

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT

Report No.....: CTC20211682E03

FCC ID-----: **2AFIW-SF1200**

Applicant:: **GL TECHNOLOGIES (HONG KONG) LIMITED**

FLAT/RM 203 2/F BUILDING 19W 19 SCIENCE PARK WEST Address.....

AVENUE SHATIN NT SHATIN HONG KONG

Manufacturer..... Shenzhen Guanglianzhitong Tech Co., Ltd

Room 305-306, Skyworth Digital Building, Shiyan Street, Address.....

Baoan District, Shenzhen, China

Product Name: **AC1200 Gigabit Wireless Router**

Trade Mark: **GL.iNET**

Model/Type reference GL-SF1200

Listed Model(s)...... /

Standard: FCC Part 15, Subpart E 15. 407

Date of receipt of test sample...: Oct. 27, 2021

Date of testing..... Oct. 28, 2021 ~ Nov. 22, 2021

Date of issue..... Nov. 23, 2021

Result....: **PASS**

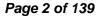
Compiled by:

(Printed name+signature) Terry Su Terry Su Miller Ma Jeannes

Supervised by:

(Printed name+signature) Miller Ma

Approved by:


(Printed name+signature) Totti Zhao

Testing Laboratory Name.....: CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Address:

Shenzhen, Guangdong, China

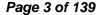

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

		Table of Contents	Page
1. TES	ST SUMMARY		3
1.1.	Test Standards		
1.2.			
1.3.	TEST DESCRIPTION		
1.4.	TEST FACILITY		
1.5.	MEASUREMENT UNCERTAINTY		
1.6.	ENVIRONMENTAL CONDITIONS		6
2. GE	NERAL INFORMATION		
2.1.			
2.2.			
2.3.			
2.4.			
2.5.			
3. TES	ST ITEM AND RESULTS		
3.1.			
3.2.			
3.3.			
3.4.			
3.5.			
3.6.			
3.7.	FREQUENCY STABILITY MEASUREMENT		132
3.8.			
2.0			

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Part 15, Subpart E(15.407)</u> — for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

Report No.: CTC20211682E03

RSS-247 Issue 2 February 2017 — Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

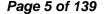
RSS-Gen — General Requirements for Compliance of Radio Apparatus

KDB 662911 D01: Multiple Transmitter Output v02r01.

1.2. Report version

Revised No.	Date of issue	Description
01	Nov. 23, 2021	Original

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



1.3. Test Description

FCC Part 15 Subpart E (15.407) / RSS-247 Issue 2 February 2017							
Test Item	Test r	Result	Test				
rest item	FCC IC		Resuit	Engineer			
Antenna Requirement	15.203	1	Pass	Alicia Liu			
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Ice Lu			
Band Edge Emissions	15.407(b)	(b) RSS-247 6.2.1.2 RSS-247 6.2.2.2 RSS-247 6.2.4.2		Alicia Liu			
26dB Bandwidth & 99% Bandwidth	15.407(a) (5)	RSS-247 6.2.1.2	SS-247 6.2.1.2 Pass				
6dB Bandwidth (only for UNII-3)	15.407(e)	RSS-247 6.2.4.1	Pass	Alicia Liu			
Peak Output Power	15.407(a)	RSS-247 6.2.1.1 RSS-247 6.2.4.1	l Dace				
Power Spectral Density	15.407(a)	RSS-247 6.2	Pass	Alicia Liu			
Transmitter Radiated Spurious Emission	15.407(b) &15.209	RSS-Gen 8.9 RSS-247 6.2.1.2 RSS-247 6.2.4.2	Pass	Alicia Liu			
Frequency Stability	15.407(g)	1	Pass	Alicia Liu			
Dynamic Frequency Selection (DFS)	15.407(h)	RSS-247 6.3	N/A	N/A			

Note: "N/A" is not applicable.

The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025:2017 General Requirements) f or the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan. 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items Measurement Uncertainty Notes Transmitter power conducted 0.42 dB (1) Transmitter power Radiated 2.14 dB (1) Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1) Conducted Emissions 9kHz~30MHz 3.08 dB (1) Radiated Emissions 30~1000MHz 4.51 dB (1) Radiated Emissions 1~18GHz 5.84 dB (1) Radiated Emissions 18~40GHz 6.12 dB (1) Occupied Bandwidth (1)


Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

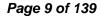
	Temperature	22 °C ~ 28°C
Normal Condition	Relative humidity	50% ~ 65%
Condition	Voltage	The equipment shall be the nominal voltage for which the equipment was designed.
Extreme	Temperature	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer
Condition	Voltage	Measurements shall be made over the extremes of the operating voltage range as declared by the manufacturer

Normal Condition	T _N =Normal Temperature	22 °C ~ 28°C
Extreme Condition	T _L =Lower Temperature	0 °C
	T _H =Higher Temperature	40 °C

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

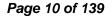
2. GENERAL INFORMATION

2.1. Client Information


Applicant:	GL TECHNOLOGIES (HONG KONG) LIMITED
Address:	FLAT/RM 203 2/F BUILDING 19W 19 SCIENCE PARK WEST AVENUE SHATIN NT SHATIN HONG KONG
Manufacturer:	Shenzhen Guanglianzhitong Tech Co., Ltd
Address:	Room 305-306, Skyworth Digital Building, Shiyan Street, Baoan District, Shenzhen, China

2.2. General Description of EUT

Product Name:	AC1200 Gig	AC1200 Gigabit Wireless Router						
Trade Mark:	GL.iNET							
Model/Type reference:	GL-SF1200							
Listed Model(s):	1							
Power supply:	12Vdc/1A fro	12Vdc/1A from AC/DC Adapter						
Adapter model:	GLH1201000 Input: 100-240V~ 50/60Hz 0.4A Max Output: 12Vdc/1A							
Hardware version:	SF1200_V22	2, SF1200_V23	}					
Software version:	sf1200-3.204	1						
Antenna 1 and 2 type:	External Anto	enna						
Antenna 1 and 2 gain:	U-NII-1: 5.57dBi Max U-NII-3: 5.89dBi Max							
Antenna 1 + 2 Directional gain:	U-NII-1: 8.58 U-NII-3: 8.90							
Technical index for 5G WIFI								
Operation Band:	⊠U-NII-1	□U-NII-2A	□U-NII-2C		⊠U-NII-	-3		
Operation Frequency Range:	U-NII-1:	5150MHz~52	50MHz					
Operation requeitly realige.	U-NII-3:	5725MHz~5850MHz						
	802.11a	⊠ 20MHz						
Support bandwidth:	802.11n	⊠ 20MHz	⊠ 40MHz					
802.11ac ⊠ 20MHz ⊠ 40MHz ⊠ 80MHz □ 16					☐ 160MHz			
Modulation:	802.11a: OFDM (BIT/SK, QPSK, BPSK, 16QAM) 802.11n: OFDM (BIT/SK, QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (BIT/SK, QPSK, BPSK, 16QAM, 64QAM, 256QAM)							
Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 300Mbps 802.11ac: at most 866.7 Mbps							


Note: GL-SF1200 contains two types of network transformers: separate and integrated.

2.3. Accessory Equipment information

Equipment Information							
Name	Model	S/N	Manufacturer				
Notebook	X220	R9-NCMYL 12/04	Lenovo				
1	1	1	1				
Cable Information							
Name	Shielded Type	Ferrite Core	Length				
DC Output line	Without	Without	1M				
Lan line	Without	Without	1.2M				
Test Software Information							
Name	Versions	1	1				
SecureCRT.exe	8.7.1	1	1				

2.4. Operation state

Operation Frequency List:

	20MHz Bandwidth		40MHz Bandwidth		80MHz Bandwidth	
Band (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	36	5180	00	F100		
LI NIII 1	40	5200	38	5190	42	5210
U-NII-1	44	5220	46	5230		
	48	5240	46 5230			
	149	5745	151	5755		
	153	5765	131	3733		
U-NII-3	157	5785		155	5775	
	161	5805	159	5795		
	165	5825				

Test channel is below:

Operating	Test	20MHz		40MHz		80MHz	
Band	Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CH∟	36	5180	38	5190	/	1
U-NII-1	CH _M	40	5200	/	/	42	5210
	CH _H	48	5240	46	5230	/	1
	CH∟	149	5745	151	5755	/	1
U-NII-3	CH _M	157	5785	/	/	155	5775
	CH _H	165	5825	159	5795	1	1

Report No.: CTC20211682E03

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11a	6Mbps
802.11n(HT20)/ 802.11n(HT40)	HT-MCS0
802.11ac(VHT20)/ 802.11ac(VHT40)/ 802.11ac(VHT80)	VHT-MCS0

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

For DFS test items

The EUT has been tested under test mode condition. The Applicant provides software to control the EUT for staying in DFS mode for testing.

2.5. Measurement Instruments List

Tonsce	Tonscend JS0806-2 Test system							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	KEYSIGHT	N9020A	100231	Dec. 25, 2021			
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2022			
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 25, 2021			
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 25, 2021			
5	Power Sensor	Agilent	U2021XA	MY5365004	Mar. 15, 2022			
6	Power Sensor	Agilent	U2021XA	MY5365006	Mar. 15, 2022			
7	High and low temperature box	ESPEC	MT3035	N/A	Mar. 24, 2022			
8	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	102414	Dec. 25, 2021			
9	300328 v2.2.2 test system	TONSCEND	v2.6	1	1			

Radiat	ed emission(3m chamber 2)				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Jan. 12, 2022
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 24, 2021
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 25, 2021
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 15, 2022
5	Pre-Amplifier	SONOMA	310	186194	Dec. 25, 2021
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 25, 2021
7	Test Receiver	R&S	ESCI7	100967	Dec. 25, 2021

Radiate	ed emission(3m chamber 3))				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-759	Nov. 09, 2022	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 24, 2021	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 25, 2021	
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 25, 2021	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 25, 2021	

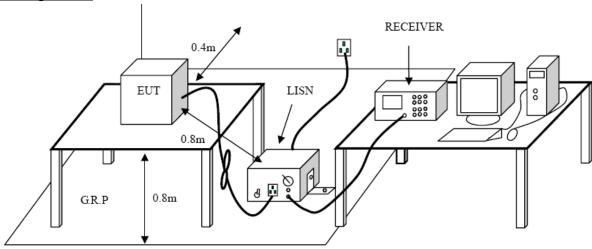
Condu	Conducted Emission										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until						
1	LISN	R&S	ENV216	101112	Dec. 25, 2021						
2	LISN	R&S	ENV216	101113	Dec. 25, 2021						
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 25, 2021						

Note: 1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

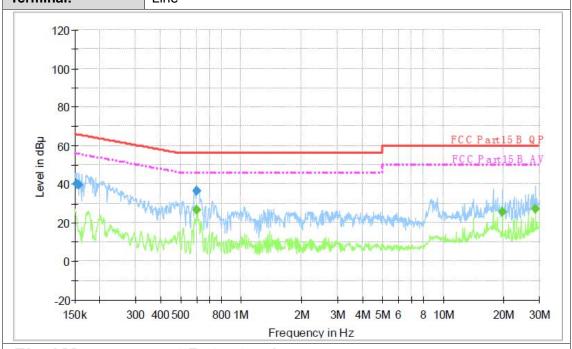
FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS – Gen 8.8:

Fraguency range (MHZ)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

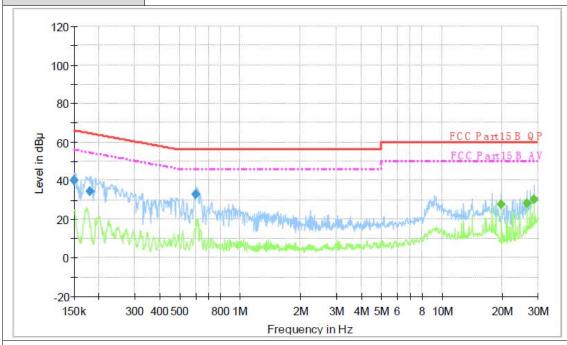

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
 - The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

Please refer to the clause 2.4.

