

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Kami Secure Home Hub

MODEL NUMBER: YNS.1018

PROJECT NUMBER: 4788825511

REPORT NUMBER: 4788825511-1

FCC ID: 2AFIB-YNS1018

IC: 20436-YNS1018

ISSUE DATE: Mar. 6, 2019

Prepared for

Shanghai Xiaoyi Technology Co., Ltd.

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

U	

		Revision History	
Rev.	Issue Date	Revisions	Revised By
V0	03/06/2019	Initial Issue	

Summary of Test Results						
Clause	ause Test Items FCC/IC Rules Test Res					
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass			
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass			
3	3 Power Spectral Density FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)		Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass			
5 Radiated Bandedge and Spurious Emission		FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9&8.10	Pass			
6 Conducted Emission Test For AC Power Port		FCC Part 15.207 RSS-GEN Clause 8.8	Pass			
7 Antenna Requirement FCC Part 15.203 RSS-GEN Clause 6.8 Pass						
Remark: 1) The measurement result for the sample received is <pass> according to < CFR 47 FCC PART 15 SUBPART C, ISED RSS-GEN Issue 5 and ISED RSS-247 Issue 2> when <accuracy< td=""></accuracy<></pass>						

Method> decision rule is applied.

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	6
2. TE	ST METHODOLOGY	7
3. FA	CILITIES AND ACCREDITATION	7
4. CA	LIBRATION AND UNCERTAINTY	8
4.1.	MEASURING INSTRUMENT CALIBRATION	8
4.2.	CMEASUREMENT UNCERTAINTY	8
5. EQ	UIPMENT UNDER TEST	9
5.1.	DESCRIPTION OF EUT	9
5.2.	MAXIMUM OUTPUT POWER	9
5.3.	CHANNEL LIST	10
5.4.	TEST CHANNEL CONFIGURATION	10
5.5.	THE WORSE CASE CONFIGURATIONS	11
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	12
5.7.	DESCRIPTION OF TEST SETUP	13
6. ME	ASURING INSTRUMENT AND SOFTWARE USED	14
01 1112		
	ASUREMENT METHODS	15
7. ME	ASUREMENT METHODS	
7. ME		16
7. ME 8. AN	TENNA PORT TEST RESULTS	16 16
 7. ME 8. AN 8.1. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	16 16 19
 7. ME 8. AN[*] 8.1. 8.2. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH	16 16 19 27
 7. ME 8. AN 8.1. 8.2. 8.3. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH PEAK CONDUCTED OUTPUT POWER	16 16 19 27 30
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY	16
 7. ME 8. 1. 8.2. 8.3. 8.4. 8.5. 9. RA 9.1. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS. RESTRICTED BANDEDGE.	
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 9. RA 9.1. 9.1. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS. RESTRICTED BANDEDGE. 1. 802.11b MODE	
 7. ME 8. 1. 8.2. 8.3. 8.4. 8.5. 9. RA 9.1. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS. RESTRICTED BANDEDGE. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE	
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 9. RA 9.1. 9.1. 9.1. 9.1. 9.1. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS. RESTRICTED BANDEDGE. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11n HT40 MODE	16 19 27 30 38 69 75 75 79 83 87
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 9. RA 9.1. 9.1. 9.1. 9.2. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS. RESTRICTED BANDEDGE. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11n HT40 MODE SPURIOUS EMISSIONS (1~18GHz)	
 7. ME 8. AN 8.1. 8.2. 8.3. 8.4. 8.5. 9. RA 9.1. 9.1. 9.1. 9.1. 9.1. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS. RESTRICTED BANDEDGE. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11n HT40 MODE SPURIOUS EMISSIONS (1~18GHz). 1. 802.11b MODE	
 7. ME 8. AN 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 9. RA 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 2. 9. 2. 	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 5. SPURIOUS EMISSIONS (1~18GHz). 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT40 MODE 3. 802.11n HT40 MODE 3. 802.11n HT40 MODE 3. 802.11n HT40 MODE	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	1 490 0 01 120
9.3. SPURIOUS EMISSIONS (18~25GHz)	
9.3.1. 802.11G MODE	
9.4. SPURIOUS EMISSIONS (0.03 ~ 1 GHz)	
9.4.1. 802.11G MODE	
9.5. SPURIOUS EMISSIONS BELOW 30M	
9.5.1. 802.11G MODE	119
0. AC POWER LINE CONDUCTED EMISSIONS	122
1. ANTENNA REQUIREMENTS	125

