

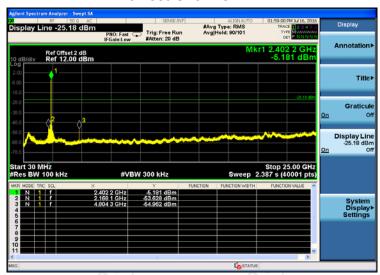
6.10. Conducted Spurious Emission Measurement

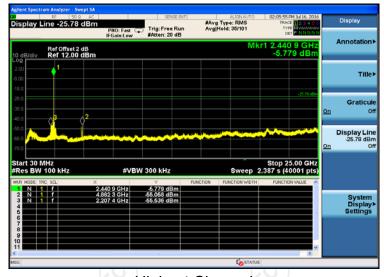
6.10.1. Test Specification

FCC Part15 C Section 15.247 (d)					
any 100 kHz bandwidth outside the intentional diation frequency band, the radio frequency power all be at least 20 dB below the highest level of the diated power. In addition, radiated emissions which fathe restricted bands must also comply with the diated emission limits. The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must b at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.					
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.					
Spectrum Analyzer EUT					
Transmitting mode with modulation					
 00-705 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 					
PASS					

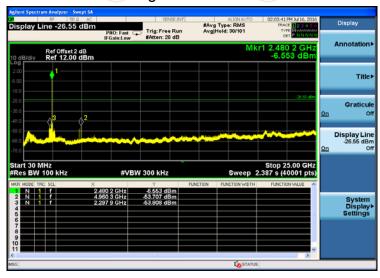
6.10.2. Test Instruments

	RF Test Room											
Equipment	Manufacturer	Model	Serial Number	Calibration Due								
Spectrum Analyzer	R&S	R&S FSU		Sep. 11, 2016								
RF cable	тст	RE-06	N/A	Sep. 12, 2016								
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016								