Transformer type:	Integrated transformer
Test Voltage:	AC 120V/60 Hz
Terminal:	Line

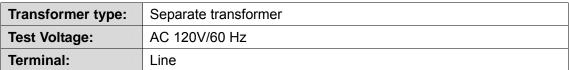
Final Measurement Detector 1

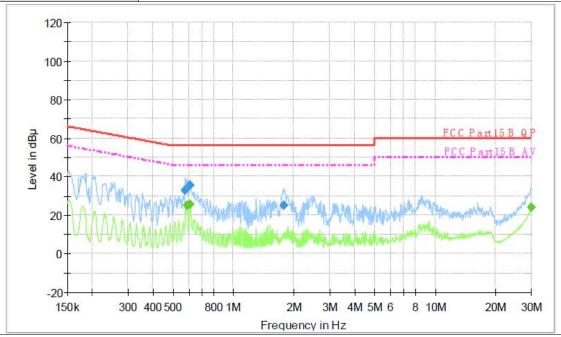

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
	0.153020	40.1	1000.00	9.000	On	L1	9.7	25.7	65.8	
	0.157360	39.6	1000.00	9.000	On	L1	9.7	26.0	65.6	
.	0.604170	36.5	1000.00	9.000	On	L1	9.7	19.5	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.604170	26.9	1000.00	9.000	On	L1	9.7	19.1	46.0	
19.710090	25.5	1000.00	9.000	On	L1	10.0	24.5	50.0	
28.685180	27.3	1000.00	9.000	On	L1	9.9	22.7	50.0	

Transformer type:	Integrated transformer
Test Voltage:	AC 120V/60 Hz
Terminal:	Neutral

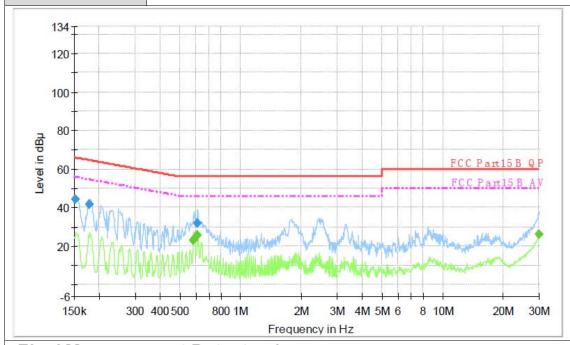

Final Measurement Detector 1


Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ	Comment
0.150000	40.3	1000.00	9.000	On	N	10.0	25.7	66.0	
0.180960	34.2	1000.00	9.000	On	N	10.0	30.2	64.4	
0.604170	33.1	1000.00	9.000	On	N	10.0	22.9	56.0	

Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
- [19.710090	27.7	1000.00	9.000	On	N	10.0	22.3	50.0	
	26.483990	28.1	1000.00	9.000	On	N	10.0	21.9	50.0	
	28.685180	30.2	1000.00	9.000	On	N	10.0	19.8	50.0	

Final Measurement Detector 1


	Frequency (MHz)	QuasiPeak (dBμ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ı	0.575910	32.7	1000.00	9.000	On	L1	9.7	23.3	56.0	
ſ	0.611450	35.4	1000.00	9.000	On	L1	9.7	20.6	56.0	
	1.768180	25.2	1000.00	9.000	On	L1	9.7	30.8	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.587520	25.2	1000.00	9.000	On	L1	9.7	20.8	46.0	
0.611450	25.7	1000.00	9.000	On	L1	9.7	20.3	46.0	
29.972880	24.2	1000.00	9.000	On	L1	9.8	25.8	50.0	

Transformer type:	Separate transformer
Test Voltage:	AC 120V/60 Hz
Terminal:	Neutral

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.152410	44.2	1000.00	9.000	On	Ν	10.0	21.7	65.9	
0.178800	41.7	1000.00	9.000	On	N	10.0	22.8	64.5	
0.611450	32.1	1000.00	9.000	On	N	10.0	23.9	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.585180	23.1	1000.00	9.000	On	N	10.0	22.9	46.0	
0.611450	25.5	1000.00	9.000	On	N	10.0	20.5	46.0	
30.000000	26.3	1000.00	9.000	On	N	10.0	23.7	50.0	

3.2. Radiated Emission

Limit

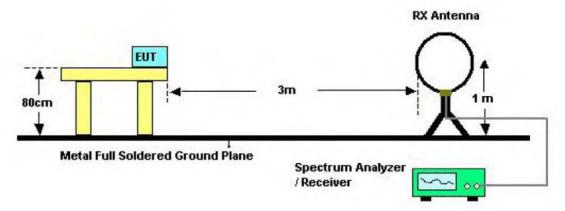
FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS-Gen 8.9

Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
Above I GHZ	74.00	Peak

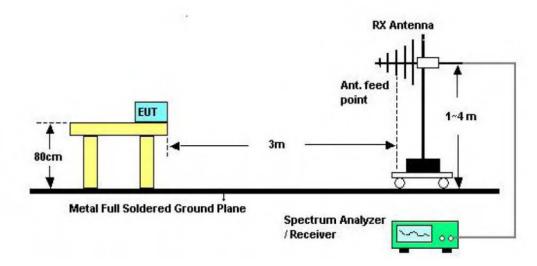
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)= 20log Emission Level (uV/m).

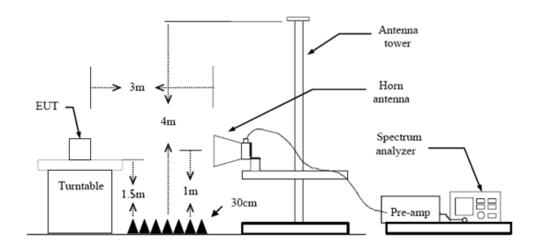
Limits of unwanted emission out of the restricted bands


FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
E705 . E005	10(Note 2)	105.2
5725~5825	15.6(Note 2)	110.8
	27(Note 2)	122.2


Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{3}$ uV/m, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.


For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

CTC Laboratories, Inc.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

Report No.: CTC20211682E03

- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 40GHz:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW≥1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Transformer type:	Integrated transformer
Ant. Pol.:	Horizontal
Test Mode:	TX Ant 1 + Ant 2 802.11a Mode 5180MHz (U-NII-1)
Remark:	Only worse case is reported
90.0 dBuV/m	
80	
70	
60	FCC Part15 RE-Class C 30-1000M
50	Margin -6 dB
40	1 2 3 4 6
30	Mary Mary Mary Mary Mary Mary Mary Mary
20	And the state of t
10	The state of the s
0	
30.000 60.0	00 (MHz) 300.00 1000.000
30.000 60.0	00 (MHz) 300.00 1000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	249.8667	55.93	-16.19	39.74	46.00	-6.26	QP
2 *	374.9967	53.36	-12.29	41.07	46.00	-4.93	QP
3	500.1267	46.97	-9.57	37.40	46.00	-8.60	QP
4	750.0633	42.02	-3.62	38.40	46.00	-7.60	QP
5	799.8567	38.35	-2.78	35.57	46.00	-10.43	QP
6	874.8700	41.90	-2.02	39.88	46.00	-6.12	QP

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Transformer type:					nte	grat	ed tra	ansformer						
An	t. Pol	.:		'	/ert	ical								
Tes	st Mo	de:		-	TX Ant 1 + Ant 2 802.11a Mode 5180MHz (U-NII-1)									
Re	mark:			(Only worse case is reported									
90.0	dBuV	7/m												
80														
70														
60										FCC Par	t15 RE-Class	€ C 30-1000M		
50										Margin -	6 dB			
40	<u> </u>					_		3 X		4	5 *		<u>\$</u>	
30	/* <u>*</u>	M		Ž \		_		Lym hum				L. CALLERY LIN	of the second second	
20		Now.	كهمويهما	ζ,	M	ν\ .	J. J.	*\rac{1}{\sqrt{1}}		on the second	Nacharde Party Julian	ho light de le constitution de la constitution de l		
10		N .				الم	MM I		"Mylandyllar" "					
0														
-10														
30.000 60.0				0.00				(MHz)	3	00.00			Detector	
1	No.	Freq (N	juen 1Hz)			lead dBu	ding uV)	Factor (dB/m)	Level (dBuV/m		imit BuV/m)	Margin (dB)	Detector	
	1!	33.	2333	3		49.	16	-14.78	34.38	4	0.00	-5.62	QP	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1!	33.2333	49.16	-14.78	34.38	40.00	-5.62	QP
2	63.3033	50.02	-16.30	33.72	40.00	-6.28	QP
3!	148.9866	53.14	-14.42	38.72	43.50	-4.78	QP
4!	374.9967	53.08	-12.29	40.79	46.00	-5.21	QP
5	500.1267	47.84	-9.57	38.27	46.00	-7.73	QP
6 *	874.8700	43.53	-2.02	41.51	46.00	-4.49	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

1000.000

Transformer type: Separate transformer Ant. Pol.: Horizontal **Test Mode:** TX Ant 1 + Ant 2 802.11a Mode 5180MHz (U-NII-1) Remark: Only worse case is reported dBuV/m 70 60 FCC Part15 RE-Class C 30-1000M Margin -6 dB 50 40 30 20 10 0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	31.6167	36.46	-14.83	21.63	40.00	-18.37	QP
2	62.9800	36.70	-16.24	20.46	40.00	-19.54	QP
3	162.5667	46.11	-14.42	31.69	43.50	-11.81	QP
4 *	374.9967	46.85	-12.29	34.56	46.00	-11.44	QP
5	500.1267	40.36	-9.57	30.79	46.00	-15.21	QP
6	750.0633	36.63	-3.62	33.01	46.00	-12.99	QP

(MHz)

300 OO

Remarks:

-10 -20

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

60 00

1000.000

Transformer type: Separate transformer Ant. Pol.: Vertical **Test Mode:** TX Ant 1 + Ant 2 802.11a Mode 5180MHz (U-NII-1) Remark: Only worse case is reported dBuV/m 80.0 70 60 FCC Part15 RE-Class C 30-1000M Margin -6 dB 50 40 30 20 10 0 -10

