

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Kami Secure Home Motion Sensor

MODEL NUMBER: YNS.3018

PROJECT NUMBER: 4788825511

REPORT NUMBER: 4788825511-6

FCC ID: 2AFIB-YNS3018

IC: 20436-YNS3018

ISSUE DATE: Mar. 6, 2019

Prepared for

Shanghai Xiaoyi Technology Co., Ltd.

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

REPORT No.: 4788825511-6 Page 2 of 60

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	03/06/2019	Initial Issue	

Page 3 of 60

	Summary of Test Results						
Clause	Test Items	FCC/IC Rules	Test Results				
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass				
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass				
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass				
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass				
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9&8.10	Pass				
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass				
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass				

Remark:

¹⁾ The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C, ISED RSS-GEN Issue 5 and ISED RSS-247 Issue 2> when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	. А	TTESTATION OF TEST RESULTS	5
2.	. Т	EST METHODOLOGY	6
3.	. F	ACILITIES AND ACCREDITATION	6
4.	. С	ALIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	. Е	QUIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	MAXIMUM OUTPUT POWER	8
	5.3.	CHANNEL LIST	9
	5.4.	TEST CHANNEL CONFIGURATION	9
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	9
	5.7.	TEST ENVIRONMENT	10
	5.8.	DESCRIPTION OF TEST SETUP	11
6.	. M	IEASURING INSTRUMENT AND SOFTWARE USED	12
7.	. M	IEASUREMENT METHODS	13
		NTENNA PORT TEST RESULTS	
		NTENNA PORT TEST RESULTS	14
	. А	ON TIME AND DUTY CYCLE	1 4
	. A	ON TIME AND DUTY CYCLE	14 14
	8.1. 8.2.	ON TIME AND DUTY CYCLE	14 16 19
	8.1. 8.2. 8.3.	ON TIME AND DUTY CYCLE	141619
8.	8.1. 8.2. 8.3. 8.4. 8.5.	ON TIME AND DUTY CYCLE	14161922
8.	8.1. 8.2. 8.3. 8.4. 8.5.	ON TIME AND DUTY CYCLE	1416192225
8.	8.1. 8.2. 8.3. 8.4. 8.5.	ON TIME AND DUTY CYCLE	1416192525
8.	8.1. 8.2. 8.3. 8.4. 8.5. R	NTENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	141922253843
8.	8.1. 8.2. 8.3. 8.4. 8.5. R 9.1.	NTENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	14162225384347
8.	8.1. 8.2. 8.3. 8.4. 8.5. R 9.1. 9.2. 9.4.	ANTENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS RADIATED TEST RESULTS RESTRICTED BANDEDGE SPURIOUS EMISSIONS (1~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz SPURIOUS EMISSIONS 30M ~ 1 GHz	1416222538434753
9.	8.1. 8.2. 8.3. 8.4. 8.5. R 9.1. 9.2. 9.4. 9.5.	NTENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	1416222538475355

Page 5 of 60

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

Manufacturer Information

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

EUT Description

EUT Name: Kami Secure Home Motion Sensor

Model: YNS.3018 Sample Number: 2008942

Sample Received Date: January 7, 2019
Date of Tested: Jan. 7~ Mar. 4, 2019

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 5	PASS			

Tested By:	Check By:
	• · · · · · · · · · · · · · · · · · · ·

Kebo Zhang

kelo. Thurs.

Engineer Project Associate

Applientus

Shawn Wen Laboratory Leader

Shemy les

Approved By:

Stephen Guo

Laboratory Manager

Page 6 of 60

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 DTS Meas Guidance v05, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note:

- 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OATS.

Page 7 of 60

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Uncertainty for Conduction emission test	3.62dB
Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB
Uncertainty for Radiation Emission test (1GHz to 40GHz)(include Fundamental	5.78dB(1-18GHz)
emission)	5.23dB (18GHz-26Gz)
,	5.64dB (26GHz-40Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 60

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	Kami Secure Home Motion Sensor		
Model No.:	YNS.3018		
	Operation Frequency	Operation Frequency 2405	
Product Description	Modulation Type		Data Rate
	Modulation Type		O-QPSK
Channels Step:	Channels with 5MHz step		
Sample Type:	Fixed production		
Test power grade:	10(manufacturer declare)		
Test software of EUT:	SSCOM (manufacturer declare)		
Antenna Type:	Internal Antenna		
Antenna Gain:	2.0 dBi		
Power Supply	Battery DC 3.0V		

5.2. MAXIMUM OUTPUT POWER

Antenna	Mode	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)	
1	Zigbee	2405-2455	11-21	6.22	

Page 9 of 60

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	12	2410	13	2415	14	2420
15	2425	16	2430	17	2435	18	2440
19	2445	20	2450	21	2455		

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
Zigbee	CH 11, CH 16, CH 21	2405MHz, 2430MHz, 2455MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software SecureCRT					
Modulation Type	Transmit Antenna	Test Channel			
Woodilation Type	Number	LCH	MCH	HCH	
O-QPSK	1	5	5	5	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2405-2455	Internal Antenna	2.0

Test Mode	Transmit and Receive Mode	Description
Zigbee	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

Page 10 of 60

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	50 ~ 60%			
Atmospheric Pressure:	1025Pa			
Temperature	TN	23 ~ 28°C		
	VL	N/A		
Voltage:	VN	DC 3.0V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

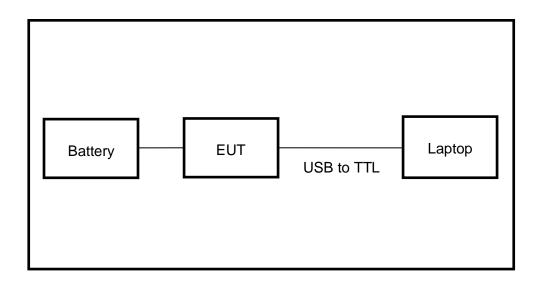
Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	E550c	N/A

REPORT No.: 4788825511-6

Page 11 of 60

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB to TTL	USB to TTL	USB	2.0 m	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in engineer mode with a software through a PC.