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Shanghai Xiaoyi Technology Co., Ltd.
Address:	6F, Building E, No. 2889, Jinke Road Shanghai, China
Manufacturer Information	
Company Name:	Shanghai Xiaoyi Technology Co., Ltd.
Address:	6F, Building E, No. 2889, Jinke Road Shanghai, China
EUT Description	
Product Name	Kami Secure Home Hub
Model Name	YNS.1018
Sample Number	2008942
Data of Receipt Sample	January 7, 2019
Date Tested	Jan. 7~ Mar. 4, 2019

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 5	PASS			

Tested By:

Buny Verry

Denny Huang Engineer Project Associate Approved By:

bephen buo

Stephen Guo Laboratory Manager Check By:

Shemmy les

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 DTS Meas Guidance v05, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911 D01 Multiple Transmitter Output v02r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject
Accreditation Certificate	to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2 : For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OATS.

Note 3 : The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. CMEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item Uncertainty			
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18Gz)		
	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	Kami Secure Hor	ne Hub	
Model No.:	YNS.1018		
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz		
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 & HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)		
Channel Number:	IEEE 802.11b/g, IEEE 802.11n(HT20): 11 Channels IEEE 802.11n(HT40): 7 Channels		
Channels Step:	Channels with 5MHz step		
Sample Type:	Fixed production		
Test power grade:	0A		
Test software of EUT:	QA Tool (manufacturer declare)		
Antenna Type:	Internal Antenna		
Antenna Gain:	1.91dBi		
Power Supply	Adapter Model: A8-501000 INPUT:100-240V~,50/60Hz, 0.2 Max OUTPUT:5V 1A		

5.2. MAXIMUM OUTPUT POWER

Frequency Range (MHz)	Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max PK Conducted Power- Antenna 1 (dBm)
2412-2462	1	IEEE 802.11B	1-11[11]	15.81
2412-2462	1	IEEE 802.11G	1-11[11]	21.68
2412-2462	1	IEEE 802.11nHT20	1-11[11]	21.40
2422-2452	1	IEEE 802.11nHT40	3-9[7]	19.88

5.3. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

Channel List for 802.11n (40 MHz)								
Channel	Frequency (MHz)	Channel i		Channel Frequency (MHz)		Channel	Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452	
4	2427	6	2437	8	2447			

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency		
WIFI TX (802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz		
WIFI TX (802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz		
WIFI TX (802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz		
WIFI TX (802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz		

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	/are			(cart			
	Transmit		Test Channel					
Modulation Mode	Antenna	NCB: 20MHz			NCB: 40MHz			
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	0A	0A	0A	N/A			
802.11g	1	0A	0A	0A				
802.11n HT20	1	0A	0A	0A				
802.11n HT40	1		N/A		0A	0A	0A	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	
1	2400-2483.5	Internal Antenna	1.91	

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna.
IEEE 802.11N (HT20) SISO	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna.
IEEE 802.11N (HT40) SISO	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna.