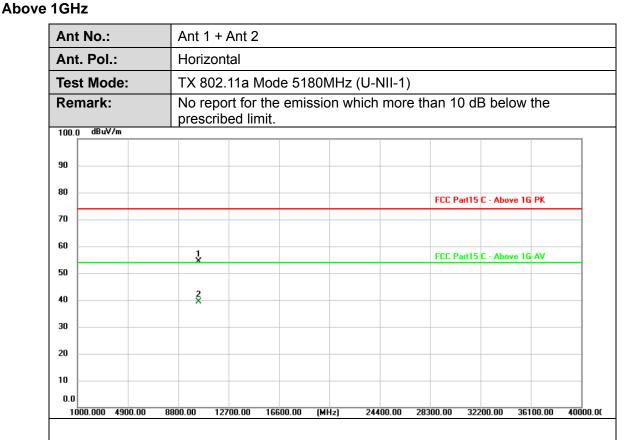
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	31.6167	50.93	-14.83	36.10	40.00	-3.90	QP
2!	62.0100	51.41	-16.03	35.38	40.00	-4.62	QP
3	79.4700	47.67	-19.90	27.77	40.00	-12.23	QP
4	156.4233	40.60	-14.35	26.25	43.50	-17.25	QP
5	374.9967	42.83	-12.29	30.54	46.00	-15.46	QP
6	624.9333	37.49	-5.90	31.59	46.00	-14.41	QP

(MHz)

300.00

Remarks:

30.000


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

60.00

Page 25 of 139 Report No.: CTC20211682E03

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10359.003	40.15	14.13	54.28	74.00	-19.72	peak
2 *	10360.383	25.32	14.12	39.44	54.00	-14.56	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5180MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 ខា FCC Part15 C - Above 1G PK 70 60 X FCC Part15 C - Above 1G AV 50 2 40 30 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	10360.178	41.50	14.13	55.63	74.00	-18.37	peak
2 *	10360.711	25.46	14.12	39.58	54.00	-14.42	AVG

(MHz)

Remarks:

10 0.0

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

12700.00 16600.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11a Mode 5200MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10 1000.000 4900.00 8800.00 12700.00 16600.00 [MHz] 24400.00 28300.00 32200.00 36100.00 40000.00

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1 *	10400.232	25.23	14.19	39.42	54.00	-14.58	AVG
2	10400.893	39.84	14.19	54.03	74.00	-19.97	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5200MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10399.199	25.31	14.19	39.50	54.00	-14.50	AVG
2	10399.589	39.25	14.19	53.44	74.00	-20.56	peak

8800.00 12700.00 16600.00 (MHz)

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11a Mode 5240MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 3 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.274	39.74	14.30	54.04	74.00	-19.96	peak
2 *	10479.487	25.61	14.30	39.91	54.00	-14.09	AVG

(MHz)

24400.00 28300.00 32200.00 36100.00

Remarks:

0.0

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

12700.00

16600.00

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5240MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.223	25.54	14.30	39.84	54.00	-14.16	AVG
2	10479.836	39.53	14.30	53.83	74.00	-20.17	peak

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

12700.00 16600.00 (MHz)

2.Margin value = Level -Limit value

8800.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT20) Mode 5180MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 90 RΠ FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10 0.0 1000.000 4900.00 12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00 8800.00

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	10359.809	40.12	14.13	54.25	74.00	-19.75	peak
2 *	10360.464	25.30	14.13	39.43	54.00	-14.57	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

36100.00

32200.00

40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5180MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	10359.015	40.07	14.13	54.20	74.00	-19.80	peak
2 *	10360.728	25.35	14.13	39.48	54.00	-14.52	AVG

(MHz)

24400.00

28300.00

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

12700.00

16600.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT20) Mode 5200MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 2 50 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10399.903	25.12	14.19	39.31	54.00	-14.69	AVG
2	10400.797	39.23	14.19	53.42	74.00	-20.58	peak

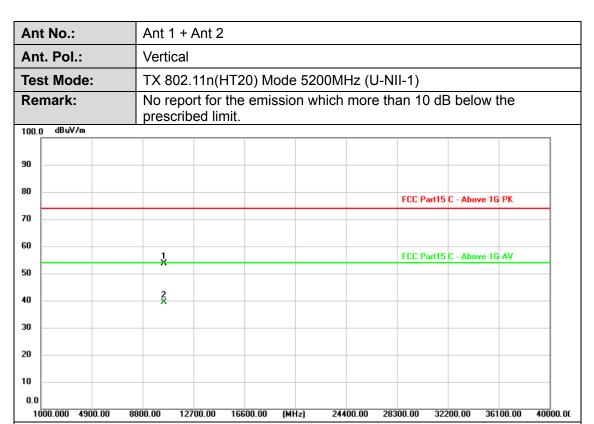
(MHz)

Remarks:

1000.000 4900.00

8800.00

12700.00

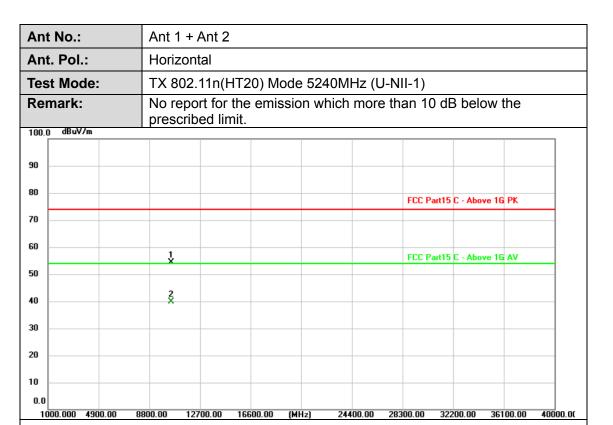

16600.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10399.297	39.43	14.19	53.62	74.00	-20.38	peak
2 *	10400.121	25.19	14.19	39.38	54.00	-14.62	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: yz.cnca.cn

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.521	40.18	14.30	54.48	74.00	-19.52	peak
2 *	10480.082	25.69	14.30	39.99	54.00	-14.01	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5240MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.175	25.26	14.30	39.56	54.00	-14.44	AVG
2	10480.539	39.81	14.30	54.11	74.00	-19.89	peak

(MHz)

16600.00

12700.00

8800.00

Remarks:

30

20 10 0.0

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10359.659	25.24	14.13	39.37	54.00	-14.63	AVG
2	10360.125	39.87	14.13	54.00	74.00	-20.00	peak

(MHz)

Remarks:

1000.000 4900.00

8800.00

12700.00 16600.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: yz.cnca.cn

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10359.223	25.57	14.13	39.70	54.00	-14.30	AVG
2	10360.951	40.06	14.13	54.19	74.00	-19.81	peak

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

12700.00 16600.00 (MHz)

2.Margin value = Level -Limit value

FN 中国国家认证认可监督管理委员会

8800.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 40 30 20

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	10399.635	40.13	14.19	54.32	74.00	-19.68	peak
2 *	10400.062	25.48	14.19	39.67	54.00	-14.33	AVG

8800.00 12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

Remarks:

10 0.0

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

40 30

20

10 0.0

1000.000 4900.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10399.120	39.25	14.19	53.44	74.00	-20.56	peak
2 *	10399.429	25.59	14.19	39.78	54.00	-14.22	AVG

(MHz)

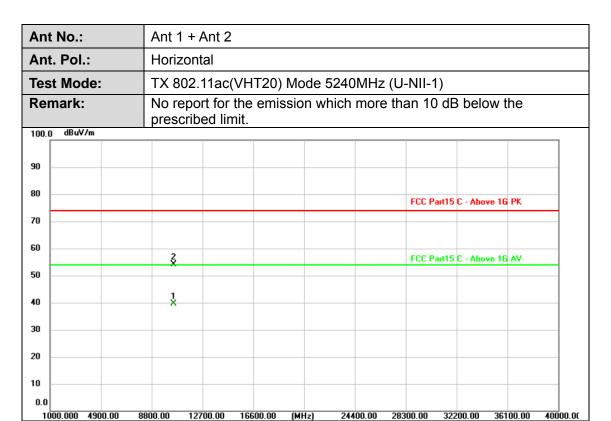
24400.00 28300.00

32200.00

36100.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

8800.00

12700.00

16600.00

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.691	25.33	14.30	39.63	54.00	-14.37	AVG
2	10480.391	39.86	14.30	54.16	74.00	-19.84	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 2 X FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.503	25.45	14.30	39.75	54.00	-14.25	AVG
2	10479.733	40.17	14.30	54.47	74.00	-19.53	peak

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

12700.00 16600.00 (MHz)

2.Margin value = Level -Limit value

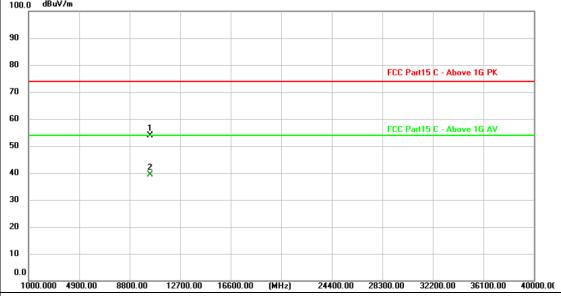
8800.00

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:

Horizontal


Test Mode:

TX 802.11n(HT40) Mode 5190MHz (U-NII-1)

Remark:

No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC20211682E03

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10379.354	39.73	14.15	53.88	74.00	-20.12	peak
2 *	10379.815	25.22	14.15	39.37	54.00	-14.63	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 90 ខា FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10380.197	25.29	14.15	39.44	54.00	-14.56	AVG
2	10380.972	39.83	14.15	53.98	74.00	-20.02	peak

(MHz)

Remarks:

0.0

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

12700.00

16600.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT40) Mode 5230MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10 0.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10460.087	25.09	14.28	39.37	54.00	-14.63	AVG
2	10460.653	39.74	14.28	54.02	74.00	-19.98	peak

12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5230MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 នព FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10459.441	39.82	14.28	54.10	74.00	-19.90	peak
2 *	10460.597	25.22	14.28	39.50	54.00	-14.50	AVG

(MHz)

Remarks:

30

20 10

1000.000 4900.00

8800.00

12700.00 16600.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

40 30

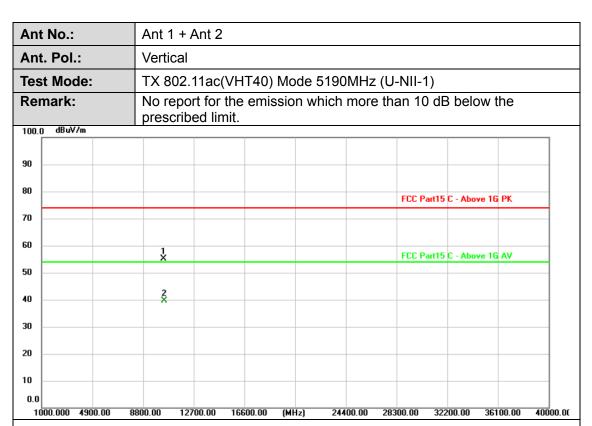
20

10

1000.000 4900.00

8800.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50


No		Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	*	10379.768	25.56	14.15	39.71	54.00	-14.29	AVG
2		10380.820	39.85	14.15	54.00	74.00	-20.00	peak