SETUP DIAGRAM FOR TEST

Page 11 of 60

Page 12 of 60

6. MEASURING INSTRUMENT AND SOFTWARE USED

<u> </u>	Conducted Emissions								
Llood	Equipment	Monufactur	1				1	Loot Col	Novt Col
Used	Equipment	Manufactur	Model		Seria		Upper Cal.	Last Cal.	Next Cal.
$\overline{\square}$	EMI Test Receiver	R&S	ESR	3	101	961	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019
\square	Two-Line V-Network	R&S	ENV2	16	101	983	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019
				So	ftware				
Used	Descri	ption		Mai	nufacti	ırer	Name	Version	
$\overline{\checkmark}$	Test Software for Cor	nducted distu	rbance		UL		Antenna port	Ver. 7.2	
	Radiated Emissions								
Used	Equipment	Manufactur	Model	No.	Seria	l No.	Upper Cal.	Last Cal.	Next Cal.
$\overline{\mathbf{V}}$	MXE EMI Receiver	KESIGHT	N9038	BA	MY56	4000	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019
	Hybrid Log Periodic Antenna	TDK	HLP-30	03C	130	960	Jan.09, 2016	Sept. 17, 2018	Sept. 17, 2021
$\overline{\mathbf{V}}$	Preamplifier	HP	8447	D	2944	0909	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019
V	EMI Measurement Receiver	R&S	ESR2	26	101	377	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019
	Horn Antenna	TDK	HRN-0	118	130	939	Jan. 09, 2016	Sept. 17,	Sept. 17, 2021
$\overline{\checkmark}$	High Gain Horn	Schwarzbe	BBHA-9		69			•	Aug. 11, 2019
	Preamplifier	TDK	PA-02-0	PA-02-0118		305- 966			Dec. 10, 2019
	Preamplifier	TDK	PA-02	PA-02-2 TR		·307- 003	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019
$\overline{\checkmark}$	Loop antenna	Schwarzbe	1519	1519B 00008		Mar. 26,	Mar. 26, 2016	Mar. 26, 2019	
				So	ftware				
Used	Descript	ion	Ма	nufa	cturer		Name	Version	
	Test Software for Rad	iated disturba	ance	Fara	ad		EZ-EMC	Ver. UL-3A1	
			Oth	er ir	strum	ents			
Used	Equipment	Manufactur er	Model	No.	Seria	l No.	Upper Cal.	Last Cal.	Next Cal.
	Spectrum Analyzer	Keysight	N9030	DΑ	MY55		Dec.12,2017	Dec.10,2018	Dec.10,2019
V	Power Sensor	Keysight	U2021	U2021XA		'0300 4	Dec.12,2017	Dec.10,2018	Dec.10,2019
	Power Meter	Keysight	N191	1A	MY55		Dec.12,2017	Dec.11,2018	Dec.10,2019
V	High Pass Filter	Wainwright	WHKX 5850-69 1800-49	500-	4	1	Dec.12,2017	Dec.11,2018	Dec.10,2019
	Band Reject Filter	Wainwright	WRCJ\ 5440-54 5725-57	470- 755-	1		Dec.12,2017	Dec.11,2018	Dec.10,2019

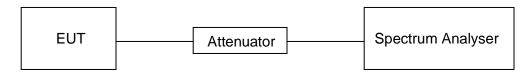
7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6 dB Bandwidth	KDB 558074 D01 DTS Meas Guidance v05	8.2
2	Peak Output Power	KDB 558074 D01 DTS Meas Guidance v05	8.3.1.3
3	Power Spectral Density	KDB 558074 D01 DTS Meas Guidance v05	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.6
6	Band-edge	KDB 558074 D01 DTS Meas Guidance v05	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 14 of 60

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
Zigbee	100.3	100.3	1	100	0	100	0.01

Note:

Duty Cycle Correction Factor=10log(1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time (transmit duration)

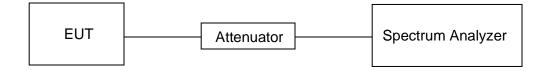
If that calculated VBW is not available on the analyzer then the next higher value should be used.

Page 16 of 60

8.2. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6dB Bandwidth	>= 500KHz	2400-2483.5		
ISED RSS-Gen Clause 6.6	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5		


TEST PROCEDURE

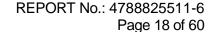
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
	For 6 dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
1V/BVV	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT


Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 30 V

RESULTS

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result
Low	1.682	2.2515	Pass
Middle	1.663	2.2626	Pass
High	1.652	2.2687	Pass

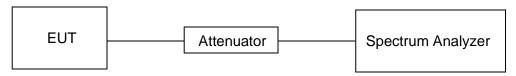
TEST GRAPHS

8.3. PEAK CONDUCTED OUTPUT POWER

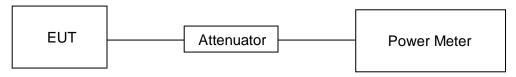
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (e)	Peak Output Power	1 watt or 30dBm	2400-2483.5

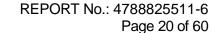
TEST PROCEDURE


Connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	≥DTS bandwidth	
VBW	≥3 × RBW	
Span	3 x RBW	
Trace	Max hold	
Sweep time	Auto couple.	


Allow trace to fully stabilize and use peak marker function to determine the peak amplitude level.

TEST SETUP

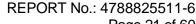

for peak power measurement:

for average power measurement:

Page 19 of 60

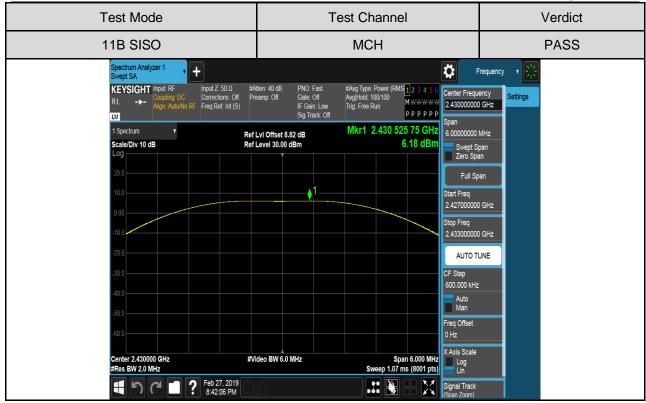
TEST ENVIRONMENT

Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V


RESULTS

Test	Maximum Conducted Output Power (PK)	Dooult
Channel	(dBm)	Result
Low	6.22	Pass
Middle	6.18	Pass
High	6.21	Pass

Test	Maximum Conducted Output Power (AV)	Dogult
Channel	(dBm)	Result
Low	6.10	Pass
Middle	6.17	Pass
High	6.19	Pass