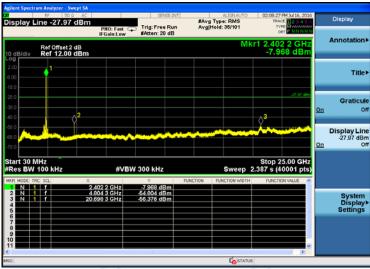

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

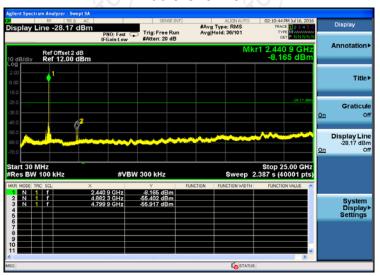

6.10.3. Test Data

GFSK mode

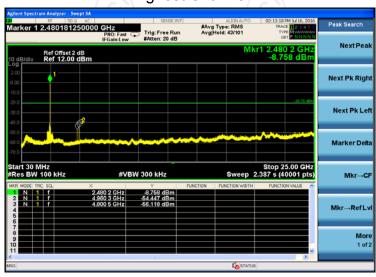

Lowest Channel

Middle Channel


Highest Channel

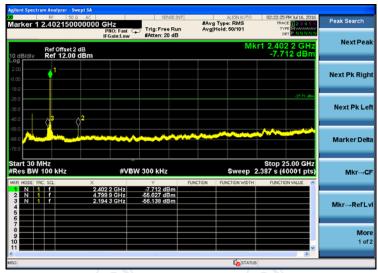


Pi/4DQPSK mode


Lowest Channel

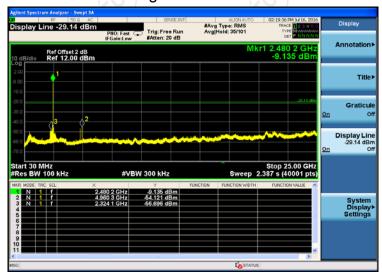
Middle Channel

Highest Channel



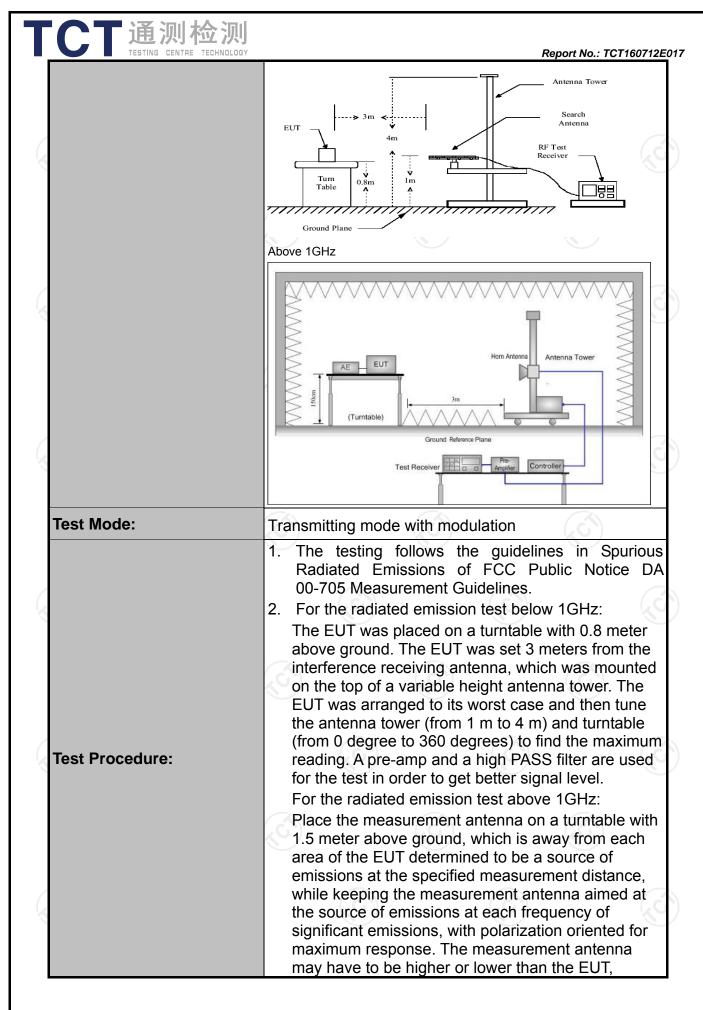


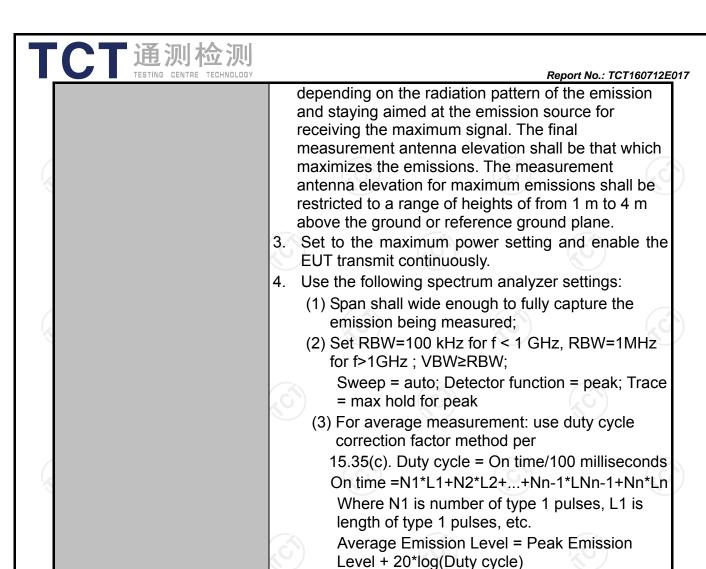
8DPSK mode


Lowest Channel

Middle Channel

Highest Channel





6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

		Z\					
Test Requirement:	FCC Part15	C Sectio	n 15	5.209	(0,)		ACC.
Test Method:	ANSI C63.10	D: 2013					
Frequency Range:	9 kHz to 25 (GHz)			
Measurement Distance:	3 m)		1/0	
Antenna Polarization:	Horizontal &	Vertical					
	Frequency	Detecto	r	RBW	VBW		Remark
	9kHz- 150kHz	Quasi-pe	ak	200Hz	1kHz	Quas	si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-pe	ak	9kHz	30kHz	Quas	si-peak Value
·	30MHz-1GHz	Quasi-pe	ak	100KHz	300KHz	Quas	si-peak Value
	.C)	Peak	2G)	1MHz	3MHz		eak Value
	Above 1GHz	Peak		1MHz	10Hz	Ave	erage Value
	Frequen	ісу	(r	Field Stre	-		asurement nce (meters)
	0.009-0.4	490	, ·	2400/F(l			300
	0.490-1.7		24000/F(KHz)		30		
