TEST REPORT

CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501

Report No.: CTK-2023-00480 Page (1) / (25) Pages

1. Applicant • Name : Spigen Korea Co.,Ltd. Address : Spigen HQ-A, 446, Bongeunsa-ro, Gangnam-gu, Seoul, 06153, South Korea • Date of Receipt : 2023-02-22 2. Manufacturer • Name : WITS VINA CO., LTD • Address : Lot CN7, Diem Thuy Ip (A area), Hong Tien Commune, Pho Yen Town, Thai Nguyen, Province, Vietnam, 24709 3. Use of Report : For FCC & ISED Certification 4. Test Sample / Model : ArcField Flex Wireless Charger / PF2201 5. Date of Test: 2023-02-21 to 2023-03-02 6. Test Standard (method) used : FCC 47 CFR part 15 subpart C 15.209 ISED RSS-216 & RSS-Gen **7. Testing Environment:** Temp.: (23 ± 1) °C, Humidity: (48 ± 5) % R.H. 8. Test Results : Compliance **9.** Location of Test : \boxtimes Permanent Testing Lab On Site Testing (Address : (Unhak-Dong) 5, Dongbu-ro 221beon-gil, Cheoin-gu, Yong-in-si, Gyeonggi-do, Korea) The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This report cannot be reproduced or copied without the written consent of CTK. Tested by Technical Manager Approval Won-Jae, Hwang: (Signature) Ji-Hye, Kim: (Sign Remark. This report is not related to KOLAS accreditation and relevant regulation. 2023-03-03 CTK Co., Ltd.

Report No.: CTK-2023-00480 Page (2) / (25) Pages

REPORT REVISION HISTORY

Date	Revision	Page No
2023-03-03	Issued (CTK-2023-00480)	all

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Report No.: CTK-2023-00480 Page (3) / (25) Pages

CONTENTS

1. General Product Description
1.1 Applicant Information4
1.2 Product Information4
1.3 Peripheral Devices4
1.4 Antenna Information5
2. Accreditations
2.1 Laboratory Accreditations and Listings6
2.2 Calibration Details of Equipment Used for Measurement
3. Test Specifications
3.1 Standards7
3.2 Mode of operation during the test7
3.3 Device Modifications7
3.4 Maximum Measurement Uncertainty8
3.5 Test Software
4. Technical Characteristic Test9
4.1 Antenna requirement9
4.2 Field strength of fundamental and Spurious emission
4.3 Emission Bandwidth19
4.4 AC Conducted Emissions22
APPENDIX A – Test Equipment Used For Tests

1. General Product Description

1.1 Applicant Information

Company	Spigen Korea Co.,Ltd.	
Contact Point	Spigen HQ-A, 446, Bongeunsa-ro, Gangnam-gu, Seoul, 06153, South Korea	
Contact Person	Name : Woo Sang-Hyup E-mail : shwoo@spigen.com Tel : +82-2-6713-6189 Fax : -	

1.2 Product Information

FCC ID	2AFKNPF2201	
Certification Number ISED	24998-PF2201	
Product Description	ArcField Flex Wireless Charger	
Model name	PF2201	
Variant Model name	-	
	Type 1 (Interference-causing Equipment)	
Classification of WPT devices	Type 2 (Category II Radio Apparatus)	
	Type 3 (Category I Radio Apparatus)	
Operating Frequency	128 kHz (single frequency)	
RF Output Power	88.6 dBµV/m @ 3 m	
Antenna type	Coil Antenna	
Charging Method	Directly contact	
Power Transfer Method	Magnetic induction and only single primary coil coupling secondary coil	
Output power from each primary coil	< 15 W	
That may have multiple primary coils	No	
Type of Modulation	ASK	
Power Source	DC 9 V (Adapter & USB C type)	
Hardware Rev	SS-02-REV07	
Software Rev	N/A	
Firmware Version Id Number (FVIN)	ABOV : SS2_20220628 Renesas : 201_PR1_OFFI	