TEST GRAPHS

Page 21 of 60

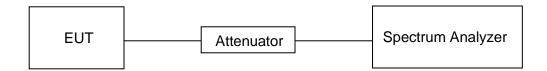
Page 21 of 60

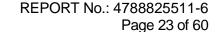
8.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			. , ,
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

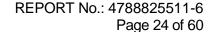

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT


Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V

RESULTS TABLE

Test Channel	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
Low	2.134	8	PASS
Middle	2.116	8	PASS
High	2.207	8	PASS

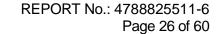
TEST GRAPHS:

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

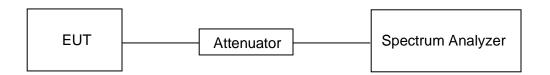
CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2		
Section Test Item Limit		
CFR 47 FCC §15.247 (d) Conducted Bandedge and Spurious Emissions		at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

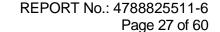
Center Frequency	The center frequency of the channel under test		
Detector	Peak		
RBW	100KHz		
VBW	≥3 × RBW		
Span	1.5 x DTS bandwidth		
Trace	Max hold		
Sweep time	Auto couple.		

Use the peak marker function to determine the maximum PSD level.


12090	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100KHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

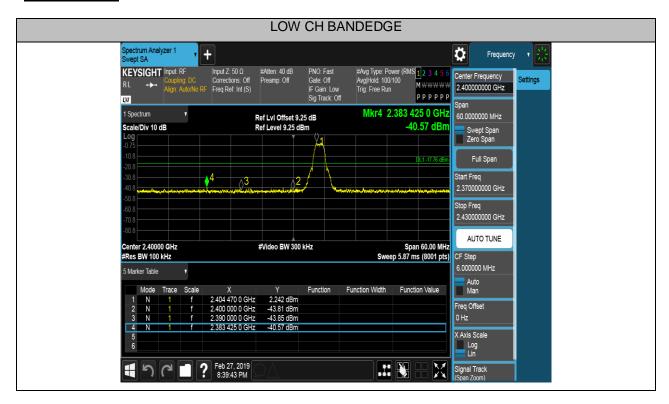
Use the peak marker function to determine the maximum amplitude level.

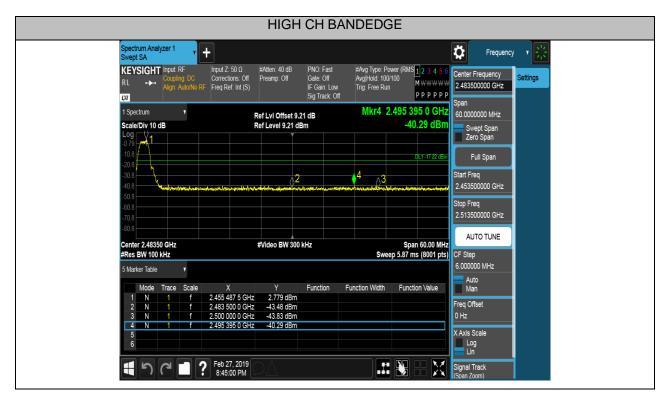
TEST SETUP


TEST ENVIRONMENT

Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V

Part I: CONDUCTED BANDEDGE


RESULTS TABLE


Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
Zigbee	LCH	2.242	-40.573	-19.91	PASS
	HCH	2.779	-40.294	-19.62	PASS

TEST GRAPHS

Page 27 of 60

Page 28 of 60

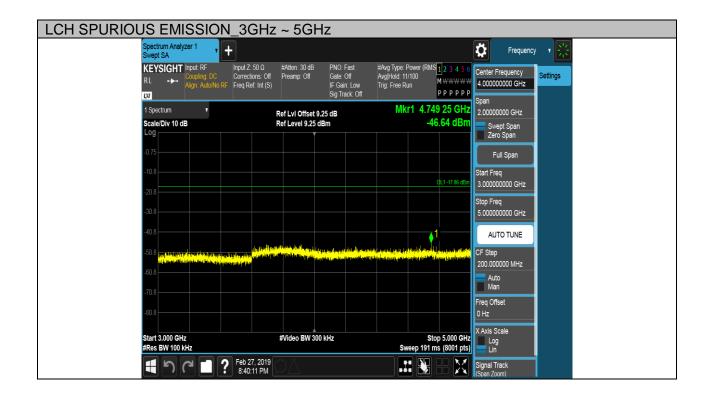
Part II: CONDUCTED SPURIOUS EMISSIONS

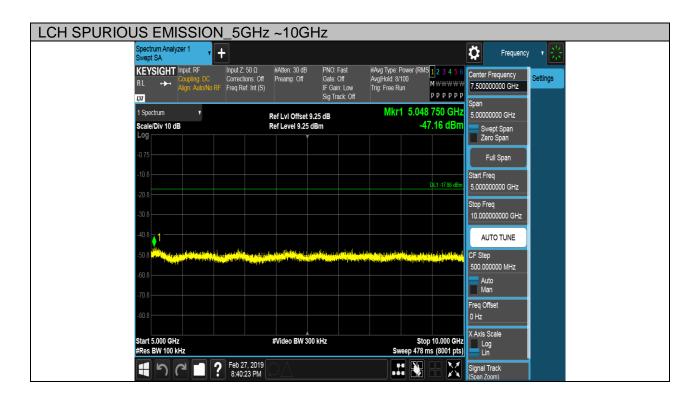
RESULTS TABLE

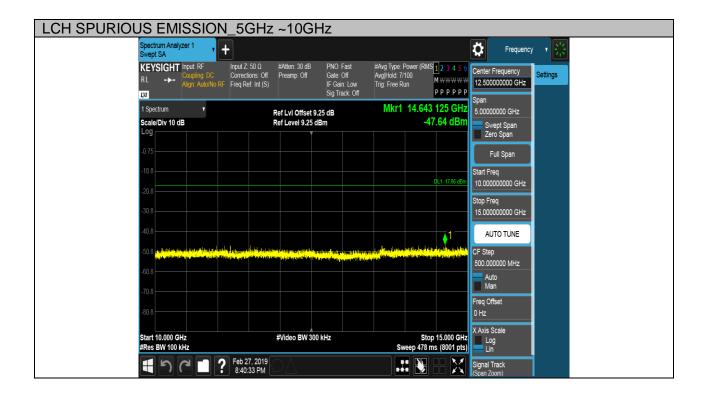
Test Mode	Channel	Pref(dBm)	Puw(dBm)	Verdict
Zigbee	LCH	2.14	<limit< td=""><td>PASS</td></limit<>	PASS
	MCH	2.10	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	2.04	<limit< td=""><td>PASS</td></limit<>	PASS