	1.705-3		30			30	
	30-88		100		3		
	88-216	88-216				3	
Limit:	216-96	0	200			3	
	Above 9	Above 960					3
	Frequency		eld Strength rovolts/meter)		Measure Distan (meter	се	Detector
	Above 1GHz	7	500		3		Average
	Above IGIIz		500	00	3		Peak
	For radiated emis	ssions belo	w 30N	ИНz			
	Di	stance = 3m				Compu	iter
Test setup:	EUT	Turn table	und Plane) [Amplifier	
	30MHz to 1GHz		_			_	
(.61)	(,(3			.G`)		(.0

PASS

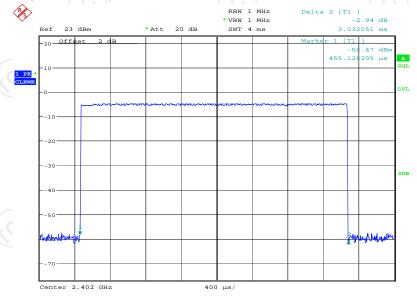
Test results:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

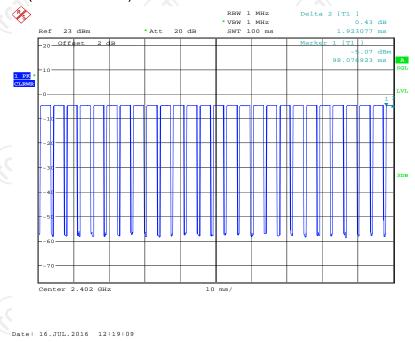
6.11.2. Test Instruments

Report No.: TCT160712E017

	Radiated Em	ission Test Si	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 11, 2016
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Sep. 11, 2016
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016
Antenna Mast	ccs	CC-A-4M	N/A	N/A
Coax cable	TCT	RE-low-01	N/A	Sep. 11, 2016
Coax cable	тст	RE-high-02	N/A	Sep. 11, 2016
Coax cable	TCT	RE-low-03	N/A	Sep. 11, 2016
Coax cable	тст	RE-high-04	N/A	Sep. 11, 2016
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.11.3. Test Data


Duty cycle correction factor for average measurement

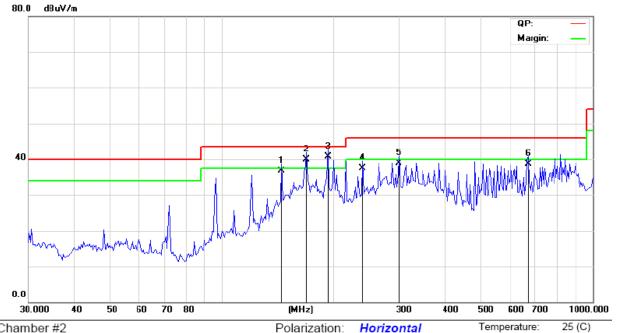
DH5 on time (One Pulse) Plot on Channel 00