1.3 Peripheral Devices

Device	Device Manufacturer		Serial No.
Note Computer	HP	15-bs563TU	CND7253QPR
AC/DC Adapter	HP	HSTNN-CA40	-
Wireless Charging Test Jig	Shenzhen Yulin Innovation Development Co., Ltd.	YBZ Wireless Charging Test Module	-
AC/DC Adapter DONGYANG E&P VIETNAM CO., LTD.		EP-TA800 002	-

1.4 Antenna Information

\boxtimes	Integral antenna (antenna permanently attached)		
	Temporary RF connector provided		
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.		
	External antenna (dedicated antennas)		

2. Accreditations

2.1 Laboratory Accreditations and Listings

Country	Agency	Registration Number
USA	FCC	805871
CANADA	ISED	8737A
KOREA	NRRA	KR0025

2.2 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

3. Test Specifications

3.1 Standards

FCC Part Section(s)	ISED Part Section(s)	Requirement(s)	Status (Note 1)	Test Condition
15.203	RSS-Gen 6.8	Antenna requirement	С	
15.209	RSS-216 6.2.2.2	Field strength of fundamental and Spurious emission	С	Radiated
15.215(c)	RSS-Gen 6.7	Emission Bandwidth	С	
15.207(a)	RSS-216 6.2.2.1	AC Conducted Emission	С	Line Conducted
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable Note 2: The data in this test report are traceable to the national or international standards. Note 3: The sample was tested according to the following specification: FCC Part 15.209, RSS-216, ANSI C63.10-2013				

3.2 Mode of operation during the test

The EUT is operated in a manner representative of the typical of the equipments. During at testing, system components were manipulated within the confines of typical usage to maximize each emission.

The results are only attached worst cases.

Test mode

Charging (Transmitting mode)	
Stand-by (idle mode)	

Indication of the position of the EUT to be measured

EUT faces identified relative to view from receiving antenna	
	Z

3.3 Device Modifications

The following modifications were necessary for compliance:

Not applicable

3.4 Maximum Measurement Uncertainty

The value of the measurement uncertainty for the measurement of each parameter. Coverage factor k = 2, Confidence levels of 95 %

Description	Uncertainty
Occupied Bandwidth	0.02 kHz (C.L.: Approx. 95 %, k = 2)
Radiated Emissions (f \leq 1 GHz)	3.88 dB (C.L.: Approx. 95 %, k = 2)
Line Conducted Emission	2.06 dB (C.L.: Approx. 95 %, k = 2)

3.5 Test Software

Radiated Test	ES10 Ver. 10.001
Line Conducted Test	EMC32 Ver. 8.50.0

4. Technical Characteristic Test

4.1 Antenna requirement

Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Result :

-Complied

The transmitter has permanently attached loop coil antenna (internal antenna) on board.

4.2 Field strength of fundamental and Spurious emission

Test Location

 \boxtimes 10 m SAC (test distance : \square 10 m, \boxtimes 3 m)

3 m SAC (test distance : 3 m)

Test Procedures

ANSI C63.10-2013 - Section 6.4, 6.5

- 1) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Antenna. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency rage above 30 MHz, Bi-Log Test Antenna(30 MHz to 1 GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

Instrument Settings

Frequency Range = 9 kHz \sim 1 GHz

- a) RBW = 100 kHz for f < 1 GHz, 9 kHz for f < 30 MHz, 200 Hz for f < 150 kHz
- b) VBW \geq RBW
- c) Sweep time = auto couple

Limit :

FCC Part 15 § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz
0.09-0.11	8.37626-8.38675	73-74.6	399.9-410	2690-2900	10.6-12.7
¹ 0.495-0.505	8.41425-8.41475	74.8-75.2	608-614	3260-3267	13.25-13.4
2.1735-2.1905	12.29-12.293	108-121.94	960-1240	3332-3339	14.47-14.5
4.125-4.128	12.51975-12.52025	123-138	1300-1427	3345.8-3358	15.35-16.2
4.17725-4.17775	12.57675-12.57725	149.9-150.05	1435-1626.5	3600-4400	17.7-21.4
4.20725-4.20775	13.36-13.41	156.52475- 156.52525	1645.5-1646.5	4500-5150	22.01-23.12
6.215-6.218	16.42-16.423	156.7-156.9	1660-1710	5350-5460	23.6-24
6.26775-6.26825	16.69475-16.69525	162.0125-167.17	1718.8-1722.2	7250-7750	31.2-31.8
6.31175-6.31225	16.80425-16.80475	167.72-173.2	2200-2300	8025-8500	36.43-36.5
8.291-8.294	25.5-25.67	240-285	2310-2390	9000-9200	² Above 38.6
8.362-8.366	37.5-38.25	322-335.4	2483.5-2500	9300-9500	