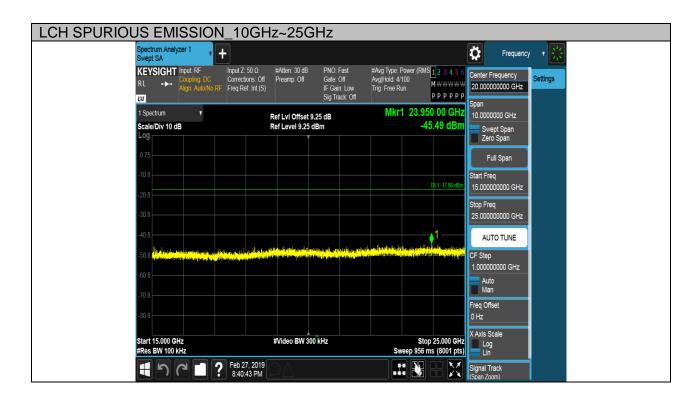
TEST GRAPHS

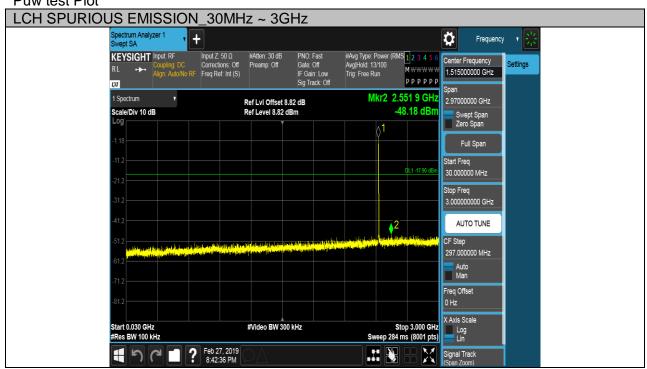
Pref test Plot



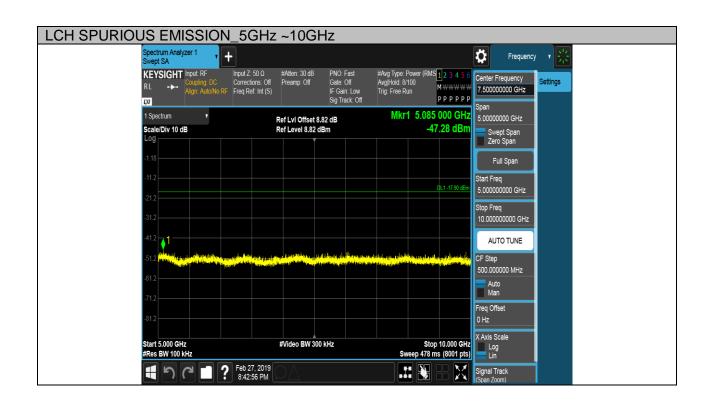

Puw test Plot


Page 29 of 60

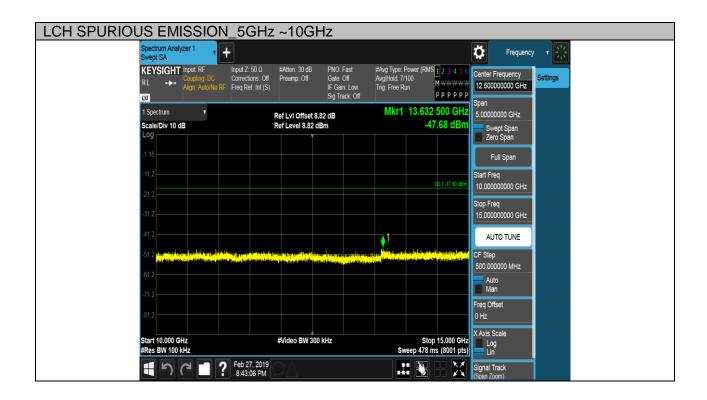


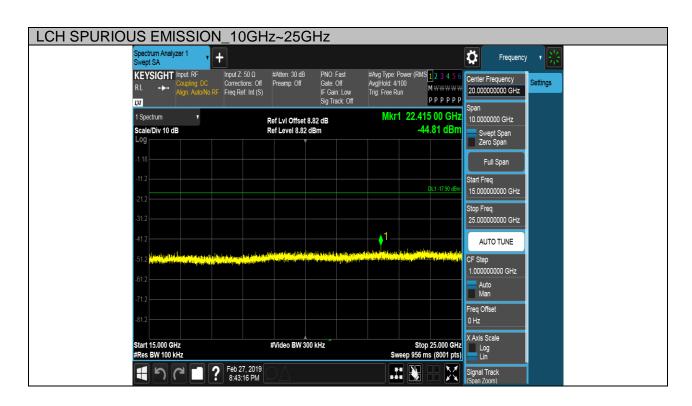


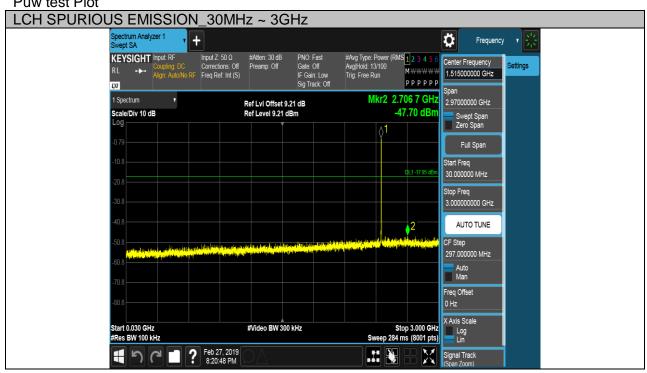
Pref test Plot



Puw test Plot

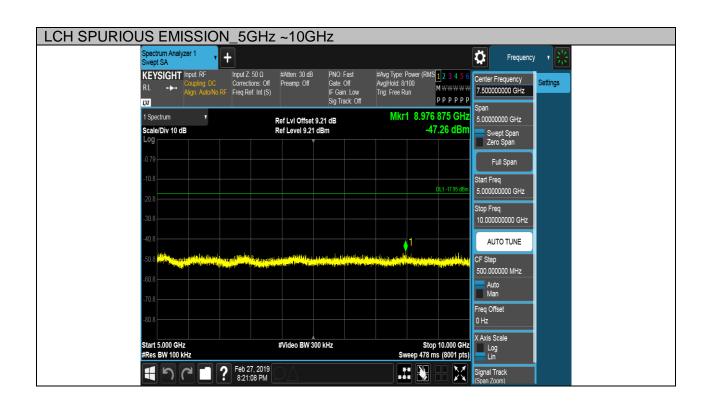


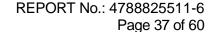




Pref test Plot

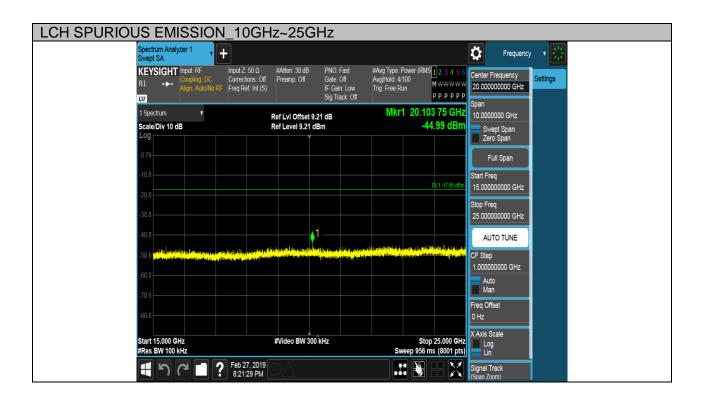
Puw test Plot




LCH SPURIOUS EMISSION_3GHz ~ 5GHz Spectrum Analyzer 1 Swept SA Ö Frequency #Avg Type: Power (RMS 1 2 3 4 5 Avg|Hold: 11/100 Trig. Free Run Input Z: 50 Ω KEYSIGHT Input RF PNO: Fast Center Frequency Gate: Off IF Gain: Low Settings 4.000000000 GHz PPPPPP ĻXI 1 Spectrum Mkr1 3.760 00 GHz 2.00000000 GHz Ref Lvl Offset 9.21 dB -46.29 dBm Scale/Div 10 dB Ref Level 9.21 dBm Swept Span Zero Span Start Freq 3.000000000 GHz Stop Freq 5.000000000 GHz AUTO TUNE CF Step 200.000000 MHz Auto Man Freq Offset X Axis Scale Stop 5.000 GHz Start 3.000 GHz #Video BW 300 kHz Log Lin Sweep 191 ms (8001 pts)

₩

Peb 27, 2019 8:20:57 PM


5 6 7