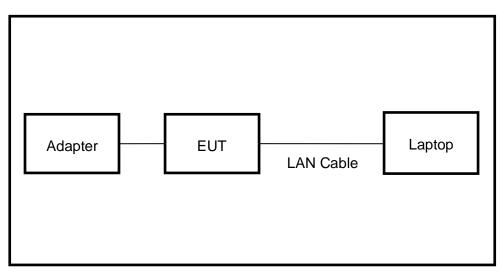
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

ltem	Equipment	Brand Name	Model Name	FCC ID
1	Laptop	ThinkPad	E550c	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	LAN	LAN	N/A	2m	N/A


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

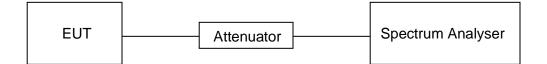
6. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions										
Used					Upper Cal.	Last Cal.	Next Cal.				
	EMI Test Receiver	R&S	ESR3		1019				Dec. 10, 2019		
$\overline{\checkmark}$	Two-Line V-Network	R&S	ENV216		1019				Dec. 10, 2019		
	Software										
Used	Descri	ption		Mai	nufactu	irer	Name	Version			
\checkmark	Test Software for Cor	nducted distu	rbance		UL		Antenna port	Ver. 7.2			
	Radiated Emissions										
Used	Equipment	Manufactur	Model	No.	Seria	l No.	Upper Cal.	Last Cal.	Next Cal.		
\checkmark	MXE EMI Receiver	KESIGHT	N903	8A	MY56	4000	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019		
V	Hybrid Log Periodic Antenna	TDK	HLP-30	03C	1309	960	Jan.09, 2016	Sept. 17, 2018	Sept. 17, 2021		
\checkmark	Preamplifier	HP	8447	D	2944A	0909	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019		
	EMI Measurement Receiver	R&S	ESR	26	101:	377	Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019		
\checkmark	Horn Antenna	TDK	HRN-0	118	1309	939	Jan. 09, 2016	Sept. 17,	Sept. 17, 2021		
\checkmark	High Gain Horn	Schwarzbe	BBHA-9		69				Aug. 11, 2019		
\checkmark	Preamplifier	TDK	PA-02-0118		-TRS 000				Dec. 10, 2019		
\checkmark	Preamplifier	TDK	PA-02	2-2	TRS-307- 00003		Dec.12,2017	Dec. 10, 2018	Dec. 10, 2019		
\checkmark	Loop antenna	Schwarzbe	1519	B	000		Mar. 26,	Mar. 26, 2016	Mar. 26, 2019		
				So	ftware						
Used	Descript	ion	Ма	nufa	cturer		Name	Version			
\checkmark	Test Software for Rad	iated disturba	ance	Fara	ad		EZ-EMC	Ver. UL-3A1			
			Oth	ner ir	strum	ents					
Used	Equipment	Manufactur er	Model	No.	Seria	l No.	Upper Cal.	Last Cal.	Next Cal.		
V	Spectrum Analyzer	Keysight	N903	0A	MY55 12		Dec.12,2017	Dec.10,2018	Dec.10,2019		
V	Power Sensor	Keysight	U2021	XA	MY57 04		Dec.12,2017	Dec.10,2018	Dec.10,2019		
V	Power Meter	Keysight	N1911A		MY55 24		Dec.12,2017	Dec.11,2018	Dec.10,2019		
	High Pass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS		4		Dec.12,2017	Dec.11,2018	Dec.10,2019		
	Band Reject Filter	Wainwright	WRCJ 5440-5 5725-5 60S	470- 755-	1		Dec.12,2017	Dec.11,2018	Dec.10,2019		

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 DTS Meas Guidance v05	8.2
2	Peak Output Power	KDB 558074 D01 DTS Meas Guidance v05	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 DTS Meas Guidance v05	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.6
6	Band-edge	KDB 558074 D01 DTS Meas Guidance v05	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

8. ANTENNA PORT TEST RESULTS 8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)
11B	100.3	100.3	1	100%	0	100
11G	100.3	100.3	1	100%	0	100
11N20 SISO	100.3	100.3	1	100%	0	100
11N40 SISO	100.3	100.3	1	100%	0	100

Note: 1) Duty Cycle Correction Factor=10log(1/x).