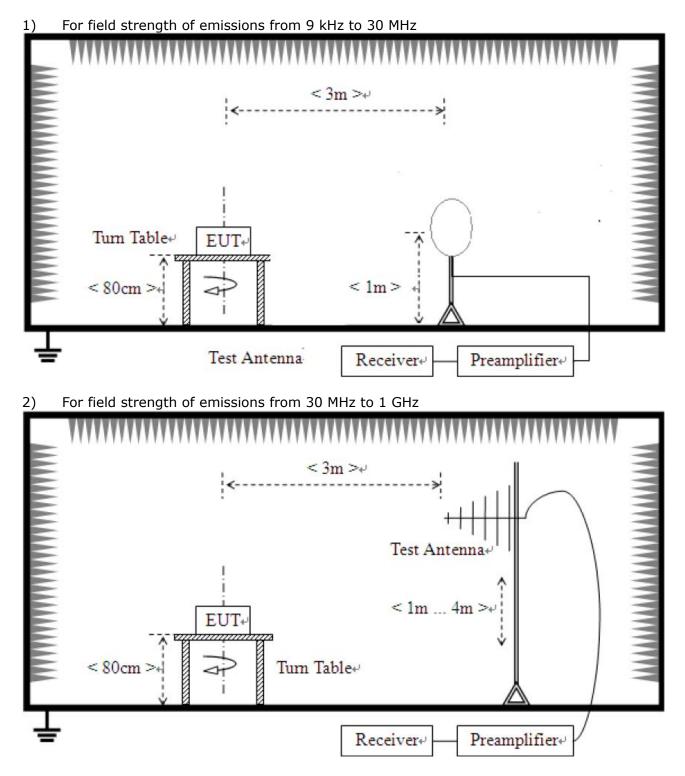
Table 1. Restricted Frequency Bands

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC Part 15 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

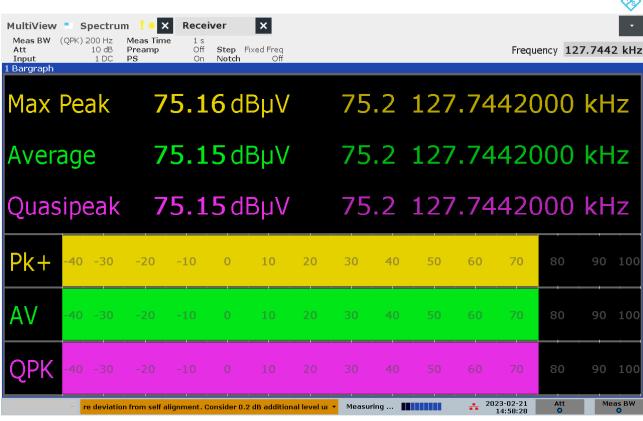

Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Deasurement Distance (meters)
0.009-0.490	2400/F(kHz)	48.5 - 13.8	300
0.490-1.705	24000/F(kHz)	33.8 - 23	30
1.705-30	30	29.5	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46	3
Above 960	500	54	3

** Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

Report No.: CTK-2023-00480 Page (12) / (25) Pages

Test Setup:

Report No.: CTK-2023-00480 Page (13) / (25) Pages


Test results

1) Radiated emissions of fundamental frequency

Test mode : Charging (Transmitter, Worst Case)

The requirements are: \square Complies

Test Data

02:58:28 PM 02/21/2023

Frequency [MHz]	Reading [dBuV]	c.f [dB/m]	Result [dBuV/m]	Limit [dBuV/m]	Magin[dB]	Remark
0.128	75.2	24.9	88.6	105.5	16.9	Average

- 1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. Limit : 20log(2400/127.7) + 40log(300/3) = 105.5 dBuV/m