REPORT No.: 4788825511-6

Page 38 of 60

9. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

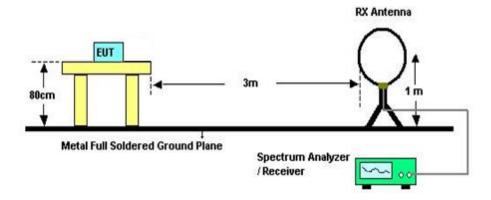
Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

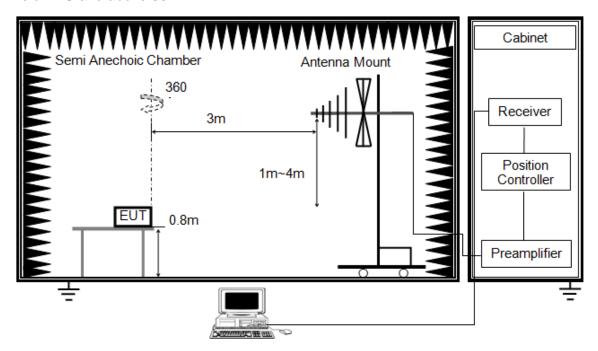

Frequency (MHz)	dB(uV/m) (at 3 meters)		
Frequency (Miriz)	Peak	Average	
Above 1000	74	54	

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

TEST SETUP AND PROCEDURE

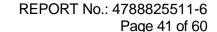
Below 30MHz

The setting of the spectrum analyser

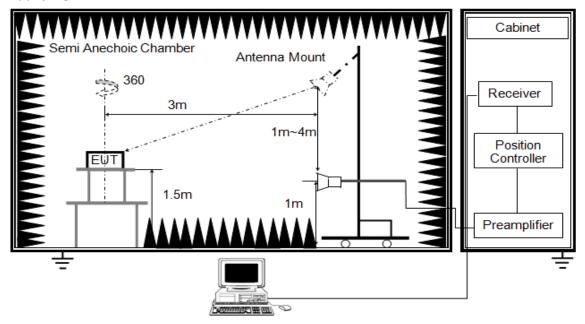

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

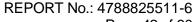
Page 39 of 60


Below 1G and above 30MHz

The setting of the spectrum analyser

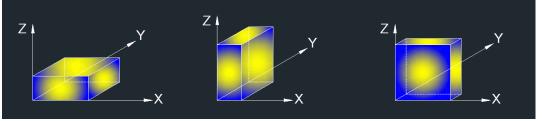

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

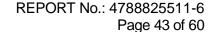

Above 1G

The setting of the spectrum analyser

RBW	1M
1\/B\/\/	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold


- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector. For the Duty Cycle and Correction Factor please refer to clause 8.1. ON TIME AND DUTY CYCLE.