Date: 16.JUL.2016 12:14:00

DH5 on time (Count Pulses) Plot on Channel 00

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = (3.032*26+1.923)/100=0.80599
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -1.87dB
- 3. DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-1.87dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

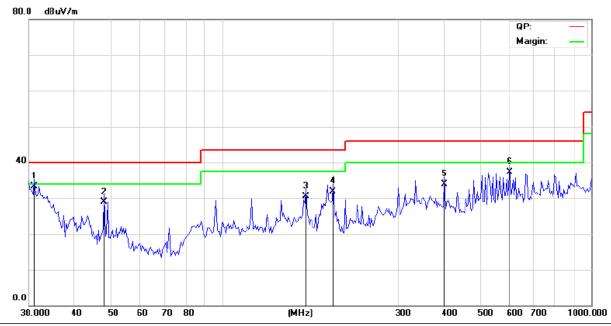

Humidity:

54 %

Please refer to following diagram for individual

Below 1GHz

Horizontal:


Site Chamber #2 Polarization: Horizontal
Limit: FCC Part 15B Class B RE_3 m Power: DC 3.7V

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		144.7898	53.26	-16.47	36.79	43.50	-6.71	QP	
2	İ	168.9970	53.96	-14.10	39.86	43.50	-3.64	QP	
3	*	193.1365	52.49	-11.84	40.65	43.50	-2.85	QP	
4		240.1442	46.72	-9.31	37.41	46.00	-8.59	QP	
5		300.6988	46.60	-7.71	38.89	46.00	-7.11	QP	
6		669.9523	38.74	-0.01	38.73	46.00	-7.27	QP	

Site Chamber #2 Polarization: Vertical Temperature: 25 (C)
Limit: FCC Part 15B Class B RE_3 m Power: DC 3.7V Humidity: 54 %

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
-	1	×	31.0728	46.73	-13.43	33.30	40.00	-6.70	QP	
-	2		48.0392	39.77	-10.84	28.93	40.00	-11.07	QP	
-	3		168.9970	44.55	-14.10	30.45	43.50	-13.05	QP	
-	4		200.0432	42.72	-10.82	31.90	43.50	-11.60	QP	
-	5		401.1050	39.21	-5.35	33.86	46.00	-12.14	QP	
-	6		602.9287	37.47	-0.23	37.24	46.00	-8.76	QP	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

Above 1GHz

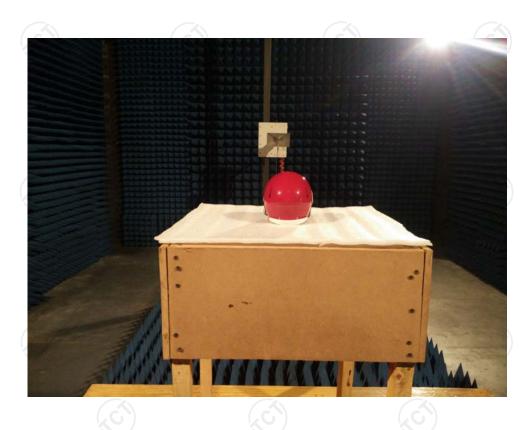
Modulation	Type: GF	SK							
Low chann	el: 2402 M	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	AV			Margin (dB)
2390	Н	44.03		-8.27	35.76		74	54	-18.24
4804	Н	44.23		0.66	44.89		74	54	-9.11
7206	Н	34.24		9.5	43.74		74	54	-10.26
	,CH)		- (-, G)		(·C `} -		(, C)	
2390	V	43.68		-8.27	35.41		74	54	-18.59
4804	V	45.37		0.66	46.03		74	54	-7.97
7206	V	40.26		9.5	49.76		74	54	-4.24
O')	V			//	ر (د		(C-)		-4/0
	Elow chann Frequency (MHz) 2390 4804 7206 2390 4804	Elow channel: 2402 M Frequency (MHz) Ant. Pol. H/V 2390 H 4804 H 7206 H H 2390 V 4804 V 7206 V	Prequency (MHz) Ant. Pol. H/V reading (dBμV) 2390 H 44.03 4804 H 44.23 7206 H 34.24 H 2390 V 43.68 4804 V 45.37 7206 V 40.26	Low channel: 2402 MHz Frequency (MHz) Ant. Pol. H/V Peak reading (dBμV) AV reading (dBuV) 2390 H 44.03 4804 H 44.23 7206 H 34.24 H 4804 V 43.68 4804 V 45.37 7206 V 40.26	Low channel: 2402 MHz Frequency (MHz) Ant. Pol. H/V Peak reading (dBμV) AV reading (dBuV) Correction Factor (dB/m) 2390 H 44.03 -8.27 4804 H 44.23 0.66 7206 H 34.24 9.5 H 2390 V 43.68 -8.27 4804 V 45.37 0.66 7206 V 40.26 9.5	Frequency (MHz)	Correction Emission Level Peak reading (dBμV) (dBμV/m) (dBμV/m)	Frequency (MHz)	Frequency (MHz)