Report No.: CTK-2023-00480 Page (14) / (25) Pages

Test mode : Stand-by (idle mode)

The requirements are: \square Complies

Test Data

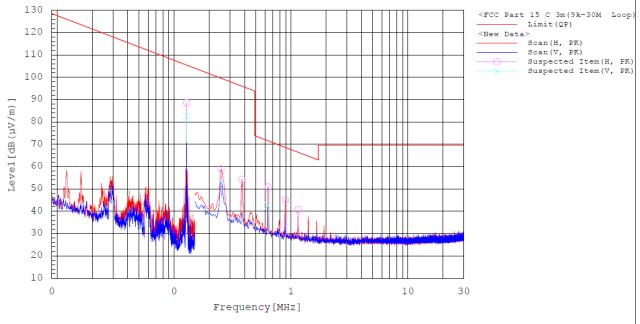
MultiView Meas BW Att Input 1 Bargraph	Spectrum (QPK) 200 Hz 10 dB 1 DC	m ! + X Meas Tim Preamp PS			Fixed Freq Off						Frequ	ency 12	• • • • • •
Max	Peak	7	0.2	9 d	ΒµV	,	70	.3	127	.74	420	000	kHz
Aver	age	4	9.0	3 d	Βμν	,	49	.4	127	.74	42(000	kHz
Quas	sipeak	6	4.4	2 d	ΒµV	r.	64	.5	127	.74	42(000	kHz
Pk+	-40 -30	-20	-10	0	10	20	30	40	50	60	70	80	90 100
AV	-40 -30	-20	-10	0	10	20	30	40	50	60	70	80	90 100
QPK	-40 -30	-20	-10	0	10	20	30	40	50	60	70	80	90 100
	• re deviatio	in from self a	llignment. C	onsider 0.	2 dB additio	nal level ur	✓ Measu	ring 🔳		** 20)23-02-21 15:10:17	Att O	Meas BW O

03:10:17 PM 02/21/2023

Frequency [MHz]	Reading [dBuV]	c.f [dB/m]	Result [dBuV/m]	Limit [dBuV/m]	Magin[dB]	Remark
0.128	49.4	24.9	74.3	105.5	31.2	Average

- 1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. Limit : 20log(2400/127.7) + 40log(300/3) = 105.5 dBuV/m

 \bigotimes



2) 9 kHz to 30 MHz

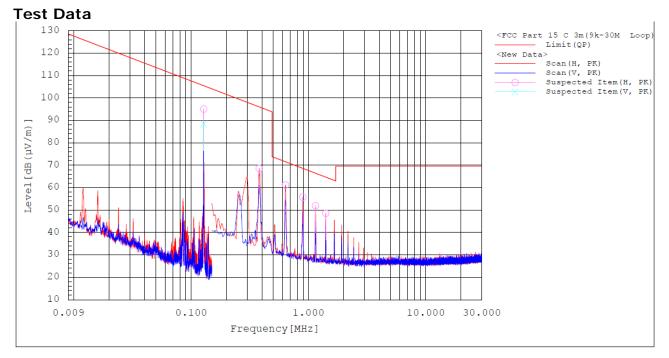
Test mode : Charging (Transmitter, Worst Case)

The requirements are: \square Complies

Test Data

Spectrum Selection

No.	Frequency	Pol	Reading PK	c.f	Result PK	Limit QP	Margin QP-PK	Height	Angle	Remark
	[MHz]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm] [d	eg]	
1	0.128	Н	63.7	24.9	88.6	105.5	16.9	99.9	173.5	
2	0.128	V	57.9	24.9	82.8	105.5	22.7	99.9	91.5	
3	0.251	Н	34.0	25.0	59.0	99.6	40.6	99.9	3.8	
4	0.254	V	28.5	25.0	53.5	99.5	46.0	99.9	286.4	
5	0.380	Н	29.3	25.0	54.3	96.0	41.7	99.9	310.2	
6	0.637	H	25.8	25.1	50.9	71.5	20.6	99.9	174.4	
7	0.637	V	17.5	25.1	42.6	71.5	28.9	99.9	286.4	
8	0.893	H	20.1	25.0	45.1	68.6	23.5	99.9	191.7	
9	1.147	H	15.7	25.0	40.7	66.4	25.7	99.9	174.4	


- The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. This data is the Peak(PK) value.
- 5. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 6. No. 1 and 2 in the data table are the Fundamental frequency.