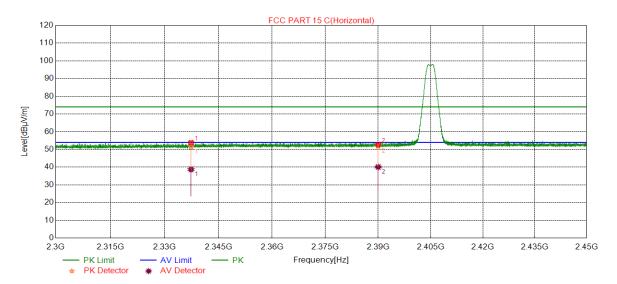
Page 42 of 60

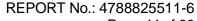

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT

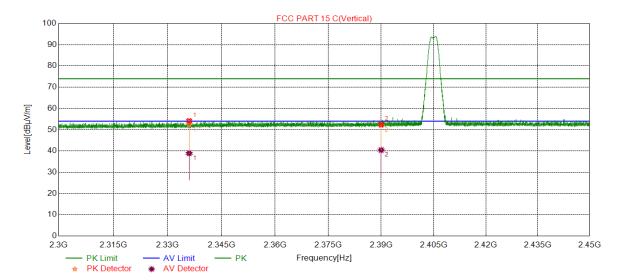
Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V

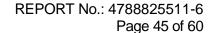

RESULTS


9.1. RESTRICTED BANDEDGE

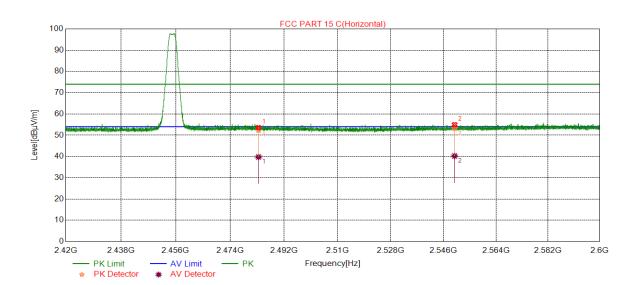
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	2337.3537	51.62	74.00	-22.38	Peak
l	2337.3337	38.69	54.00	-15.31	Average
2	2390.0000	51.86	74.00	-22.14	Peak
	2390.0000	40.10	54.00	-13.90	Average


- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10 Hz.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

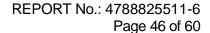

Page 44 of 60

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



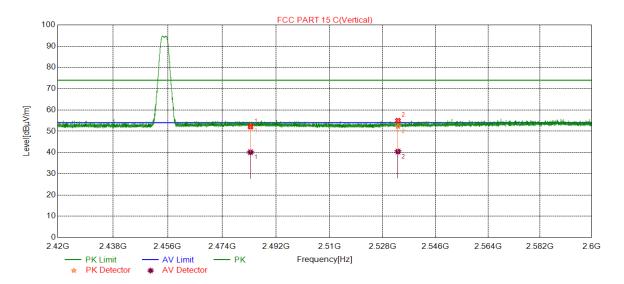
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	2336.0036	52.47	74.00	-21.53	Peak
'	2330.0030	38.90	54.00	-15.10	Average
2	2200 0000	52.13	74.00	-21.87	Peak
2 2390.0000		40.44	54.00	-13.56	Average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10 Hz.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
4	2483.5000	52.34	74.00	-21.66	Peak
I	2463.3000	39.76	54.00	-14.24	Average
2	2540 7750	53.15	74.00	-20.85	Peak
	2549.7750	40.24	54.00	-13.76	Average

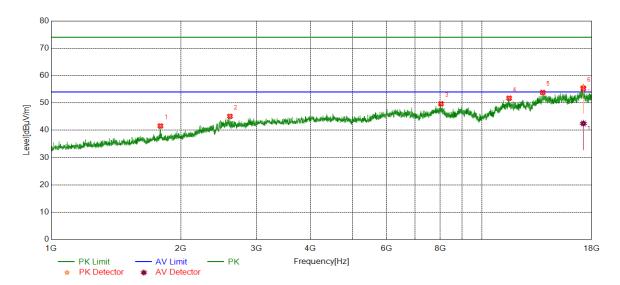

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10 Hz.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

1 ago 10 01 C

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	52.34	74.00	-21.66	Peak
I	2463.5000	40.13	54.00	-13.87	Average
2	2522 1772	52.31	74.00	-21.69	Peak
	2533.1773	40.43	54.00	-13.57	Average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10 Hz.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

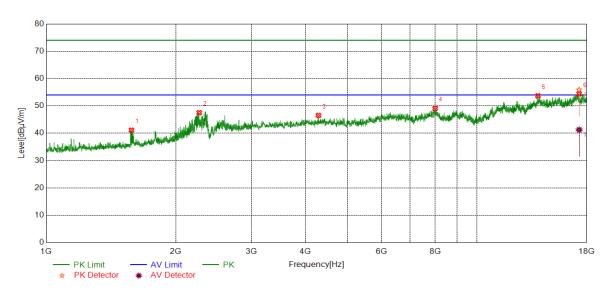


REPORT No.: 4788825511-6

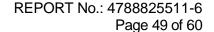
Page 47 of 60

9.2. SPURIOUS EMISSIONS (1~18GHz)

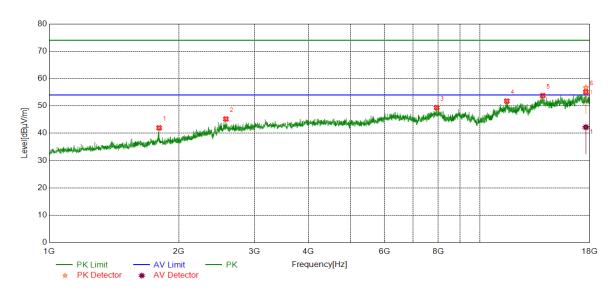
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
NO.	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Remark
1	1793.5979	41.55	74.00	-32.45			Peak
2	2601.2004	45.07	74.00	-28.93			Peak
3	8038.3397	49.66	74.00	-24.34			Peak
4	11566.4277	51.71	74.00	-22.29			Peak
5	13846.8078	53.82	74.00	-20.18			Peak
6	17202.3671	55.86	74.00	-18.14			Peak
0	17202.3071	42.46			54.00	-11.54	Average

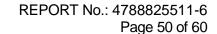
- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10Hz.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized Band was not corrected for BRF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



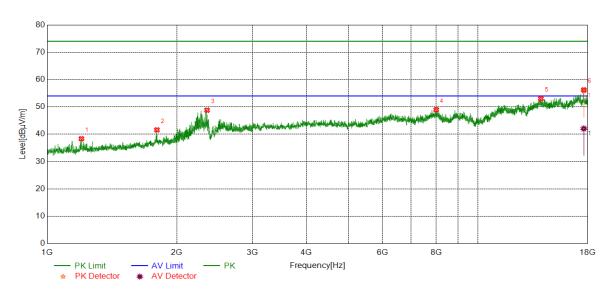
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
NO.	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Remark
1	1578.1927	41.13	74.00	-32.87			Peak
2	2267.0890	47.51	74.00	-26.49			Peak
3	4287.7146	46.51	74.00	-27.49		1	Peak
4	8003.3339	49.08	74.00	-24.92		1	Peak
5	13861.8103	53.69	74.00	-20.31		1	Peak
6	17277.3796	55.91	74.00	-18.09		1	Peak
0	17277.3790	41.25			54.00	-12.75	Average

