

FCC RADIO TEST REPORT

FCC ID: 2AFJZ-HOM071

Sample: 97436 RAPiD Keypad Vault

Trade Name: Hornady

Main Model: 97436

Additional Model: N/A

Report No.: UNIA21102519ER-63

Prepared for

Hornady Manufacturing Company
3625 Old Potash Hwy, Grand Island, Nebraska, United States

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant:	Hornady Manufacturing Company
Address:	3625 Old Potash Hwy, Grand Island, Nebraska, United States
Manufacturer:	shenzhenZaifengda TecHnology co Ltd
Addres :	Fu Di Gang 2nd Industrial estate 2-1, PingDi Street, LongGang District, Shenzhen, China
Product description	
Product:	97436 RAPiD Keypad Vault
Trade Name:	Hornady
Model Name:	
Test Methods:	FCC Rules and Regulations Part 15 Subpart C Section 15.209 ANSI C63.10: 2013
Co., Ltd., and the test results of with the FCC requirements. A report. This report shall not be reproducted on the personnel only, and shall be not be recommendated.	
	: Oct. 25, 2021 ~ Nov. 15, 2021
Date of Issue Test Result	: Dec. 01, 2021 : Pass
Prepared by:	kahn.yang
m m	Kahn yang/Editor
Reviewer:	
	Sky dong/Supervisor
Approved & Authorized Signe	er: Livel
120	Liuze/Manager

	Table of Contents		Page
1 TEST SUMMARY			4
2 GENERAL INFORMATION			6
2.1 GENERAL DESCRIPTION	ON OF EUT		6
2.2 CARRIER FREQUENC	Y OF CHANNELS		7
2.3 TEST MODE			7
2.4 TEST SETUP			7
2.5 DESCRIPTION TEST P	ERIPHERAL AND	EUT PERIPHERAL	8
2.6 MEASUREMENT INSTI	RUMENTS LIST		9
3 CONDUCTED EMISSION			10
3.1 TEST LIMIT			10
3.2 TEST SETUP			10
3.3 TEST PROCEDURE			11
3.4 TEST RESULT			11
4 RADIATED EMISSION			12
4.1 TEST LIMIT			12
4.2 TEST SETUP			14
4.3 TEST PROCEDURE			15
4.4 TEST RESULT			15
5 ANTENNA REQUIREMEN	Т		18
6 PHOTO OF TEST			19
6.1 RADIATED EMISSION			19
6.2 CONDUCTED EMISSIO	ON		20

Page 4 of 20 Report No.: UNIA21102519ER-63

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

ITEM STANGARD RESULT

CONDUCTED EMISSION FCC Part 15.207 N/A

RADIATED EMISSION FCC Part 15.209 COMPLIANT ANTENNA REQUIREMENT FCC Part 15.203 COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC

17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC)

Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC)

Industry Canada.

Page 5 of 20

Report No.: UNIA21102519ER-63

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9KHz ~ 150KHz	2.96	
	13	150KHz ~ 30MHz	2.44	

B. Radiated Measurement:

	2.1.100.000.000.000						
	Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE		
	UNI	ANSI	9KHz ~ 30MHz	2.50	200		
Ī			30MHz ~ 1000MHz	4.80	17		
	12		1000MHz ~ 6000MHz	4.13			

Page 6 of 20

Report No.: UNIA21102519ER-63

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	97436 RAPiD Keypad Vault
Trade Name:	Hornady
Main Model:	97436
Additional Model:	N/A
Model Difference:	N/A
FCC ID:	2AFJZ-HOM071
Operation Frequency:	125KHz
Number of Channels:	1CH
Modulation Type:	ASK
Antenna Type:	Coil Antenna
Antenna Gain:	0dBi
Battery:	AA Battery*2
Adapter:	N/A
Power Source:	DC 3V from battery

2.2 CARRIER FREQUENCY OF CHANNELS

Channel List							
Channel	Frequency (KHz)	Channel	Frequency (KHz)	Channel	Frequency (KHz)	Channel	Frequency (KHz)
01	125						

2.3 TEST MODE

The EUT was programmed to be in transmitting mode.