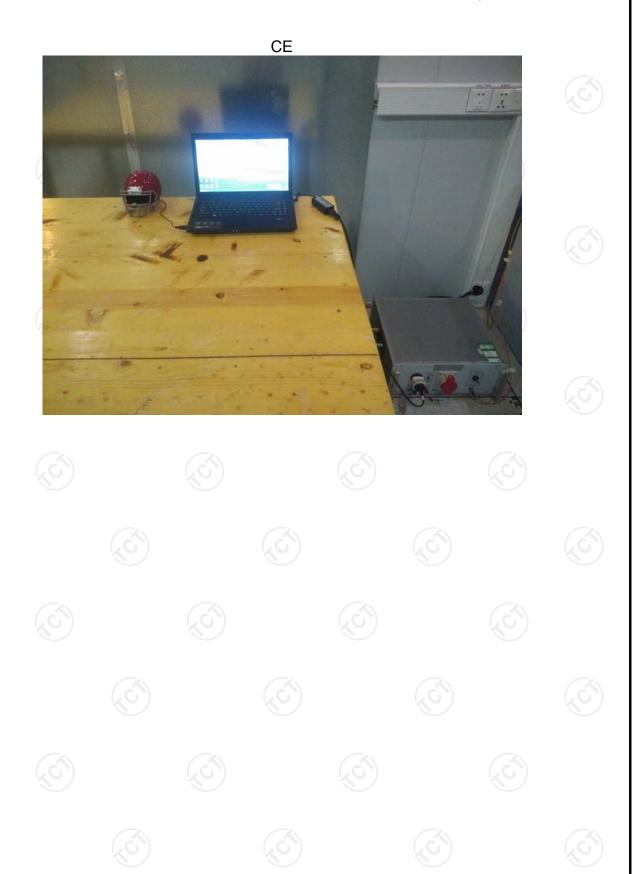
Middle cha	Middle channel: 2441 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Λ\/	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4882	Ŧ	41.59		0.99	42.58	<u> </u>	74	54	-11.42		
7323	Н	38.72	-	9.87	48.59		74	54	-5.41		
	Н		-		-		I				
									(ć.		
4882	V	42.79		0.99	43.78		74	54	-10.22		
7323	V	39.07		9.87	48.94		74	54	-5.06		
	V										

High chann	nel: 2480 N	ЛHz	(.G			.Ġ`\\		(G)	
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	I	45.74		-7.83	37.91		74	54	-16.09
4960	Н	47.77		1.33	49.1		74	54	-4.9
7440	Н	39.77		10.22	49.99		74	54	-4.01
	Н								
2483.5	V	48.11		-7.83	40.28	\	74	54	-13.72
4960	CV	47.03	-4,0	1.33	48.36	(O-)	74	54	-5.64
7440	V	39.23		10.22	49.45	<u></u>	74	54	-4.55
	V								

Note:

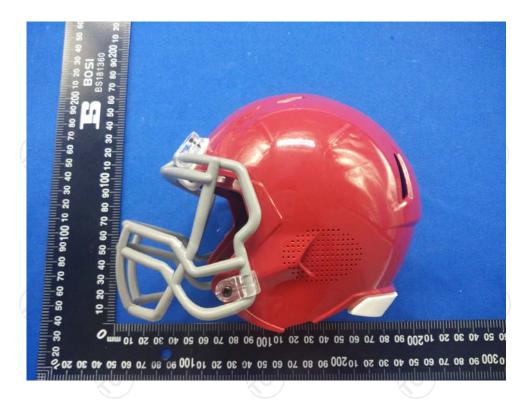
- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.


Page 50 of 59

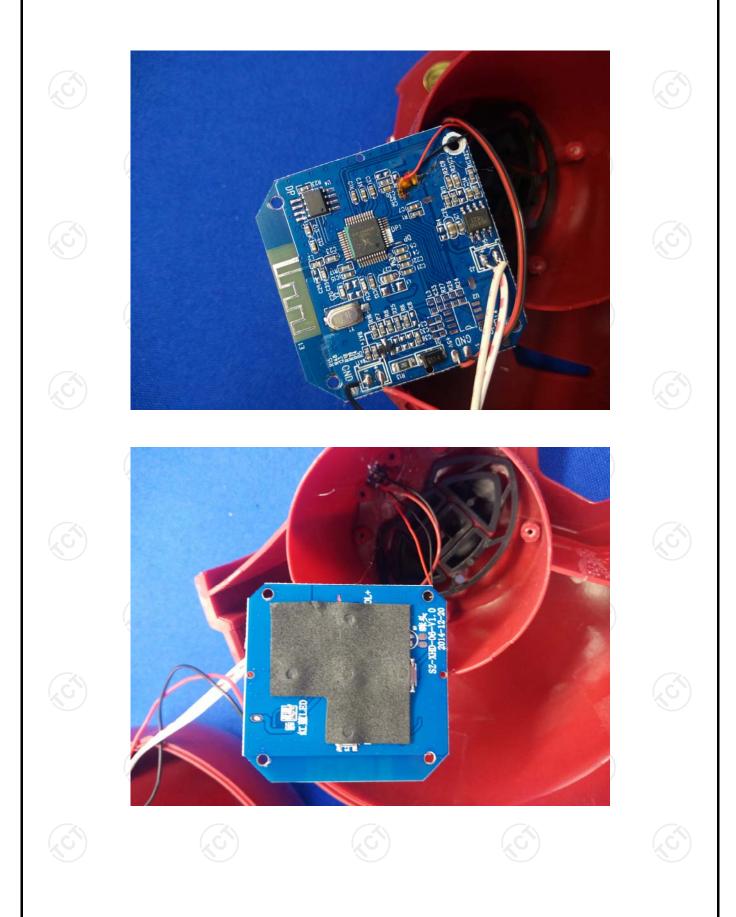

Appendix A: Photographs of Test Setup

Radiated Emission

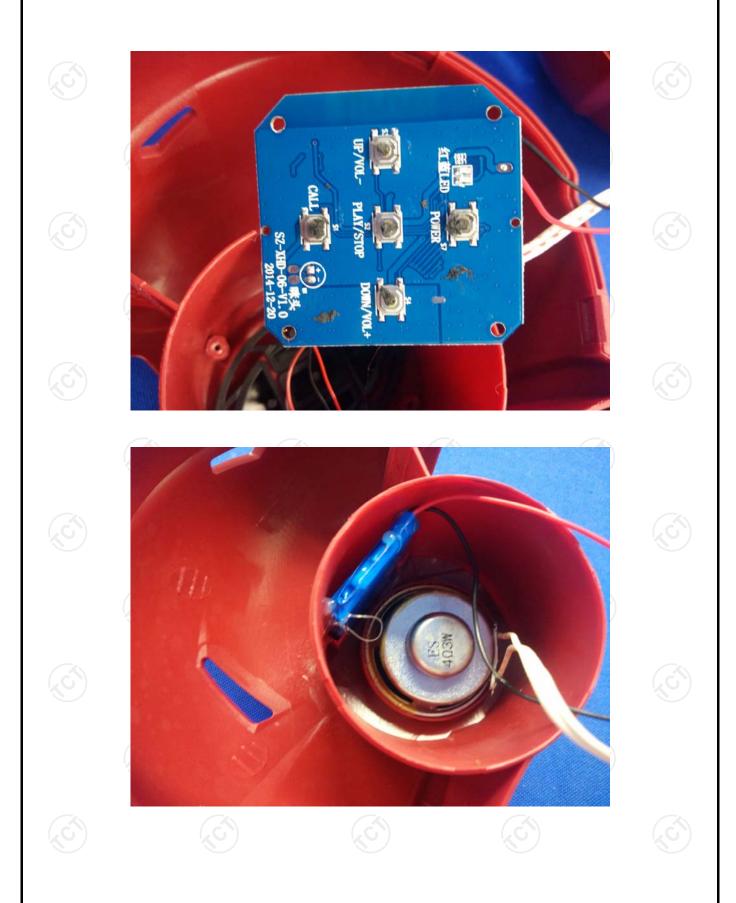