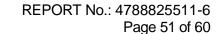
- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10Hz.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized Band was not corrected for BRF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



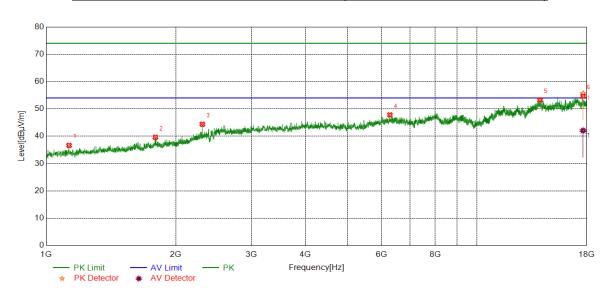
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)


No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
NO.	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Remark
1	1800.2668	41.96	74.00	-32.04			Peak
2	2572.5242	45.19	74.00	-28.81			Peak
3	7938.3231	49.37	74.00	-24.63			Peak
4	11548.9248	51.74	74.00	-22.26			Peak
5	13994.3324	53.77	74.00	-20.23			Peak
6	17627.4379	56.70	74.00	-17.30			Peak
0	17027.4379	42.19			54.00	-11.81	Average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10Hz.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized Band was not corrected for BRF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

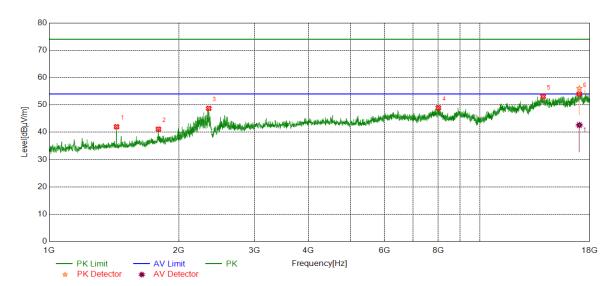


HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
NO.	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Remark
1	1201.4005	38.34	74.00	-35.66			Peak
2	1798.2661	41.59	74.00	-32.41			Peak
3	2351.1170	48.79	74.00	-25.21			Peak
4	8005.8343	48.96	74.00	-25.04			Peak
5	14004.3341	53.03	74.00	-20.97			Peak
6	17619.9367	55.91	74.00	-18.09		1	Peak
0	17019.9307	42.03			54.00	-11.97	Average

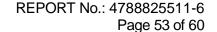
- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10Hz.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized Band was not corrected for BRF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



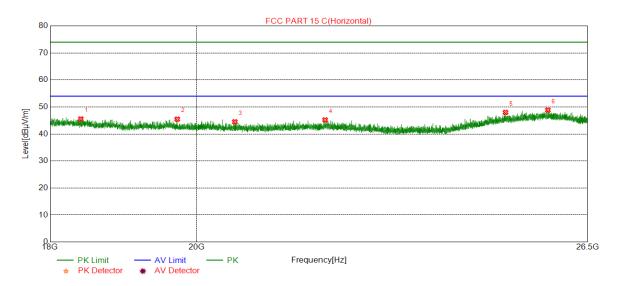
No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
NO.	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Remark
1	1130.7102	36.63	74.00	-37.37			Peak
2	1794.2648	39.61	74.00	-34.39			Peak
3	2305.7686	44.35	74.00	-29.65			Peak
4	6283.0472	47.80	74.00	-26.20			Peak
5	14016.8361	53.21	74.00	-20.79			Peak
6	17647.4412	55.70	74.00	-18.30		1	Peak
0	17047.4412	42.05			54.00	-11.95	Average

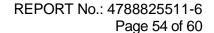
- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10Hz.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized Band was not corrected for BRF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



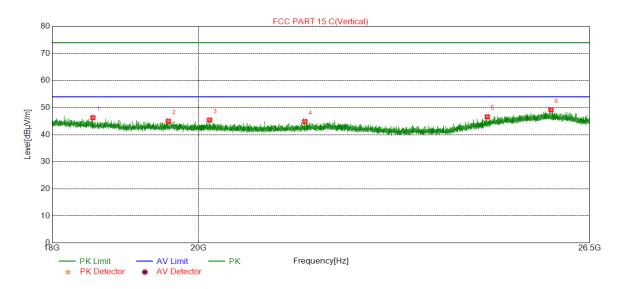
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
NO.	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Remark
1	1434.1447	42.00	74.00	-32.00			Peak
2	1794.2648	41.13	74.00	-32.87			Peak
3	2347.1157	48.72	74.00	-25.28			Peak
4	8010.8351	48.92	74.00	-25.08			Peak
5	14024.3374	53.05	74.00	-20.95			Peak
6	17017.2863	56.07	74.00	-17.93			Peak
0	17017.2003	42.60			54.00	-11.40	Average


- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. AVG: VBW=10Hz.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized Band was not corrected for BRF losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

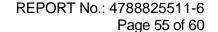

9.4. SPURIOUS EMISSIONS 18G ~ 26GHz

SPURIOUS EMISSIONS (LCH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
1	18402.0902	45.56	74.00	-28.44	54.00	-8.44	peak
2	19724.8225	45.47	74.00	-28.53	54.00	-8.53	peak
3	20559.6060	44.50	74.00	-29.50	54.00	-9.50	peak
4	21939.2939	45.19	74.00	-28.81	54.00	-8.81	peak
5	24980.8981	47.97	74.00	-26.03	54.00	-6.03	peak
6	25754.4754	48.83	74.00	-25.17	54.00	-5.17	peak

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Peak: Peak detector.
- 4. Pre-testing all test modes and all test channels, but only data of the worst case is shown in this test report.