Channel List			
Test Channel Test Frequency (KHz)			
01	125		

2.4 TEST SETUP

Operation of EUT during Radiation testing:

EUT

2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	97436 RAPiD Keypad Vault	Hornady	97436	EUT
	i			
		17	i	
				, [7]

Item	Shielded Type	Ferrite Core	Length	Note
				. [7]
	170	4	ri in	
			15	
	ai .	45		3

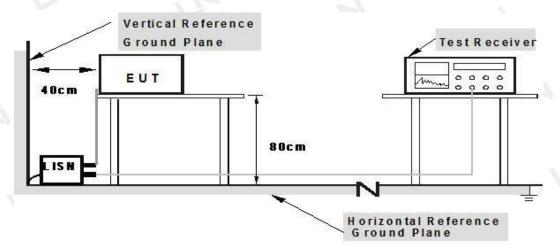
Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- 3. "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1		Conduction Em	issions Measuremer	nt	
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2022.09.22
3	AAN	TESEQ	T8-Cat6	38888	2022.09.22
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2022.05.17
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2022.09.22
		Radiated Emis	sions Measurement	M	i
1,	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2022.09.27
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2022.03.01
4	PREAMP	HP	8449B	3008A00160	2022.09.22
5	PREAMP	HP	8447D	2944A07999	2022.05.17
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2022.09.22
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2022.09.22
8	Signal Generator	Agilent	E4421B	MY4335105	2022.09.22
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2022.09.22
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2022.09.22
11	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2022.05.17
12	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2022.05.17
13	RF power divider	Anritsu	K241B	992289	2022.09.22
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2022.09.22
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2022.07.25
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2022.09.22
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2022.05.23
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2022.09.27
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2022.09.22
20	Signal Generator	Agilent	N5183A	MY47420153	2022.09.22
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2022.09.22
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2022.09.22
23	Frequency Meter	VICTOR	VC2000	997406086	2022.09.22
24	DC Power Source	HYELEC	HY5020E	055161818	2022.09.22

3 CONDUCTED EMISSION


3.1 TEST LIMIT

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

	Maximum RF Line Voltage (dBμV)				
Frequency (MHz)	CLASS A		CLASS B		
(**************************************	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency.
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

Note: 1.Support units were connected to second LISM.

2.Both of LISMs (AMM) are 80 cm from EUT and at least 80 from other units and other metal planes

Page 11 of 20

Report No.: UNIA21102519ER-63

3.3 TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 TEST RESULT

N/A

Remark: EUT is powered by DC 3V of two AA batteries.

Page 12 of 20

Report No.: UNIA21102519ER-63

4 RADIATED EMISSION

4.1 TEST LIMIT

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			,

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

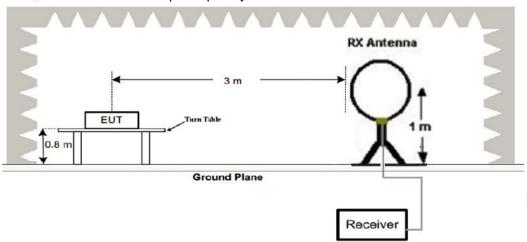
Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Limit	Distance	
(MHz)	(dBuV/m)	(m)	
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3	
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3	
1.705-30.0	69.5	3	
30-88	40.0	3	
88-216	43.5	3	
216-960	46.0	3	
Above 960	54.0	3	

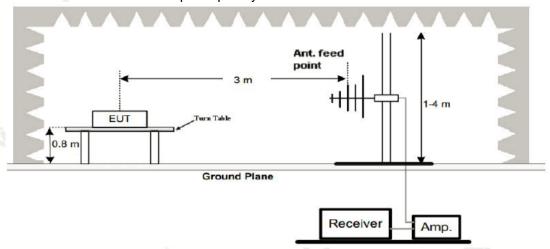
CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz				
	9-150KHz	150-490KHz	490KHz-30MHz	
Resolution Bandwidth	200Hz	9KHz	9KHz	
Video Bandwidth	2KHz	100KHz	100KHz	
Detector	Peak	Peak	Peak	
Trace Mode	Max Hold	Max Hold	Max Hold	
Sweep Time	Auto	Auto	Auto	