12700.00 16600.00 (MHz)

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10379.018	41.02	14.15	55.17	74.00	-18.83	peak
2 *	10379.969	25.52	14.15	39.67	54.00	-14.33	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 Ş FCC Part15 C - Above 1G AV 50

1000.000	4900.00 8800.00	12700.00 16	600.00 (MHz)	24400.00 2	8300.00 32200.	00 36100.0	0 40000.00
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10459.709	25.01	14.28	39.29	54.00	-14.71	AVG
2	10460.673	40.10	14.28	54.38	74.00	-19.62	peak

Remarks:

30 20

10 0.0

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	10459.589	39.69	14.28	53.97	74.00	-20.03	peak
2 *	10460.131	25.21	14.28	39.49	54.00	-14.51	AVG

8800.00 12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 ž 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10419.149	40.94	14.22	55.16	74.00	-18.84	peak
2 *	10420.074	25.43	14.22	39.65	54.00	-14.35	AVG

(MHz)

Remarks:

1000.000 4900.00

8800.00

12700.00 16600.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 RΠ FCC Part15 C - Above 1G PK 70 60 2 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10419.153	25.44	14.22	39.66	54.00	-14.34	AVG
2	10420.273	39.61	14.22	53.83	74.00	-20.17	peak

12700.00 16600.00 (MHz)

Remarks:

0.0

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11a Mode 5745MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 Ş FCC Part15 C - Above 1G AV 50 ļ 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1 *	11490.116	23.77	15.36	39.13	54.00	-14.87	AVG
2	11490.262	38.65	15.36	54.01	74.00	-19.99	peak

(MHz)

24400.00

28300.00

32200.00

36100.00

40000.00

Remarks:

1000.000 4900.00

8800.00

12700.00

16600.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 RΠ FCC Part15 C - Above 1G PK 70 60 ŝ FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.726	23.80	15.36	39.16	54.00	-14.84	AVG
2	11490.880	38.56	15.36	53.92	74.00	-20.08	peak

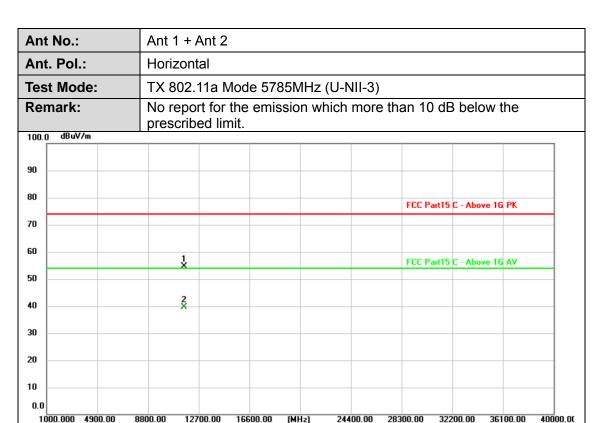
(MHz)

Remarks:

0.0

1000.000 4900.00

8800.00


12700.00 16600.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	11570.148	39.10	15.41	54.51	74.00	-19.49	peak
2 *	11570.634	24.21	15.41	39.62	54.00	-14.38	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

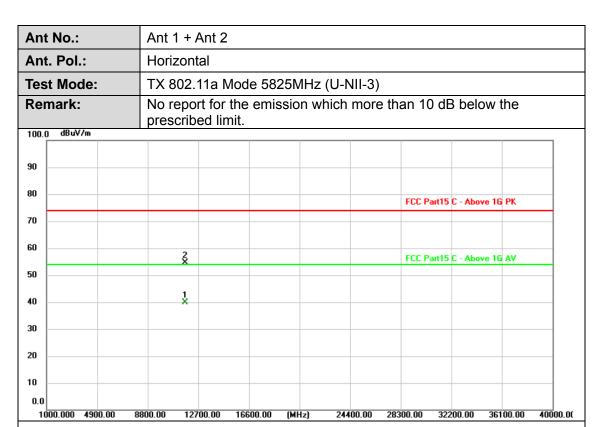
2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5785MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11569.357	24.14	15.41	39.55	54.00	-14.45	AVG
2	11569.768	40.02	15.41	55.43	74.00	-18.57	peak

12700.00 16600.00 (MHz)


Remarks:

1000.000 4900.00

8800.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11650.294	24.50	15.47	39.97	54.00	-14.03	AVG
2	11650.472	39.23	15.47	54.70	74.00	-19.30	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11650.186	25.10	15.47	40.57	54.00	-13.43	AVG
2	11650.305	39.85	15.47	55.32	74.00	-18.68	peak

(MHz)

24400.00 28300.00

32200.00

Remarks:

0.0

1000.000 4900.00

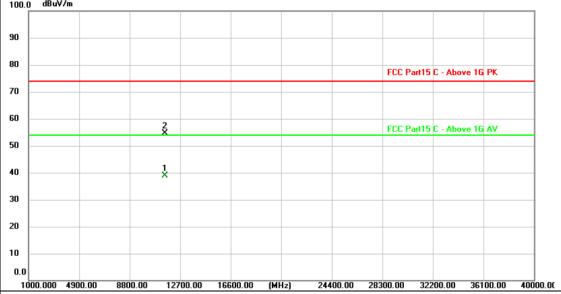
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

12700.00

16600.00


Ant No.: Ant 1 + Ant 2

Ant. Pol.: Horizontal

Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC20211682E03

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11489.037	23.43	15.35	38.78	54.00	-15.22	AVG
2	11489.708	39.29	15.36	54.65	74.00	-19.35	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5745MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 ž FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.238	24.08	15.36	39.44	54.00	-14.56	AVG
2	11490.985	39.48	15.36	54.84	74.00	-19.16	peak

12700.00 16600.00 (MHz)

Remarks:

1000.000 4900.00

8800.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: yz.cnca.cn

40

30

20

10 0.0

Ant 1 + Ant 2 Ant No.: Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT20) Mode 5785MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11569.315	24.26	15.41	39.67	54.00	-14.33	AVG
2	11570.776	38.90	15.41	54.31	74.00	-19.69	peak

12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

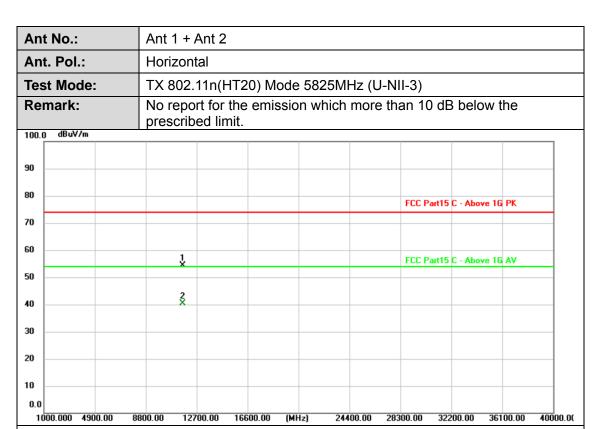
Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5785MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 ខា FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.528	39.54	15.41	54.95	74.00	-19.05	peak
2 *	11570.637	24.42	15.41	39.83	54.00	-14.17	AVG

(MHz)

Remarks:

1000.000 4900.00


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

12700.00 16600.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11649.181	38.92	15.47	54.39	74.00	-19.61	peak
2 *	11649.326	24.81	15.47	40.28	54.00	-13.72	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11649.343	39.27	15.47	54.74	74.00	-19.26	peak
2 *	11650.895	24.43	15.47	39.90	54.00	-14.10	AVG

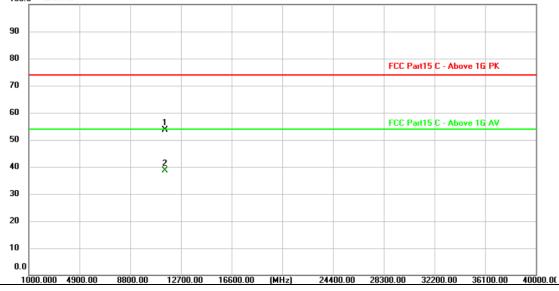
8800.00 12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



Ant No.: Ant 1 + Ant 2

Ant. Pol.: Horizontal

Test Mode: TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11489.871	38.37	15.36	53.73	74.00	-20.27	peak
2 *	11490.663	23.21	15.36	38.57	54.00	-15.43	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.605	38.71	15.36	54.07	74.00	-19.93	peak
2 *	11490.939	23.89	15.36	39.25	54.00	-14.75	AVG

12700.00 16600.00 (MHz)

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

Ant 1 + Ant 2 Ant No.: Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 40 30 20 10

N	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	11569.105	39.22	15.41	54.63	74.00	-19.37	peak
2	2 *	11569.171	24.37	15.41	39.78	54.00	-14.22	AVG

12700.00 16600.00 (MHz)

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

24400.00 28300.00 32200.00 36100.00 40000.00

24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11570.149	38.93	15.41	54.34	74.00	-19.66	peak
2 *	11570.773	24.25	15.41	39.66	54.00	-14.34	AVG

Remarks:

10 0.0

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

12700.00 16600.00 (MHz)

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

8800.00

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 Š FCC Part15 C - Above 1G AV 50 1 X 40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11649.373	24.83	15.47	40.30	54.00	-13.70	AVG
2	11650.601	38.91	15.47	54.38	74.00	-19.62	peak

12700.00 16600.00 (MHz)

Remarks:

30

20

10

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

24400.00 28300.00 32200.00 36100.00 40000.00

24400.00 28300.00 32200.00 36100.00 40000.00

40 30

20 10

1000.000 4900.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11650.467	24.46	15.47	39.93	54.00	-14.07	AVG
2	11650.755	38.99	15.47	54.46	74.00	-19.54	peak

12700.00 16600.00 (MHz)

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

ļ.