- 2) Where: x is Duty Cycle (Linear)
- 3) Where: T is On Time (transmit duration)

4) Pre-testing all the modes, only the data of worse case is shown in this test repot.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Remark:

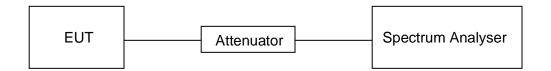
1) For the period time=N (the end time of the burst) – F (the start time of the burst)

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500KHz	2400-2483.5	
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5	


TEST PROCEDURE

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth: ≥3 × RBW For 99% Occupied Bandwidth: approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Connect the UUT to the spectrum analyser and use the following settings:

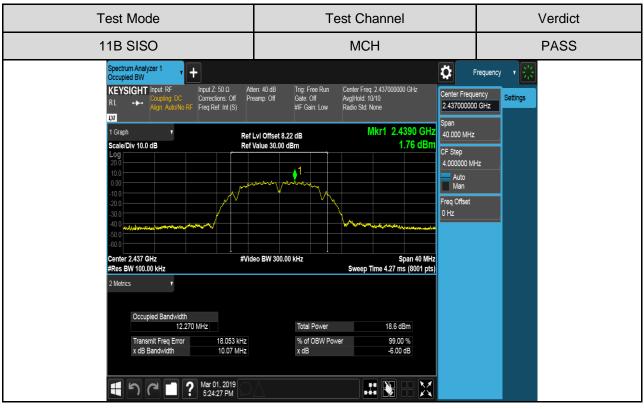
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