Page 14 of 20

Report No.: UNIA21102519ER-63



4.2 TEST SETUP

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

Page 15 of 20

Report No.: UNIA21102519ER-63

4.3 TEST PROCEDURE

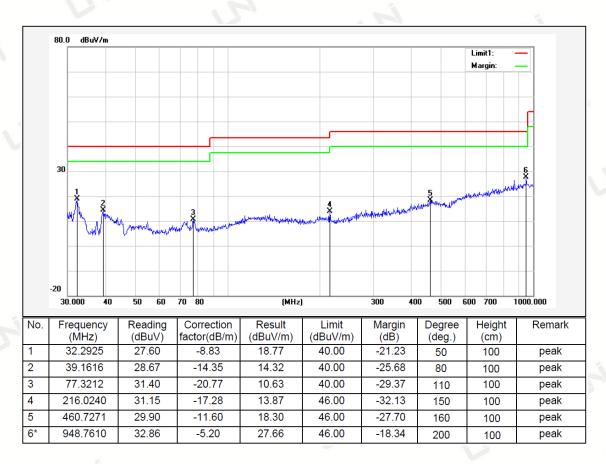
- 1. Measurement distance is 3m.
- 2. For the measurement range up to 30MHz in the following plots the field strength result from 3m.
- 3. Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade. According to part 15.31(f)(2), per antenna factor scaling.
- 4. Measurements below 1000MHz are performed with a peak detector and compared to average limits. Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

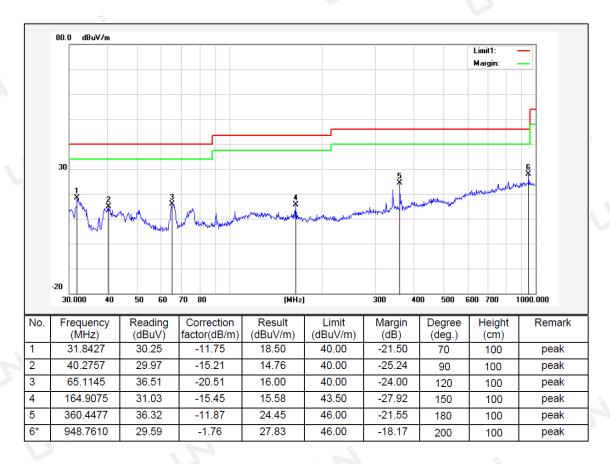
4.4 TEST RESULT

PASS


For 9KHz-30MHz Test Results:

	0.00		4 9 70			
Frequency (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.125	PK	69.82	15.48	85.30	105.67	-20.37
0.855	PK	38.13	15.98	54.11	68.96	-14.85
1.776	PK	26.74	16.2	42.94	69.5	-26.56
2.611	PK	35.20	15.2	50.40	69.5	-19.10
4.224	PK	31.36	15.68	47.04	69.5	-22.46
8.985	PK	31.68	15.6	47.28	69.5	-22.22

For 30MHz-1GHz Test Results:


Temperature:	24°C	Relative Humidity:	48%
Test Date:	Nov. 08, 2021	Pressure:	1010hPa
Test Voltage:	DC 3V	Phase:	Horizontal
Test Mode:	Transmitting mode		

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Nov. 08, 2021	Pressure:	1010hPa
Test Voltage:	DC 3V	Phase:	Vertical
Test Mode:	Transmitting mode	124	, pi

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier

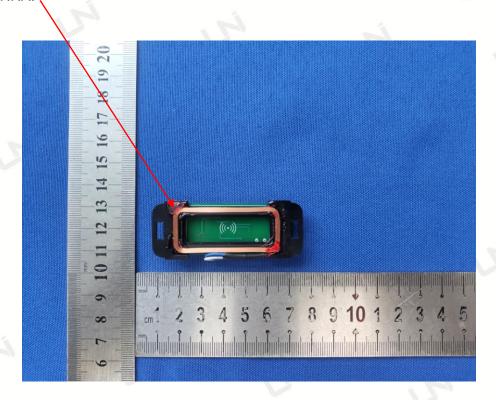
Remark:

- 1. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 2. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Page 18 of 20

Report No.: UNIA21102519ER-63

5 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction:

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA:

Page 19 of 20

Report No.: UNIA21102519ER-63

6 PHOTO OF TEST

6.1 RADIATED EMISSION

N/A

End of Report