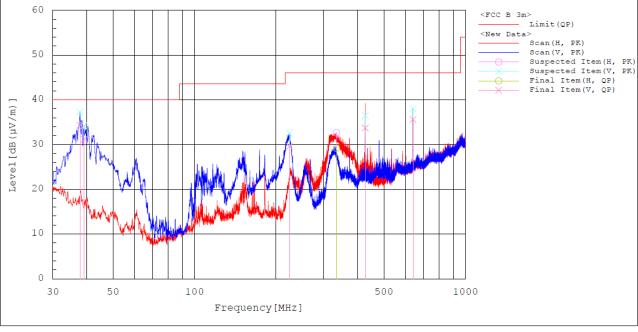
Report No.: CTK-2023-00480 Page (16) / (25) Pages

The requirements are: \square Complies

Spectrum Selection

No.	Frequency	Pol	Reading PK	c.f	Result PK	Limit QP	Margin QP-PK	Height	Angle	Remark
	[MHz]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm] [d	leg]	
1	0.128	н	70.1	24.9	95.0	105.5	10.5	100.6	349.4	
2	0.128	v	63.5	24.9	88.4	105.5	17.1	100.6	42.9	
3	0.380	Н	43.6	25.0	68.6	96.0	27.4	100.6	4.4	
4	0.637	н	36.1	25.1	61.2	71.5	10.3	100.6	356.9	
5	0.893	Н	30.8	25.0	55.8	68.6	12.8	100.6	0.0	
6	1.147	н	26.9	25.0	51.9	66.4	14.5	100.6	0.0	
7	1.404	Н	23.6	25.0	48.6	64.7	16.1	100.6	0.0	

- The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. This data is the Peak(PK) value.
- 5. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 6. No. 1 and 2 in the data table are the Fundamental frequency.


Report No.: CTK-2023-00480 Page (17) / (25) Pages

3) 30 MHz to 1 GHz

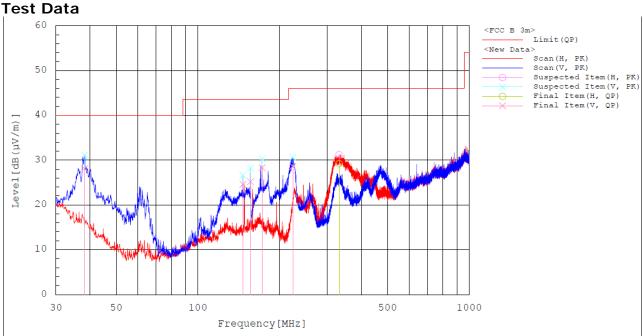
Test mode : Charging (Transmitter, Worst Case)

The requirements are: \square Complies

Test Data

Final Result

No.	Frequency	Pol	Reading QP	c.f	Result QP	Limit QP	Margin QP	Height	Angle
	[MHz]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm] [deg]
1	37.760	V	45.0	-10.7	34.3	40.0	5.7	100.1	6.3
2	39.118	V	42.6	-11.4	31.2	40.0	8.8	100.1	358.7
3	224.000	v	43.6	-14.0	29.6	46.0	16.4	100.1	4.0
4	333.707	Н	38.4	-9.2	29.2	46.0	16.8	99.9	292.9
5	426.633	V	39.4	-5.7	33.7	46.0	12.3	100.1	36.1
6	640.033	V	36.6	-1.0	35.6	46.0	10.4	100.1	359.1