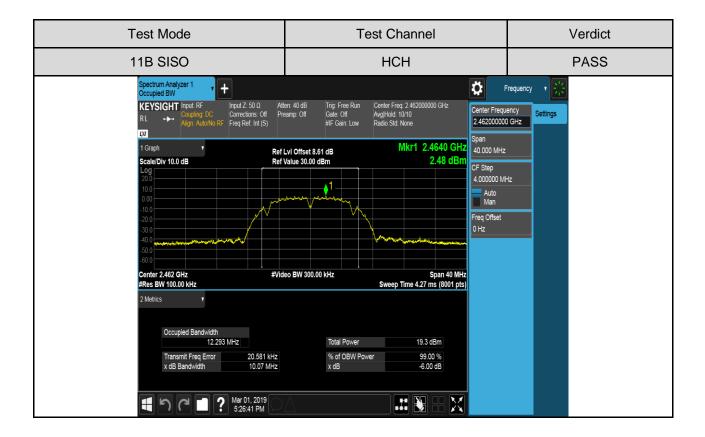
TEST ENVIRONMENT

Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V

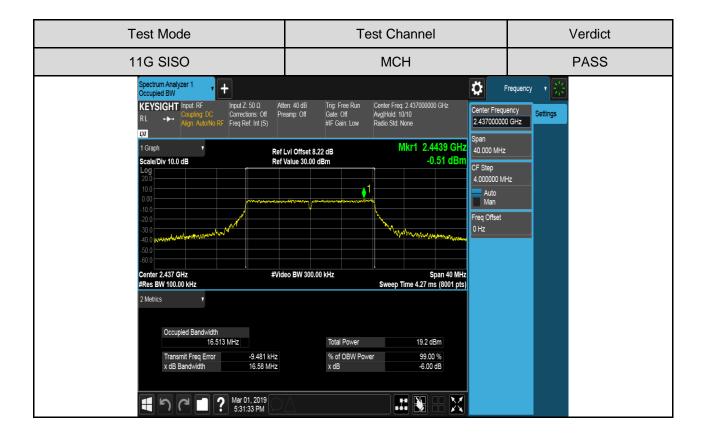

RESULTS

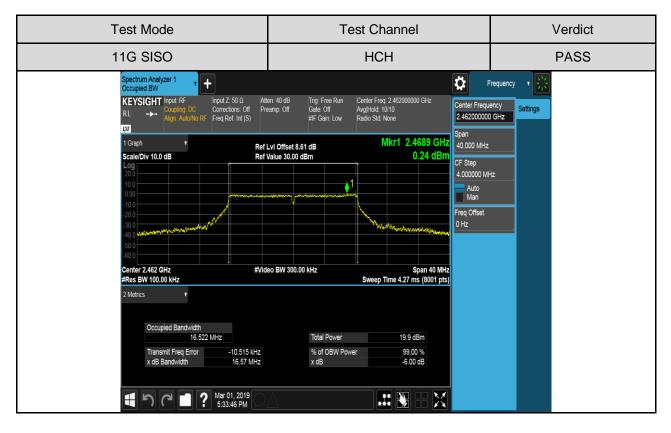

Test Mode	Test Antenna	Test Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result
		LCH	10.08	12.328	Pass
11B SISO	Antenna 1	MCH	10.07	12.270	Pass
		HCH	10.07	12.293	Pass
		LCH	16.58	16.540	Pass
11G SISO	Antenna 1	MCH	16.58	16.513	Pass
		HCH	16.57	16.522	Pass
		LCH	17.71	17.619	Pass
11N HT 20SISO	Antenna 1	MCH	17.72	17.596	Pass
		HCH	17.74	17.608	Pass
		LCH	36.47	36.194	Pass
11N HT40SISO/SISO	Antenna 1	MCH	36.50	36.181	Pass
		HCH	36.51	36.206	Pass

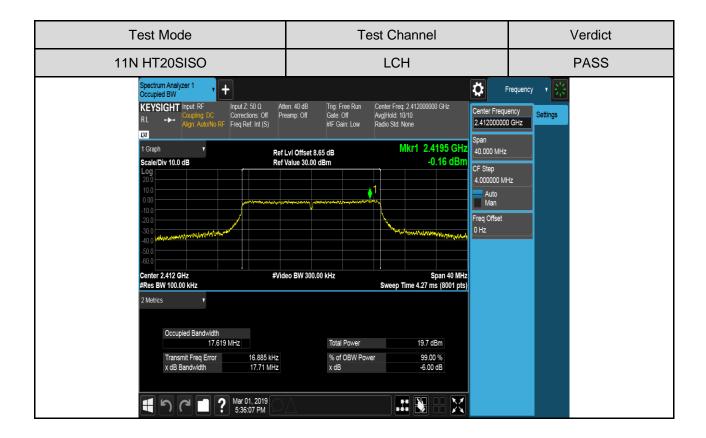
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