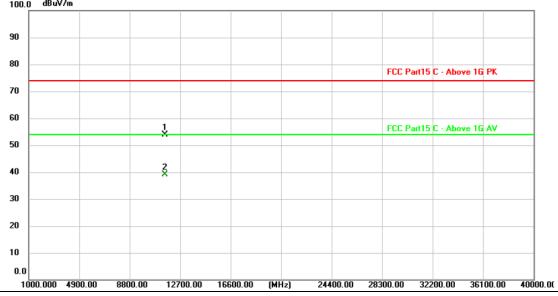
8800.00

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:

Horizontal


Test Mode:

TX 802.11n(HT40) Mode 5755MHz (U-NII-3)

Remark:

No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC20211682E03

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11510.101	38.59	15.35	53.94	74.00	-20.06	peak
2 *	11510.507	23.68	15.35	39.03	54.00	-14.97	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

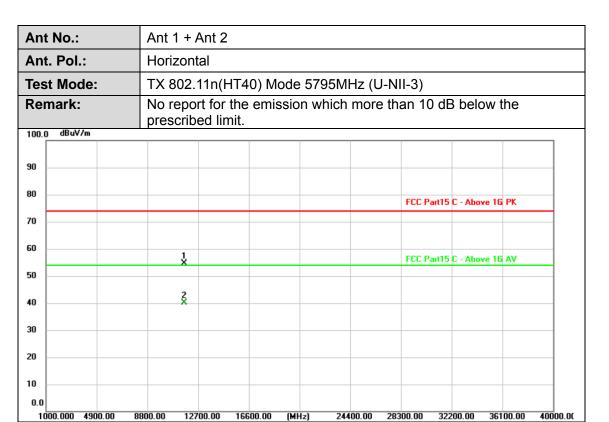
24400.00 28300.00 32200.00 36100.00 40000.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5755MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 100.0 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11509.585	39.75	15.35	55.10	74.00	-18.90	peak
2 *	11510.768	24.14	15.35	39.49	54.00	-14.51	AVG

12700.00 16600.00 (MHz)

Remarks:


1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

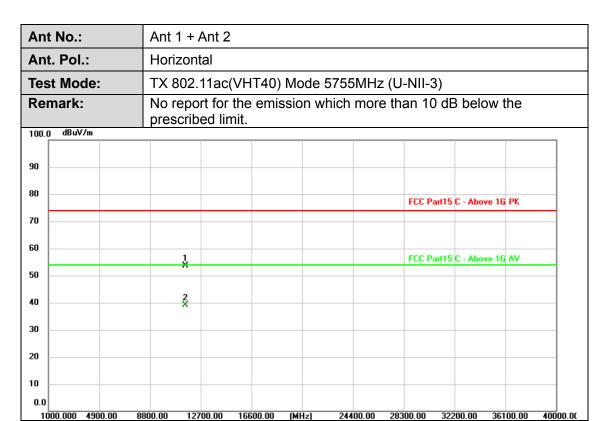
2.Margin value = Level -Limit value

8800.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11589.917	39.15	15.43	54.58	74.00	-19.42	peak
2 *	11590.429	24.80	15.43	40.23	54.00	-13.77	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5795MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10 1000.000 4900.00 8800.00 12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	11589.379	38.73	15.43	54.16	74.00	-19.84	peak
2 *	11589.736	24.88	15.43	40.31	54.00	-13.69	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	11509.476	38.25	15.35	53.60	74.00	-20.40	peak
2 *	11509.686	23.78	15.35	39.13	54.00	-14.87	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

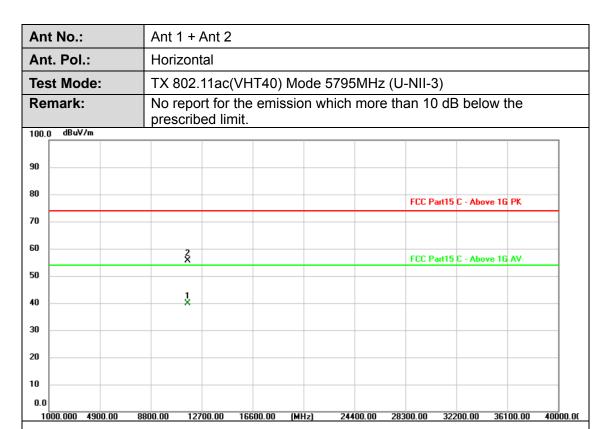
Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 RΠ FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 ļ 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11509.138	23.64	15.35	38.99	54.00	-15.01	AVG
2	11510.216	38.74	15.35	54.09	74.00	-19.91	peak

12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

Remarks:

0.0

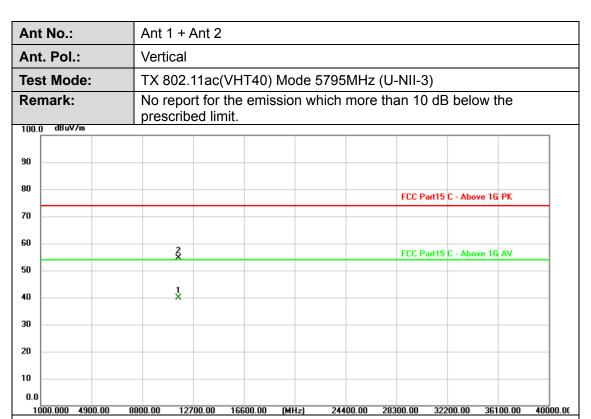

1000.000 4900.00

8800.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11589.634	24.42	15.43	39.85	54.00	-14.15	AVG
2	11590.013	40.12	15.43	55.55	74.00	-18.45	peak


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: yz.cnca.cn

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11589.886	24.35	15.43	39.78	54.00	-14.22	AVG
2	11590.159	39.32	15.43	54.75	74.00	-19.25	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11549.742	23.72	15.39	39.11	54.00	-14.89	AVG
2	11550.035	39.20	15.39	54.59	74.00	-19.41	peak

(MHz)

24400.00 28300.00

32200.00

Remarks:

0.0

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

8800.00

12700.00

16600.00

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 100.0 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 2 X 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11549.945	39.13	15.39	54.52	74.00	-19.48	peak
2 *	11550.568	23.68	15.39	39.07	54.00	-14.93	AVG

8800.00 12700.00 16600.00 (MHz) 24400.00 28300.00 32200.00 36100.00 40000.00

Remarks:

1000.000 4900.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

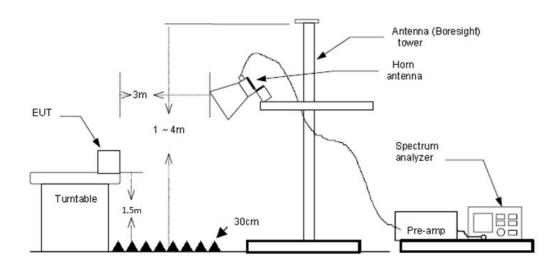
2.Margin value = Level -Limit value

3.3. Band Edge Emissions

Limit

Limits of unwanted emission out of the restricted bands

FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2


Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)		
5150~5250	-27	68.2		
5250~5350	-27	68.2		
5470~5725	-27	68.2		
	-27(Note 2)	68.2		
5725~5825	10(Note 2)	105.2		
3725~3625	15.6(Note 2)	110.8		
	27(Note 2)	122.2		

Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field

strength: $E = \frac{1000000\sqrt{30P}}{3}$ uV/m, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

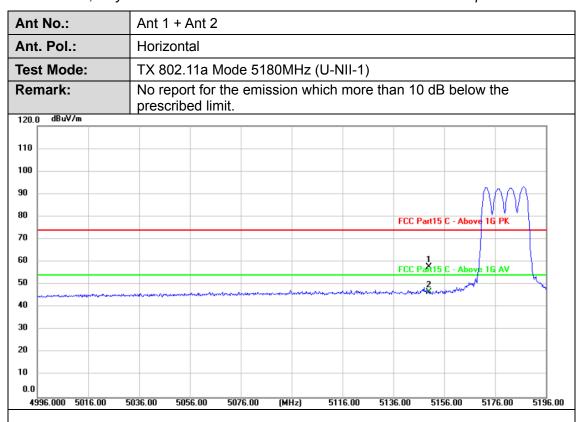
EN 中国国家认证认可监督管理委员会

5. The receiver set as follow:

RBW=1MHz. VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Appendix E: Duty Cycle


Report No.: CTC20211682E03

Test Mode

Please refer to the clause 2.4.

Test Results

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	5150.000	20.65	37.15	57.80	74.00	-16.20	peak
2 *	5150.000	9.50	37.15	46.65	54.00	-7.35	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	No.:	Ant 1 + Ant 2	
Ant	. Pol.:	Vertical	
Tes	t Mode:	TX 802.11a Mode 5180MHz (U-NII-1)	
Rer	mark:	No report for the emission which more than 10 dB below the prescribed limit.	
120.0	dBuV/m		_
110			
100			
90			
80		FCC Part15 C - Above 1G PK	
70			
60		FCC Part J& C - Above 1G AV	M
50	and may be de some man and	- C Party C - Above to AV	
40			
30			
20			
10			
0.0	01.000 5021.00	5041.00 5061.00 5081.00 (MHz) 5121.00 5141.00 5161.00 5181.00	520

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	24.35	37.15	61.50	74.00	-12.50	peak
2 *	5150.000	11.62	37.15	48.77	54.00	-5.23	AVG

Remarks:

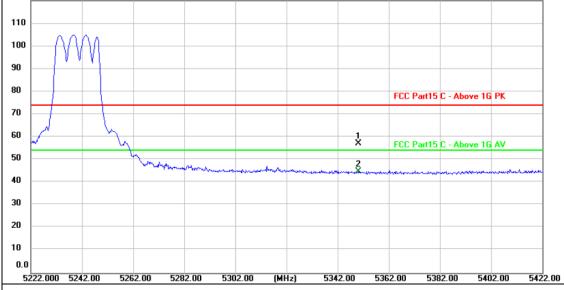
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	19.97	37.41	57.38	74.00	-16.62	peak
2 *	5350.000	5.61	37.41	43.02	54.00	-10.98	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.: Ant 1 + Ant 2

Ant. Pol.: Vertical

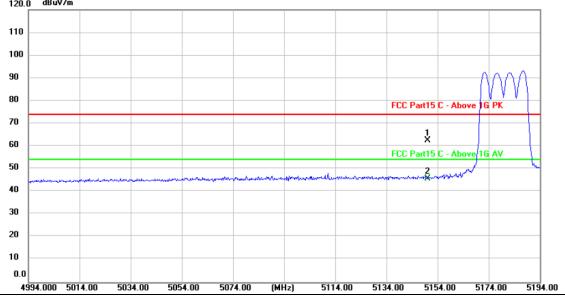
Test Mode: TX 802.11a Mode 5240MHz (U-NII-2A)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC20211682E03

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	19.63	37.41	57.04	74.00	-16.96	peak
2 *	5350.000	7.33	37.41	44.74	54.00	-9.26	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	25.27	37.15	62.42	74.00	-11.58	peak
2 *	5150.000	8.51	37.15	45.66	54.00	-8.34	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

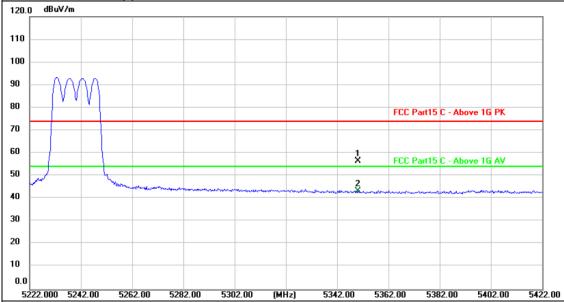
Ant	No.:	Ant 1 + Ant 2	
Ant	. Pol.:	Vertical	
Tes	t Mode:	TX 802.11n(HT20) N	Mode 5180MHz (U-NII-1)
Rer	nark:	No report for the em prescribed limit.	nission which more than 10 dB below the
120.0) dBuV/m		
110			
100			$ \wedge$ \wedge \wedge \wedge
90			1000
80			FCC Part15 C - Aboye 1G PK
70			1 ×
60			FCC Part15 C Above 1G AV
50	and the state of the same	Company of the second of the s	and the stranger of the strang
40			
30			
20			
10			
0.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	25.91	37.15	63.06	74.00	-10.94	peak
2 *	5150.000	12.70	37.15	49.85	54.00	-4.15	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