- The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain

Report No.: CTK-2023-00480 Page (18) / (25) Pages

The requirements are: \boxtimes Complies

Final Result

No.	Frequency	Pol	Reading QP	c.f	Result QP	Limit QP	Margin QP	Height	Angle
	[MHz]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm] [c	leg]
1	38.245	V	39.1	-11.0	28.1	40.0	11.9	99.9	359.9
2	146.594	V	36.9	-12.3	24.6	43.5	18.9	99.9	309.1
3	156.294	V	38.8	-13.6	25.2	43.5	18.3	99.9	268.3
4	172.493	v	42.9	-14.6	28.3	43.5	15.2	200.0	222.5
5	223.806	V	42.5	-13.9	28.6	46.0	17.4	99.9	356.1
6	331.282	Н	38.5	-9.3	29.2	46.0	16.8	99.9	75.7

- 1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain

4.3 Emission Bandwidth

Regulation

For reporting purpose only

Requirement

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedures

For the emission bandwidth refer ANSI C63.10-2013, clause 6.9(Occupied bandwidth). Test Settings :

b) RBW = 1 % to 5 % of the OBW (99 % BW)

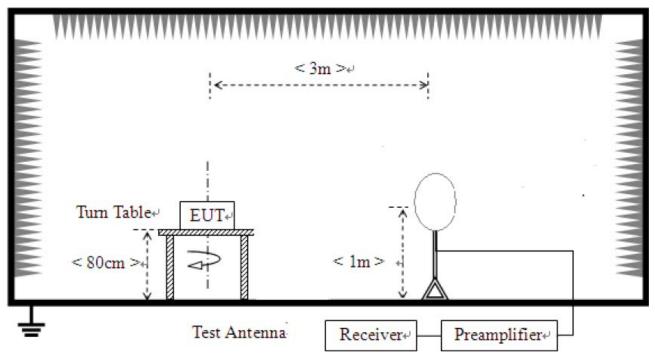
c) VBW \geq 3 x RBW

d) Detector = peak

e) Trace mode = Max hold

f) Sweep = auto couple

g) Allow trace to fully stabilize


a) RBW = 200 Hz (20 dB Bandwidth)

h) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Report No.: CTK-2023-00480 Page (20) / (25) Pages

Test Setup:

Test Data :

Test mode : Charging (Transmitter, Worst Case)

Cente	SENSE:INT r Freq: 127.745 kHz	08:04:40 PM Mar 02, Radio Std: None	System
	n: 10 dB	Radio Device: BT	s Show►
			 Power On ►
			_
			Alignments►
			I/O Config►
		Snan 2 k	(H7
#	VBW 620 Hz	Sweep F	FT Restore Defaults
	Total Power	-35.2 dBm	Donano
434 Hz			Control Panel
-1 Hz			
494 Hz	хав	-20.00 dB	More
			1 of 2
		STATUS AC coupled: A	cov unspecid < 10MHz
	#FGain:Low Center #Atter #Atter #Atter #Atter #Atter #Atter #Atter #Atter	Center Freq: 127.45 kHz Trig: Free Run Avg Hold:>1 #IFGain:Low #Atten: 10 dB #VBW 620 Hz #VBW 620 Hz Total Power 434 Hz -1 Hz % of OBW Power	Center Freg: 127.745 kHz Trig: Free Run Avg Hold:>10/10 #FGaintLow #Atten: 10 dB #FGaintLow #

Test results

Emission Bandwidth	20dB Bandwidth	99% Bandwidth	Limit
Emission Bandwidth	0.494 kHz	0.434 kHz	N/A

4.4 AC Conducted Emissions

Frequency Range of Measurement

150 kHz to 30 MHz

Instrument Settings

IF Band Width: 9 kHz

Test Procedures

ANSI C63.10-2013 - Section 6.2

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

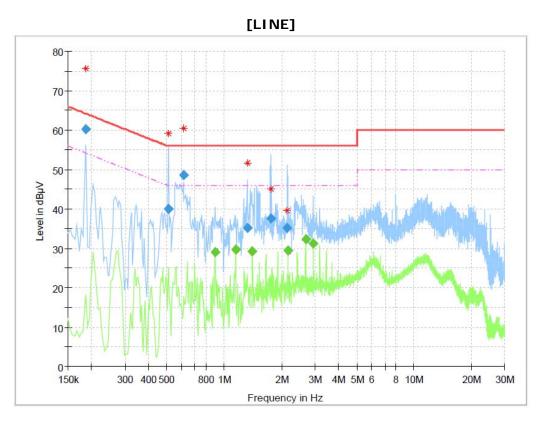
Limit

- 15.207(a)

Frequency (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average**			
0.15 ~ 0.5	66 to 56*	56 to 46*			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

* The level decreases linearly with the logarithm of the frequency.