Appendix B: Photographs of EUT Model: SM-37534 External Photos

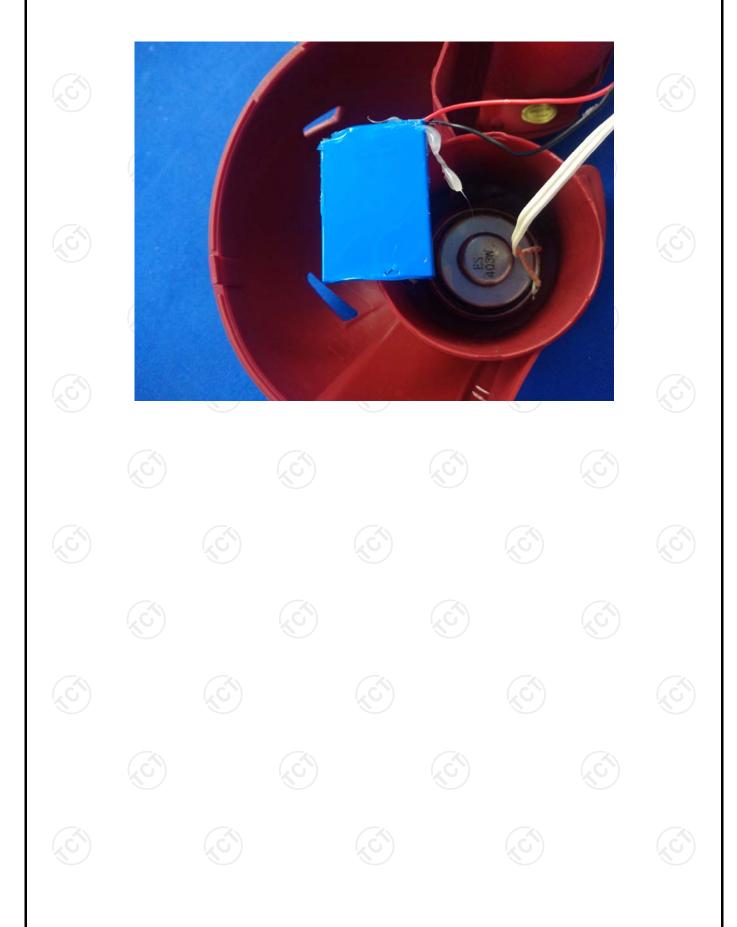


TCT通测检测
TESTING CENTRE TECHNOLOGY



Model: SM-37534 Internal Photos





TCT通测检测 TESTING CENTRE TECHNOLOGY