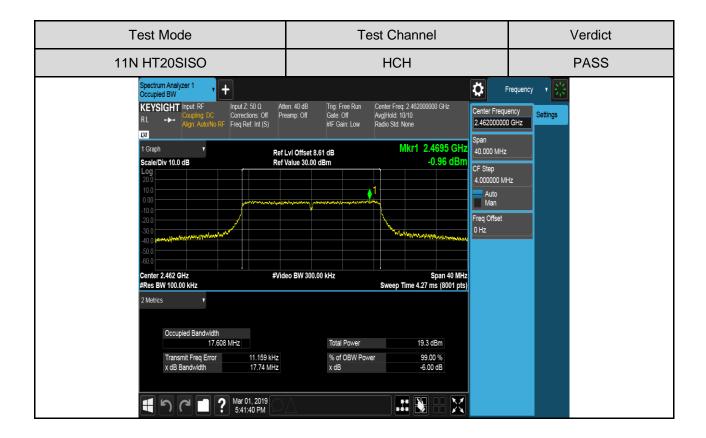


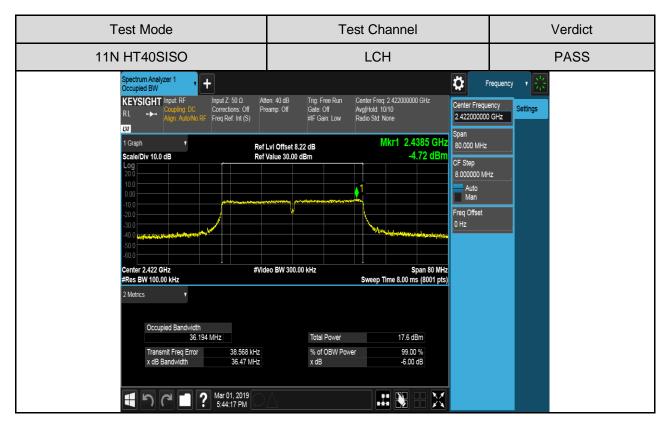
Test Graphs

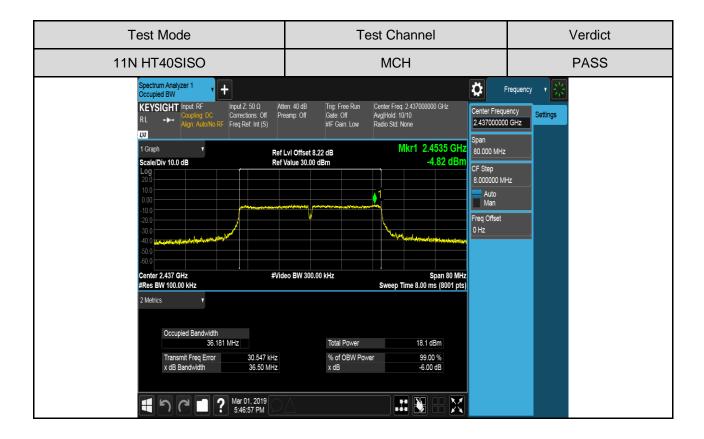


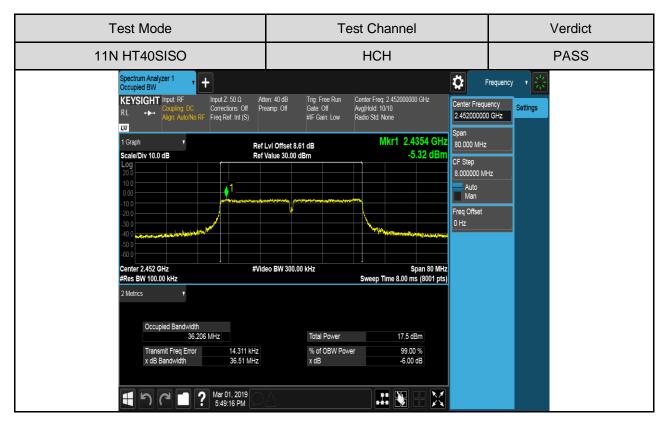



Test Mode	Test Channel	Verdict
11G SISO	LCH	PASS
RL → Coupling DC Align AutoNo RF Corrections: Off Freq Ref: Int (S) UV 1 Graph Ref U 1 Graph Ref U 200 0 100 0 00 0 -100 -0 -500 -0	wip: Oil Gale Oil Avginud. 1010 2.4 #IF Gain: Low Radio Std. None 2.4 vi Offset 8.65 dB Mkr1 2.4189 GHz 40.1 value 30.00 dBm 0.66 dBm CF 5 1 1 1	nter Frequency 41200000 GHz an 1.000 MHz Step 000000 MHz Auto Man xq Offset






Test Mode	Test Channel	Verdict
11N HT20SISO	МСН	PASS
RL Coupling DC Corrections: Off Pr DU Align: Automo RF Freq Ref. Int (S) DU Ref Scale/Div 10.0 dB Ref Log Align: Automo RF 10 0 Align: Automo RF -00 -00 -00 -00 -00 -00	en: 40 dB en: 40 dB en: 40 dB en: 40 dB frig: Free Run gate. Off #IF Gain. Low Radio Stdt None Center Fr AvgHold 10/10 Radio Stdt None Mkr1 2.4445 GHz -1.44 dBm -1.44 dBm CF Step 4.0000 MHz Span 40 MHz Sweep Time 4.27 ms (8001 pts) Total Power % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm % of OBW Power 9.00 % x dB CF Step 4.000 MHz State of Bm State of	AHZ DMHZ