Ant No.: Ant 1 + Ant 2

Ant. Pol.: Horizontal

Test Mode: TX 802.11n(HT20) Mode 5240MHz (U-NII-2A)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC20211682E03

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	19.14	37.41	56.55	74.00	-17.45	peak
2 *	5350.000	5.93	37.41	43.34	54.00	-10.66	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

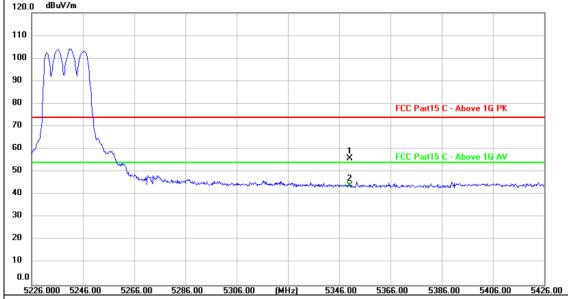
2.Margin value = Level -Limit value

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:

Vertical


Test Mode:

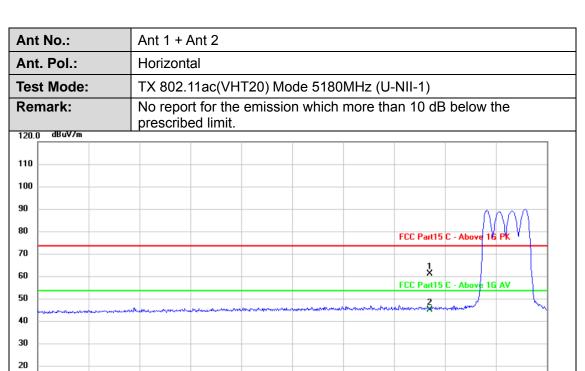
TX 802.11n(HT20) Mode 5240MHz (U-NII-2A)

Remark:

No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC20211682E03

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	18.55	37.41	55.96	74.00	-18.04	peak
2 *	5350.000	6.68	37.41	44.09	54.00	-9.91	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	5150.000	24.41	37.15	61.56	74.00	-12.44	peak
2 *	5150.000	8.61	37.15	45.76	54.00	-8.24	AVG

(MHz)

5116.00

5136.00

5156.00

5176.00

5196.00

Remarks:

10 0.0

4996.000 5016.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5036.00

5056.00

5076.00

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant	No.:	Ant 1 + Ant 2	
Ant	. Pol.:	Vertical	
Tes	t Mode:	TX 802.11ac(VHT20) Mode 5180MHz	z (U-NII-1)
Rer	mark:	No report for the emission which more prescribed limit.	e than 10 dB below the
120.0) dBuV/m		
110			
100			۸۸۸۸
90			
80			FCC Part15 C - Above 1G PK
70			1 X
60			FCC Part15 C - Above 1G AV
50	marine de la como de l	the processing of the second s	www.marshan
40			
30			
20			
10			
0.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	
1	5150.000	26.34	37.15	63.49	74.00	-10.51	peak	
2 *	5150.000	9.67	37.15	46.82	54.00	-7.18	AVG	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 + Ant 2

Ant. Pol.: Horizontal

Test Mode: TX 802.11ac(VHT20) Mode 5240MHz (U-NII-2A)

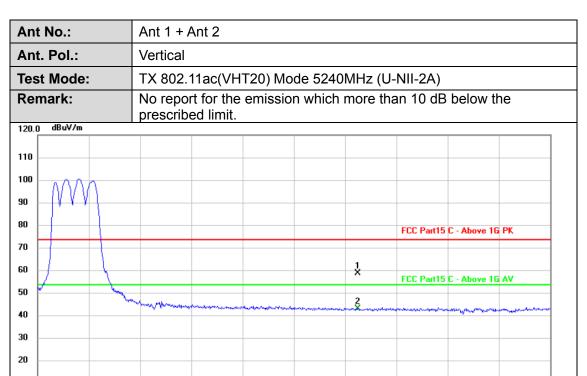
Remark: No report for the emission which more than 10 dB below the prescribed limit.

120.0 dBuV/m

110
100
90
80
FCC Part15 C - Above 1G PK

1	_ √	VV	\ _a .																
ŀ	1	* y	V												FCC P	art15 C	- Above	IG PK	
ľ																			
ľ	\perp		1										X X		FCC P	art15 C	- Above	IG AV	
ļ.	_		-	~\w.h					a Jangar adalah sada sada				2						
ŀ								****	o particular of franchis	al-rassage	and the same	***************************************	<u>2</u>	-		hymanigh de		e, as well-throughout	المرجعة المرادية
ŀ																			
ŀ																			
,																			
27	24.000	524	4.00	526	4.00	528	4.00	530	4.00	(MI	lz)	534	4.00	536	4.00	5384	.00 5	404.00	542

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	18.79	37.41	56.20	74.00	-17.80	peak
2 *	5350.000	5.19	37.41	42.60	54.00	-11.40	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.000	21.93	37.41	59.34	74.00	-14.66	peak
2 *	5350.000	6.26	37.41	43.67	54.00	-10.33	AVG

(MHz)

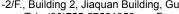
5345.00

5365.00

5385.00

5405.00

Remarks:


10 0.0

5225.000 5245.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5305.00

5285.00

Ant	No.:		Ant	1 + Ant :	2							
Ant	. Pol.:		Hori	zontal								
Tes	t Mod	e:	TX 8	302.11n((HT40) M	ode 519	0MHz (L	J-NII	-1)			
Rer	mark:			eport fo cribed li		ssion wh	nich more	e tha	n 10 dE	3 below to	ne	
120.0	dBuV/	m										
110												
100												
90											A A A	
80									FCC Part	5 C - Abbye 16	PKV	
70												
60								X X	FCC Partil	5 C - Above 10	AV	\vdash
50	un sanlar	a. memalir	June whom	achemony		العادمة المعادمة المعادمة	Mushruman	unt XA	nemental			/m
40												
30												
20												
10												
0.0	15.000 !	5035.00	5055.00	5075.00	5095.00	(MHz)	5135.00		5.00 51		95.00	521

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	23.02	37.15	60.17	74.00	-13.83	peak
2 *	5150.000	9.83	37.15	46.98	54.00	-7.02	AVG

Remarks:

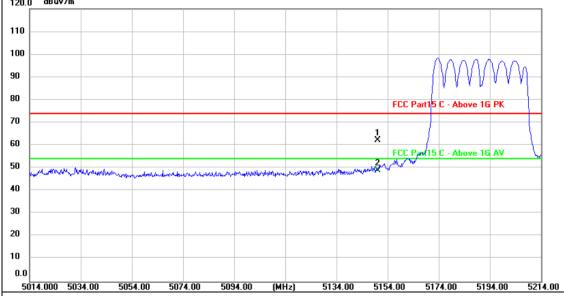
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:

Vertical


Test Mode:

TX 802.11n(HT40) Mode 5190MHz (U-NII-1)

Remark:

No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC20211682E03

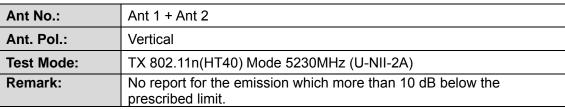
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	5150.000	25.15	37.15	62.30	74.00	-11.70	peak
2 *	5150.000	12.03	37.15	49.18	54.00	-4.82	AVG

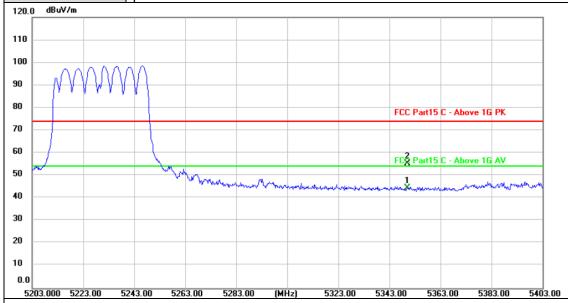
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn


An	t No.:	Ant 1 + Ant 2	t 1 + Ant 2								
٩n	t. Pol.:	Horizontal									
Гes	st Mode:	TX 802.11n(H	IT40) Mode 5230M	Hz (U-NII-2A)							
Rei	mark:	No report for t		more than 10 dB below	the .						
120.0) dBuV/m										
110											
100											
90											
80	-MMM	M		FCC Part15 C - Above	e 1G PK						
70											
60				FXC Part15 C - Above	e 16 AV						
50	sand .	Combonish de man	and the state of t	- 2	grandontes allegant and thered						
10											
30											
20											
10											
0.0	205.000 5225.00	5245.00 5265.00	5285.00 (MHz) 53	325.00 5345.00 5365.00	5385.00 540						


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.000	18.68	37.41	56.09	74.00	-17.91	peak
2 *	5350.000	5.25	37.41	42.66	54.00	-11.34	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	5350.000	7.26	37.41	44.67	54.00	-9.33	AVG
2	5350.000	17.99	37.41	55.40	74.00	-18.60	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5014.000 5034.00

Ant 1 + Ant 2 Ant No.: Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 70 60 FCC Part 5 C - Above 16 AV

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	26.42	37.15	63.57	74.00	-10.43	peak
2 *	5150.000	11.97	37.15	49.12	54.00	-4.88	AVG

(MHz)

5154.00

5134.00

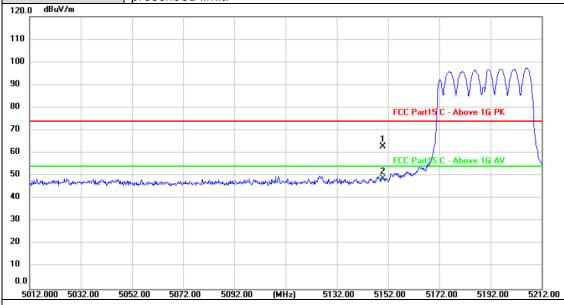
5174.00

5074.00

5094.00

Remarks:

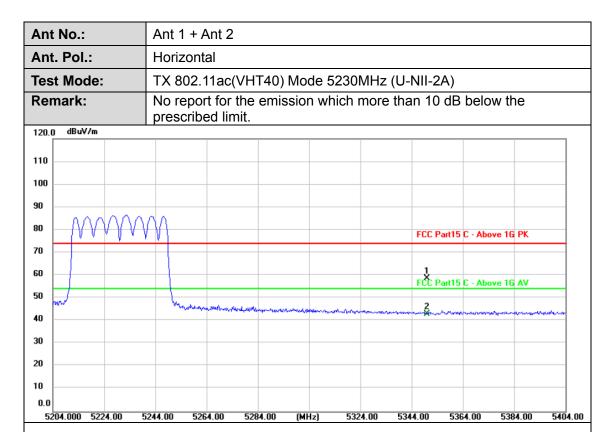
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) **Test Mode:** No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 120.0