** A linear average detector is required.


Test Results

The requirements are: \square Complies

Report No.: CTK-2023-00480 Page (23) / (25) Pages

Test Data

Final Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.186000	60.15		64.21	4.07	15000.0	9,000	L1	ON	9.9
0.510000	39.94		56.00	16.06	15000.0	9.000		ON	9.9
0.609000	48.52		56.00	7.48	15000.0	9.000	L1	ON	9.9
0.892500		28.96	46.00	17.04	15000.0	9.000	L1	ON	9.9
1.149000		29.61	46.00	16.39	15000.0	9.000	L1	ON	9.8
1.324500	35.19		56.00	20.81	15000.0	9.000	L1	ON	9.8
1.405500		29.29	46.00	16.71	15000.0	9.000	L1	ON	9.8
1.770000	37.50		56.00	18.50	15000.0	9.000	L1	ON	9.8
2.152500	35.14		56.00	20.86	15000.0	9.000	L1	ON	9.7
2.170500		29.38	46.00	16.62	15000.0	9.000	L1	ON	9.7
2.683500		32.21	46.00	13.79	15000.0	9.000	L1	ON	9.8
2.940000		31.26	46.00	14.74	15000.0	9.000	L1	ON	9.8

80 70 60 50 Level in dBµV 40 30 20 10 0-150k 300 400 500 800 1M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz

[NEUTRAL]

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
0.226500	50.39		62.58	12.19	15000.0	9.000	N	ON	9.8
0.271500	51.66		61.07	9.41	15000.0	9.000	N	ON	9.8
0.402000	39.36		57.81	18.45	15000.0	9.000	N	ON	9.9
0.447000	40.76		56.93	16.17	15000.0	9.000	N	ON	9.9
0.559500	43.89		56.00	12.11	15000.0	9.000	N	ON	9.9
0.879000	43.71		56.00	12.29	15000.0	9.000	N	ON	9.9
1.149000		32.00	46.00	14.00	15000.0	9.000	N	ON	9.8
1.405500		32.06	46.00	13.94	15000.0	9.000	N	ON	9.8
1.662000		31.68	46.00	14.32	15000.0	9.000	Ν	ON	9.8
2.170500		32.52	46.00	13.48	15000.0	9.000	N	ON	9.7
2.683500		35.28	46.00	10.72	15000.0	9.000	N	ON	9.8
2.940000		34.27	46.00	11.73	15000.0	9.000	N	ON	9.8

APPENDIX A – Test Equipment Used For Tests

	Name of Equipment	Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date
1	Signal Analyzer	Agilent	N9020A	MY50510240	2022-07-13	2023-07-13
2	Signal Generator	Rohde & Schwarz	SMB100A	175528	2022-03-25	2023-03-25
3	EMI TEST RECEIVER	Rohde & Schwarz	ESW44	102039	2022-05-04	2023-05-04
4	BILOG ANTENNA	TESEQ	CBL6111D	60654	2021-09-03	2023-09-03
5	Active Loop Antenna	SCHWARZBECK	FMZB 1513	1513-125	2022-04-15	2024-04-15
6	6dB Attenuator	PASTERNACK	PE7AP006-06	L20210504000023	2022-08-10	2023-08-10
7	AMPLIFIER	SONOMA INSTRUMENT	310N	411011	2022-08-10	2023-08-10
8	EMI TEST RECEIVER	R&S	ESR3	102826	2022-05-04	2023-05-04
9	LISN	R&S	ENV216	102698	2022-05-13	2023-05-13

	Cable	Manufacturer	Model No.	Serial No.	Check Date
1	RF Cable (Line Conducted)	Canare Corporation	L-5D2W	N/A	2022-04-12
2	RF Cable (9 kHz - 1 GHz Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27558/4	2022-11-10
3	RF Cable (9 kHz - 1 GHz Radiated)	HUBER+SUHNER	L-5D2W	N/A	2022-11-10

-END-