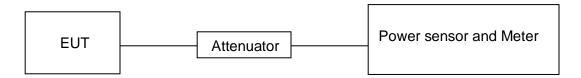
8.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (e)	Peak Output Power	1 watt or 30dBm (See Note 1/2)	2400-2483.5
1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. 2. Limit=30dBm – (Directional gain -6) dBi Directional gain = $10\log [(10^{G1/20} + 10^{G2/20})^2/N_{ANT}] = 0 < 6dBi$, where the N _{ANT} is the numbers of antenna. So, the power limit shall be still 1 watt or 30dBm			

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

Peak Detector used for Peak result.

AVG Detector used for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V

<u>RESULTS</u>

1) Maximum Peak Conducted Output Power

Test Mode	Test Antenna	Test Channel	Maximum Peak Conducted Output Power(dBm)	Result
		LCH	15.81	Pass
11B	Ant1	MCH	14.96	Pass
		HCH	15.72	Pass
		LCH	21.68	Pass
11G	Ant	MCH	20.68	Pass
		HCH	21.43	Pass
		LCH	21.4	Pass
11N20SISO	Ant1	MCH	20.34	Pass
		HCH	21.07	Pass
		LCH	19.41	Pass
11N40SISO	Ant1	MCH	19.88	Pass
		HCH	19.31	Pass

2) Maximum Average Conducted Output Power

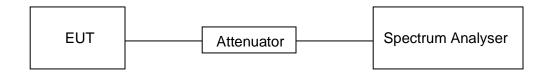
Test Mode	Test Antenna	Test Channel	Maximum Average Conducted Output Power(dBm)	Result
		LCH	13.17	Pass
11B	Ant 1	MCH	12.52	Pass
		HCH	13.46	Pass
		LCH	13.88	Pass
11G	Ant 1	MCH	13.14	Pass
		HCH	14.01	Pass
		LCH	13.35	Pass
11N20SISO	Ant 1	MCH	12.65	Pass
		HCH	13.45	Pass
		LCH	12.02	Pass
11N40SISO	Ant 1	MCH	12.64	Pass
		HCH	11.92	Pass

8.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz (See Note 1/2)	2400-2483.5
 If transmitting antennas conducted output power ar amount in dB that the direct 2. Limit=8dBm – (Direction Directional gain = 10log [(1 outputs, GANT is the Antenn Directional gain = 10log [(antenna. So, the power den 	nd the maximum power spectional gain of the antenna al gain -6) dBi $0G1/20GANT + 10 \log (Nama gain. 10^{G1/20} + 10^{G2/20})^2/N_{ANT}] = 0$	ectral density shall be exceeds 6dBi. vт) dBi, where Navт is v<6dBi, where the N _A	e reduced by the s the number of _{NT} is the numbers of

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

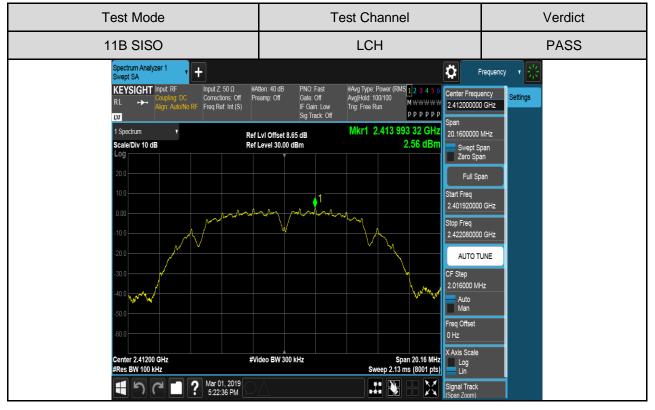
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