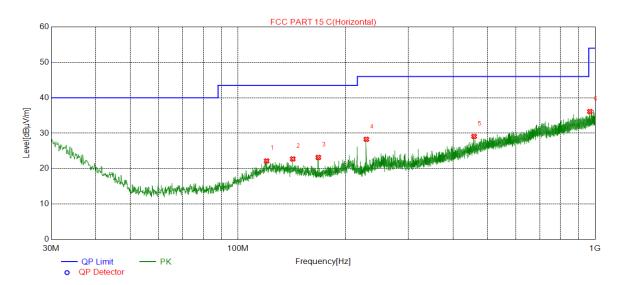
SPURIOUS EMISSIONS (LCH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

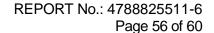


No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
1	18535.5536	46.29	74.00	-27.71	54.00	-7.71	peak
2	19570.9571	44.94	74.00	-29.06	54.00	-9.06	peak
3	20159.2159	45.40	74.00	-28.60	54.00	-8.60	peak
4	21589.9090	44.87	74.00	-29.13	54.00	-9.13	peak
5	24620.4620	46.60	74.00	-27.40	54.00	-7.40	peak
6	25774.0274	49.20	74.00	-24.80	54.00	-4.80	peak

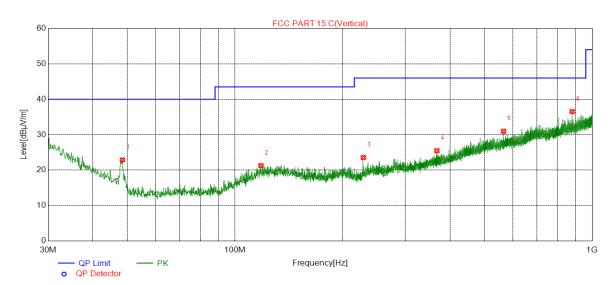
Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Peak: Peak detector.
- 4. Pre-testing all test modes and all test channels, but only data of the worst case is shown in this test report.


Note: All test mode has been tested, only the worst data record in the report

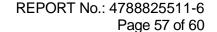

9.5. SPURIOUS EMISSIONS 30M ~ 1 GHz

SPURIOUS EMISSIONS (LCH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	120.3160	22.17	43.50	-21.33	QP
2	142.4342	22.74	43.50	-20.76	QP
3	167.9478	23.17	43.50	-20.33	QP
4	228.8699	28.28	46.00	-17.72	QP
5	458.3948	29.08	46.00	-16.92	QP
6	966.9197	36.11	54.00	-17.89	QP

- 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 3. Pre-testing all test modes and all test channels, but only data of the worst case is shown in this test report.

SPURIOUS EMISSIONS (LCH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

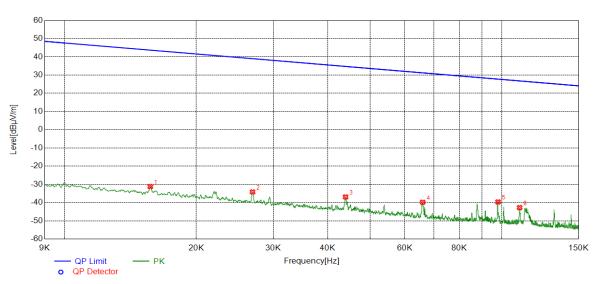


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	48.4318	22.90	40.00	-17.10	QP
2	118.2788	21.30	43.50	-22.20	QP
3	228.8699	23.57	46.00	-22.43	QP
4	367.5938	25.49	46.00	-20.51	QP
5	564.9115	30.98	46.00	-15.02	QP
6	879.5140	36.53	46.00	-9.47	QP

Note: 1. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

- 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 3. Pre-testing all test modes and all test channels, but only data of the worst case is shown in this test report.

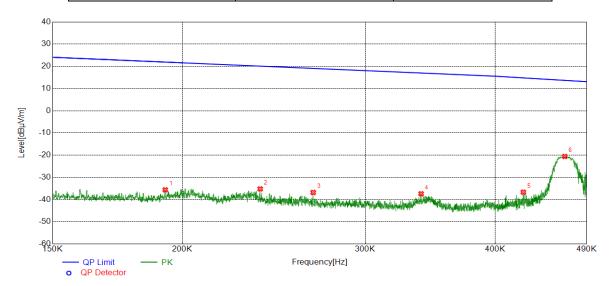
Note: All test mode has been tested, only the worst data record in the report



9.6. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (LCH CHANNEL, WORST-CASE CONFIGURATION)

Channel	Frequency Range	Verdict
MCH	9KHz~150KHz	PASS

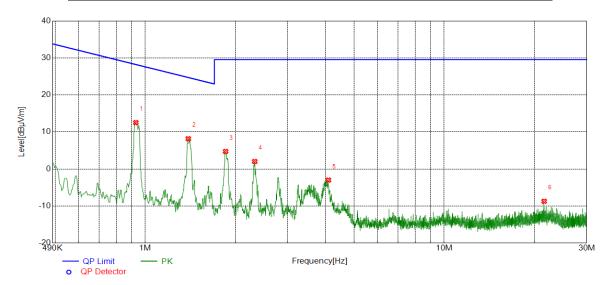

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0157	-31.22	43.67	-74.89	Peak
2	0.0269	-34.16	38.99	-73.15	Peak
3	0.0439	-36.91	34.75	-71.66	Peak
4	0.0659	-39.83	31.23	-71.06	Peak
5	0.0980	-39.65	27.78	-67.43	Peak
6	0.1098	-42.75	26.79	-69.54	Peak

Note:

- 1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 2. Pre-testing all test modes and all test channels, but only data of the worst case is shown in this test report.


Channel	Frequency Range	Verdict
MCH	150KHz~490KHz	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1925	-35.60	21.92	-57.52	Peak
2	0.2376	-35.19	20.09	-55.28	Peak
3	0.2672	-36.78	19.06	-55.84	Peak
4	0.3394	-37.36	16.99	-54.35	Peak
5	0.4257	-36.64	14.80	-51.44	Peak
6	0.4666	-20.59	13.68	-34.27	Peak


Note:

- 1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 2. Pre-testing all test modes and all test channels, but only data of the worst case is shown in this test report.

Channel	Frequency Range	Verdict
MCH	490KHz~30MHz	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.9297	12.53	28.24	-15.71	Peak
2	1.3931	8.17	24.72	-16.55	Peak
3	1.8565	4.74	29.54	-24.80	Peak
4	2.3228	2.03	29.54	-27.51	Peak
5	4.0994	-3.00	29.54	-32.54	Peak
6	21.5947	-8.72	29.54	-38.26	Peak

Note:

- 1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 2. Pre-testing all test modes and all test channels, but only data of the worst case is shown in this test report.

REPORT No.: 4788825511-6

Page 60 of 60

10. ANTENNA REQUIREMENTS

Applicable requirements

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT