SZEM161100983901 Page: 50 of 56

Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was 				
	 transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning 				
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode, Charge + Transmitting mode.				
Final Test Mode:	 Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case Only the worst case is recorded in the report. 				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				
	F 433				

Report No.: SZEM161100983901 Page: 51 of 56

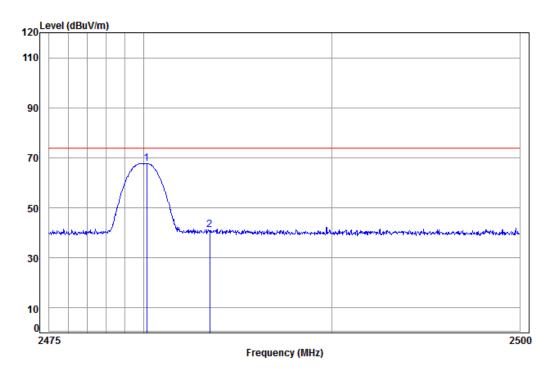
Test plot as follows:								
Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Vertical		



Condit	10n:	3m ∖	/ertic	al						
Job No	: :	9839	OCR							
Mode:	:	2402	2 Band	edge						
			Cable	Ant	Preamp	Read		Limit	0ver	
	F	req	Loss	Factor	Factor	Level	Level	Line	Limit	
-										
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2390.	000	5.34	29.08	38.14	45.28	41.56	74.00	-32.44	
2 pp	2401.	900	5.35	29.11	38.15	75.01	71.32	74.00	-2.68	

Report No.: SZEM161100983901 Page: 52 of 56

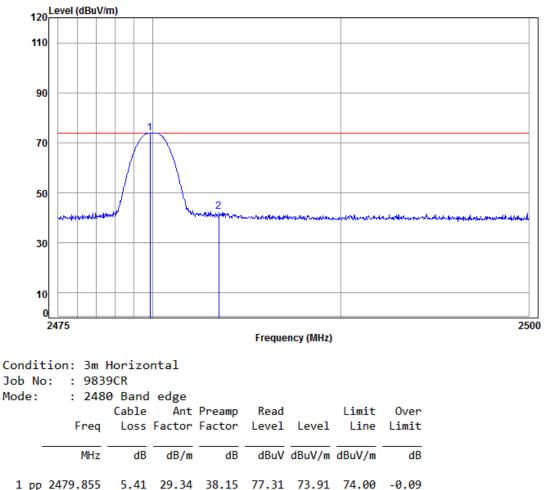
Worse case mode: GF	FSK (DH5) Test char	nnel: Lowest Re	emark: Peak	Horizontal
---------------------	---------------------	-----------------	-------------	------------



Conditior Job No: Mode:	: 9839CR	2	2					
	Ca	ble Ar	nt Preamp	Read		Limit	0ver	
	Freq L	oss Facto	or Factor	Level	Level	Line	Limit	
	MHz	dB dB,	/m dB	dBuV	dBuV/m	dBuV/m	dB	
	0.000 5 2.191 5	5.34 29.0 5.35 29.1					-31.88 2.28	

Report No.: SZEM161100983901 Page: 53 of 56

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical	
---	--



Condition	1: 3m \	Vertic	al					
Job No:	: 9839	9CR						
Mode:	: 248	0 Band	edge					
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
4 946	0 454	F 44	20.24	20.45	74 43	67 7 3	74.00	6 07
1 pp 248				38.15				
2 248	3.500	5.41	29.35	38.15	44.53	41.14	/4.00	-32.86

Report No.: SZEM161100983901 Page: 54 of 56

Worse case mode: G	GFSK(DH5)	Test channel:	Highest	Remark:	Peak	Horizontal
--------------------	-----------	---------------	---------	---------	------	------------

2 2483.500 5.41 29.35 38.15 45.91 42.52 74.00 -31.48

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

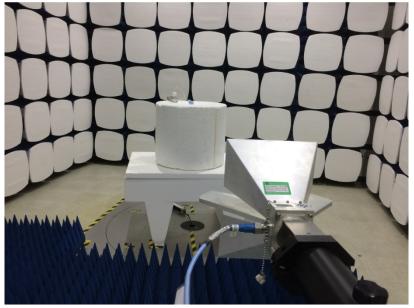
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM161100983901 Page: 55 of 56

7 Photographs - EUT Test Setup

Test Model No.: WS-SQB908B

7.1 Conducted Emission


7.2 Radiated Emission

Report No.: SZEM161100983901 Page: 56 of 56

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1704003120CR.