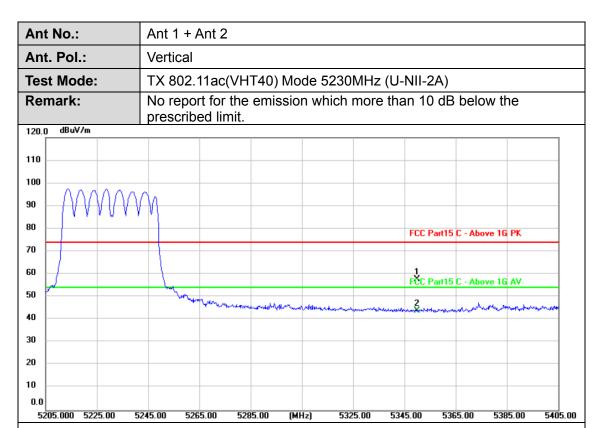
Report No.: CTC20211682E03


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	25.69	37.15	62.84	74.00	-11.16	peak
2 *	5150.000	11.56	37.15	48.71	54.00	-5.29	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	5350.000	21.17	37.41	58.58	74.00	-15.42	peak
2 *	5350.000	5.63	37.41	43.04	54.00	-10.96	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	5350.000	20.44	37.41	57.85	74.00	-16.15	peak
2 *	5350.000	6.55	37.41	43.96	54.00	-10.04	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) **Test Mode:** No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 120.0 110 100 90 80 FCC Part15 C - Above 1G PK 70 X 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	24.50	37.15	61.65	74.00	-12.35	peak
2 *	5150.000	10.64	37.15	47.79	54.00	-6.21	AVG
3	5350.000	23.97	37.41	61.38	74.00	-12.62	peak
4	5350.000	6.14	37.41	43.55	54.00	-10.45	AVG

(MHz)

5258.00

5288.00

5318.00

5348.00

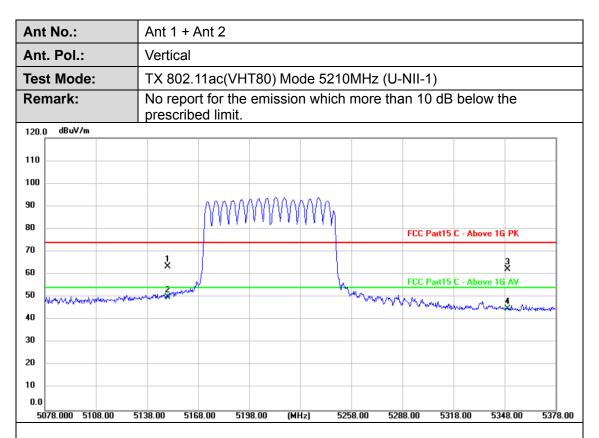
5378.00

Remarks:

5078.000 5108.00

5138.00

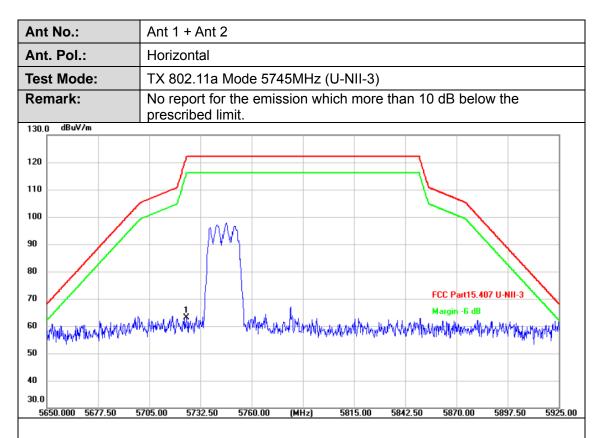
5168.00


5198.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	26.29	37.15	63.44	74.00	-10.56	peak
2 *	5150.000	12.87	37.15	50.02	54.00	-3.98	AVG
3	5350.000	24.97	37.41	62.38	74.00	-11.62	peak
4	5350.000	7.43	37.41	44.84	54.00	-9.16	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	25.10	38.07	63.17	122.20	-59.03	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5745MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40 5650.000 5677.50 5705.00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	21.70	38.07	59.77	122.20	-62.43	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11a Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 130.0 dBuV/m 120 110 100 90 ខា FCC Part15.407 U-NII-3 70 Kan Mari sahadarahadi karake caripa ka Jeografi sa dikapa kabadarah kapa ya dalah sa farak di kabafin kabasara 60 50 40 30.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	22.93	38.33	61.26	122.20	-60.94	peak	

(MHz)

5842.50

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5760.00

60

50

40 30.0

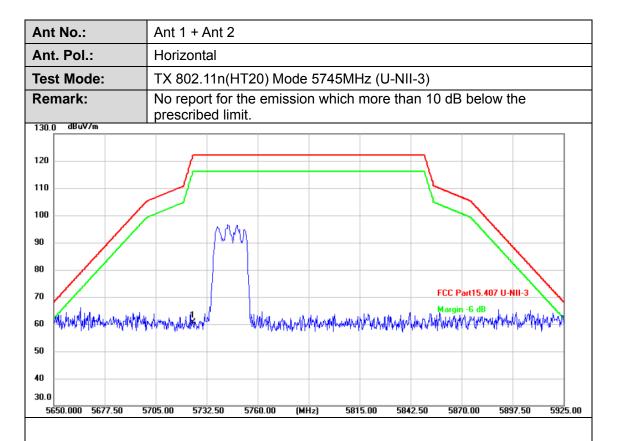
Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5825MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70

No	0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	*	5850.000	18.13	38.33	56.46	122.20	-65.74	peak

5815.00

5842.50

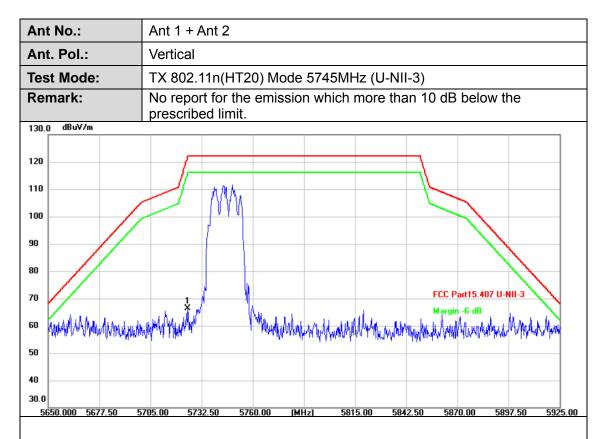
5760.00


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	22.62	38.07	60.69	122.20	-61.51	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	28.22	38.07	66.29	122.20	-55.91	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant 1 + Ant 2 Ant No.: Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40 5815.00 5760.00

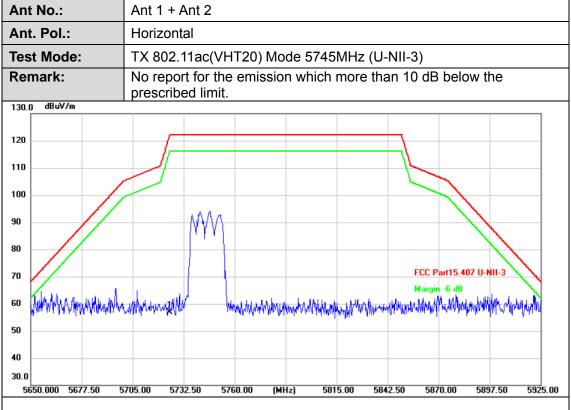
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	20.16	38.33	58.49	122.20	-63.71	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40 5650.000 5677.50 5705.00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.00


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	20.54	38.33	58.87	122.20	-63.33	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	18.85	38.07	56.92	122.20	-65.28	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Tel.: (86)755-27521059

中国国家认证认可监督管理委员会

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40 30.0 5650.000 5677.50 5705.00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	19.70	38.07	57.77	122.20	-64.43	peak	Î

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

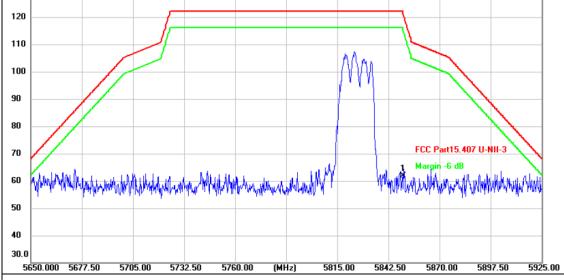
2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 \Y\V\ 80 FCC Part15.407 U-NII-3 70 was traditional to the state of the control of the 60 50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	18.08	38.33	56.41	122.20	-65.79	peak

(MHz)

Remarks:


40 30.0

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 110 100

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	23.62	38.33	61.95	122.20	-60.25	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT40) Mode 5755MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40 30.0 5760.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	19.79	38.07	57.86	122.20	-64.34	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5755MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40 30.0 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00

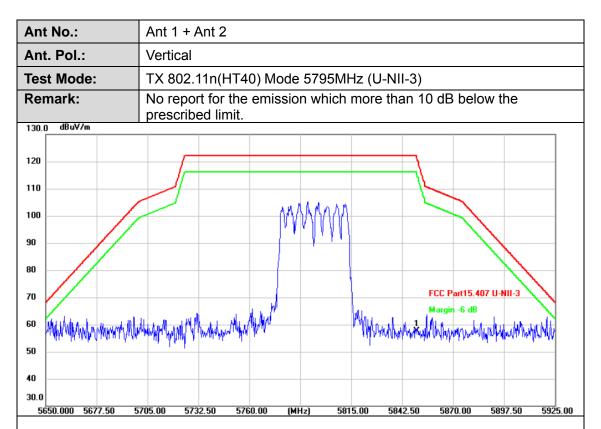
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	25.18	38.07	63.25	122.20	-58.95	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT40) Mode 5795MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 program the stand the of the third period it program on the second partition of the standard program is the second of the second 60 50 40 30.0 5650.000 5677.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.00 5705.00 5732.50


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	19.31	38.33	57.64	122.20	-64.56	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

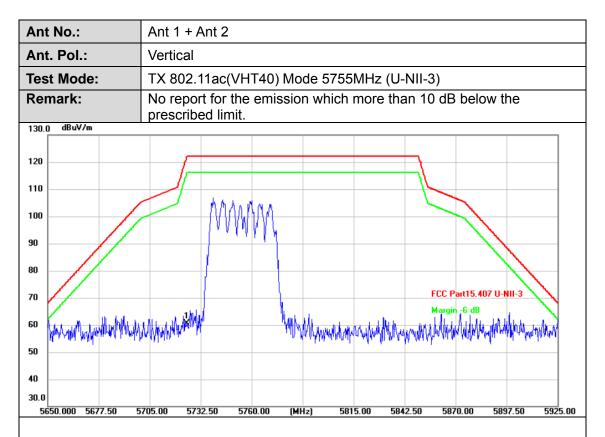
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	19.39	38.33	57.72	122.20	-64.48	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 tartarantahan pandi and albah pangan dan baharan dalah pendabah pendabah pendabah pendabah pendabah pendabah p 50 40 30.0 5650.000 5677.50 5925.00 5705.00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	17.96	38.07	56.03	122.20	-66.17	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	22.63	38.07	60.70	122.20	-61.50	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	18.46	38.33	56.79	122.20	-65.41	peak

(MHz)

5815.00

5870.00

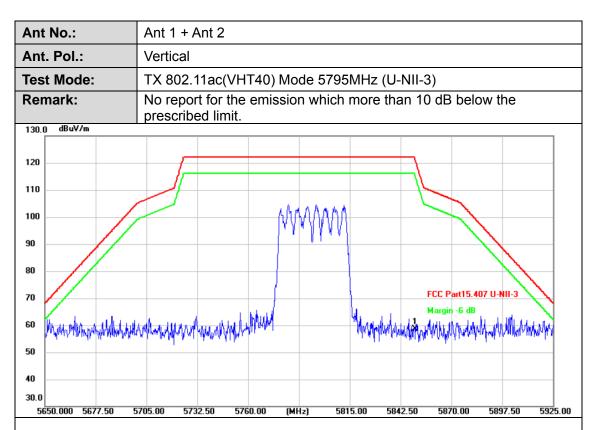
5925.00

5760.00

Remarks:

30.0

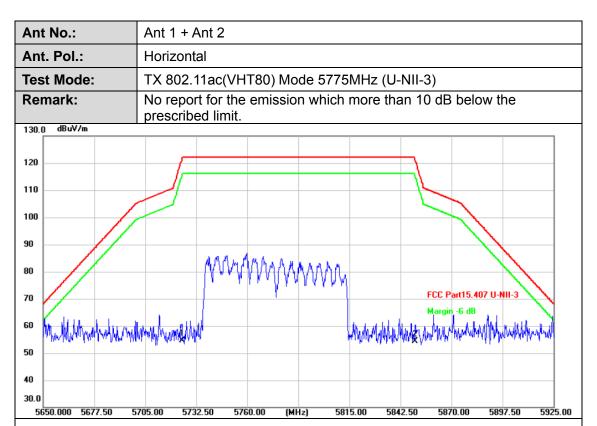
5650.000 5677.50


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5705.00

5732.50


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	20.24	38.33	58.57	122.20	-63.63	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	5725.000	16.55	38.07	54.62	122.20	-67.58	peak
2	5850.000	15.96	38.33	54.29	122.20	-67.91	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

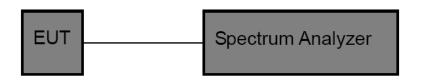
Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3) No report for the emission which more than 10 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 40 5650.000 5677.50 5925.00 5705.00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	5725.000	20.64	38.07	58.71	122.20	-63.49	peak
2 *	5850.000	20.71	38.33	59.04	122.20	-63.16	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



3.4. Bandwidth Test

Limit

FCC Part 15 Subpart C(15.407)/ RSS-247						
Test Item Limit		Frequency Range (MHz)				
		5150~5250				
26 Bandwidth	N/A	5250~5350				
		5500~5700				
6 dB Bandwidth	>500kHz	5725~5850				

Test Configuration

Test Procedure

Please refer to According to KDB789033 D02, for the measurement methods.

The setting of the spectrum analyser as below:

26dB Bandwidth Test				
Spectrum Parameters Setting				
Attenuation	Auto			
Span	>26 dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW>RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 127 of 139 Report No.: CTC20211682E03

	6dB Bandwidth Test				
Spectrum Parameters	Setting				
Attenuation	Auto				
Span	>6 dB Bandwidth				
RBW	100 kHz				
VBW	VBW>=3*RBW				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				
	99% Occupied Bandwidth Test				
Spectrum Parameters	Setting				
Attenuation	Auto				
RBW	1% to 5% of the OBW				
VBW	≥ 3RBW				
Detector	Peak				
Trace	Max Hold				

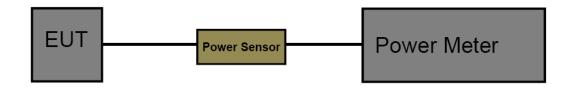
Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

Test Results

Please see the Appendix A1, A2, A3.


3.5. Output Power Test

<u>Limit</u>

FCC Part 15 Subpart E (15.407)							
Test Item	Limit	Frequency Range(MHz)					
	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250					
Conducted Output Power	250mW (24dBm)	5250~5350					
	250mW (24dBm)	5500~5700					
	1 Watt (30dBm)	5725~5850					

		•	IC Power@PSD Lim	IC Power@PSD Limit			
Frequency	Type of devices	Maximum Conducted Output Power	EIRP Output Power	Conducted Power Spectral Density	EIRP Power Spectral Density		
5150MHz-5250MHz	in vehicles		30mW or 1.76 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)				
3130mH2 3230mH2	Other Devices		200mW or 10 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)		10dBm/MHz		
	in vehicles		30mW or 1.76 + 10 × logsoB dBm, whichever is less (B=99% OBW in MHz)				
5250MHz-5350MHz	Other Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×log10B dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz			
5470MHz-5600MHz 5650MHz-5725MHz	ALL Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×log10B dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz			
5725MHz-5850MHz	ALL Devices	1₩		30dBm/500KHz			

Test Configuration

Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

Report No.: CTC20211682E03

Test Mode

Please refer to the clause 2.4.

Test Result

Please see the Appendix B.

3.6. Power Spectral Density Test

Limit

FCC Part 15 Subpart E(15.407)/ RSS-247

For the 5.15~5.25GHz band:

Outdoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6).

Indoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6).

Point-to-point AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >23dBi, then PSD =17-(G_{Tx} -23).

Client devices

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.25~5.35GHz band:

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.47~5.725GHz band:

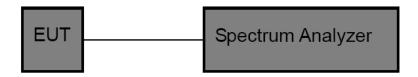
The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.725~5.85GHz band:

Point-to-multipoint systems (P2M)

The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz. If $G_{Tx}>6dBi$, then PSD = $30-(G_{Tx}-6)$.

Point-to-point systems (P2P)


The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz.

Note: G_{Tx}: EUT Antenna gain.

	nit				
Frequency	Type of devices	Maximum Conducted	EIRP Output Power	Conducted Power	EIRP Power
rrequency	Type of devices	Output Power	EIRF Output Fower	Spectral Density	Spectral Density
5150MHz-5250MHz	in vehicles		30mW or 1.76 + 10 × log:0B dBm, whichever is less (B=99% OBW in MHz)		
	Other Devices		200mW or 10 + 10 × logioB dBm, whichever is less (B=99% OBW in MHz)		10dBm/MHz
	in vehicles		30mW or 1.76 + 10 × logioB dBm, whichever is less (B=99% OBW in MHz)		
5250MHz-5350MHz	Other Devices	250mW or 11 + 10 × logiOB dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×logioB dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5470MHz-5600MHz 5650MHz-5725MHz	ALL Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×log10B dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5725MHz-5850MHz	ALL Devices	1₩		30 dBm/500KHz	

Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyzer center frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) RBW=1MHz for devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz RBW=500kHz for devices operating in the band 5.725-5.85 GHz
- (5) Set the VBW to: ≥ 3 RBW
- (6) Detector: AVG
- (7) Trace: Max Hold and View
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

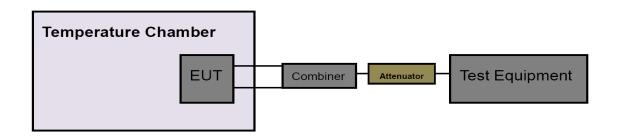
Test Mode

Please refer to the clause 2.4.

Test Result

Please see the Appendix C.

CTC Laboratories, Inc.



3.7. Frequency Stability Measurement

Limit

FCC Part 15 Subpart C(15.407)							
Test Item	Limit	Frequency Range(MHz)					
	Specified in the user's manual,	5150~5250					
Peak Excursion Measurement	the transmitter center frequency tolerance shall be ±20 ppm	5250~5350					
Peak Excursion Measurement	maximum for the 5 GHz band	5500~5700					
	(IEEE 802.11n specification)	5725~5850					

Test Configuration

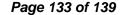
Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyzer center frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10MHz, VBW=10MHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 10.8V to 13.2V percent of the nominal value.
- (6) Extreme temperature is 0°C~40°C

NOTE: The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

Test Mode

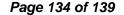

Please refer to the clause 2.4.

Test Result

Please see the Appendix D.

CTC Laboratories, Inc.

3.8. Antenna Requirement


Standard Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

3.9. Dynamic Frequency Selection(DFS)

Requirement

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Report No.: CTC20211682E03

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	annel Availability Check Time Yes		Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

1. DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Report No.: CTC20211682E03

Value (See Notes 1, 2, and 3)
-64 dBm
-62 dBm
-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

2. DFS Response Requirements

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

CTC Laboratories, Inc.

Table 5 Short Pulse Radar Test Waveforms

Report No.: CTC20211682E03

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\text{Roundup} \left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right) \right\}$		
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4) 80% 120					
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time,					

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

would be Round up
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Round up } \{17.2\} = 18.$$

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698

CTC Laboratories, Inc.

11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 6 – Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type wave forms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 – Frequency Hopping Radar Test Waveform

adar ype	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

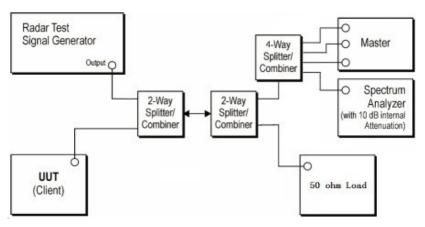
The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Calibration of Radar Waveform

Radar Waveform Calibration Procedure

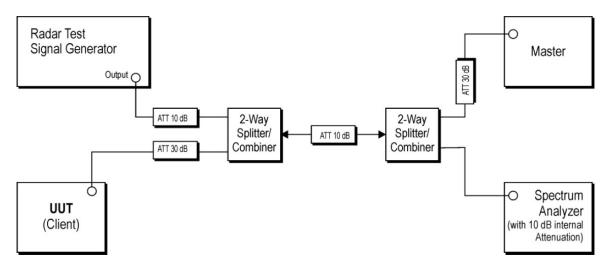
- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- 2) The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会



used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.

Report No.: CTC20211682E03


4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was - -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

Conducted Calibration Setup

Test Configuration

Setup for Client with injection at the Master

Radar Waveform Calibration Result

☐ Passed
☒ Not Applicable

CTC Laboratories, Inc.

Test Procedure

- 1. The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type
- 7. Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8. Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Test Mode

Please refer to the clause 2.4.

<u>lest Results</u>	
☐ Passed	Not Applicable ■
_	