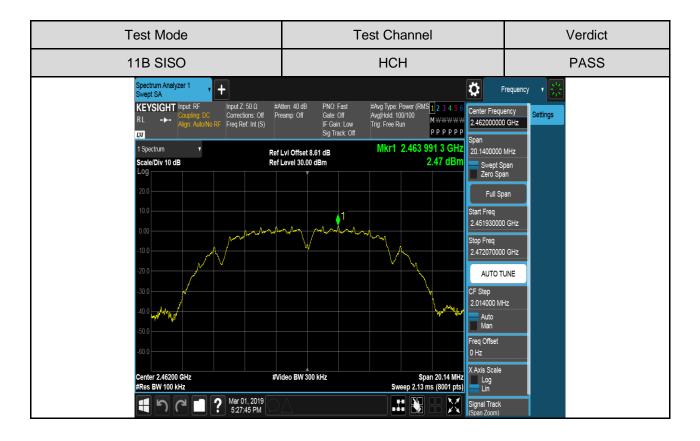
TEST ENVIRONMENT

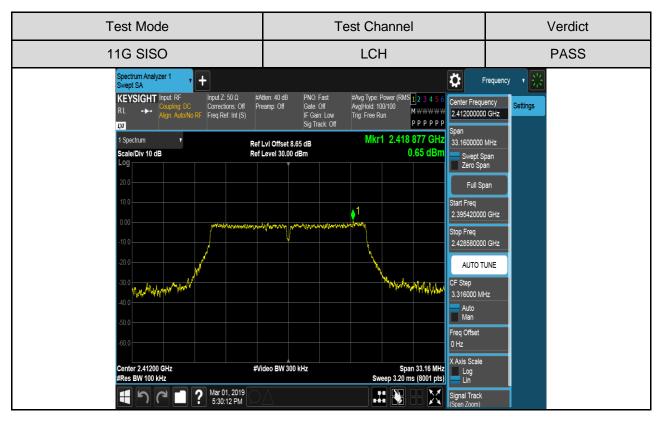
Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V

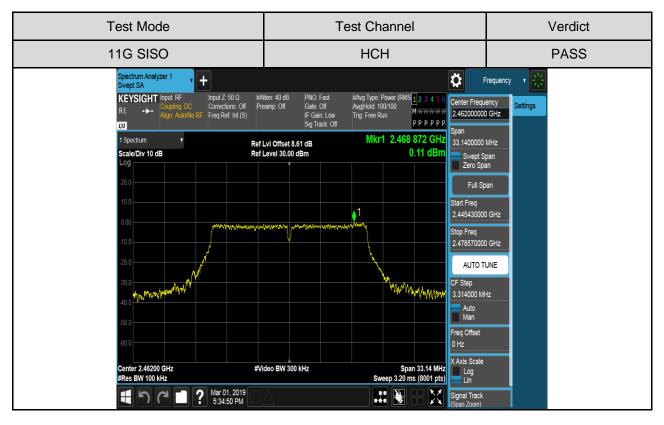

RESULTS TABLE

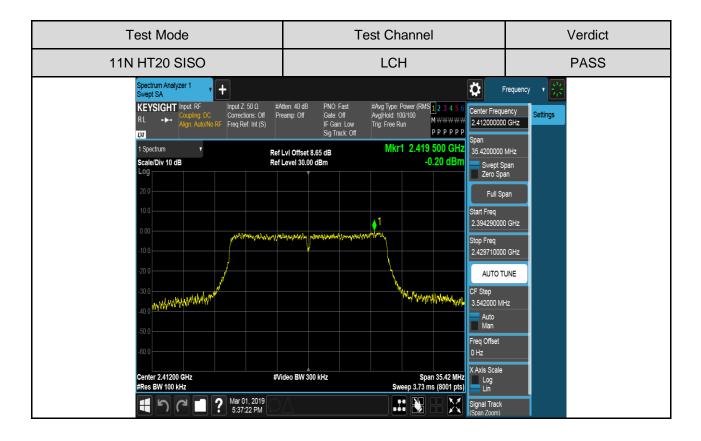
Test Mode	Test Antenna	Test Channel	Maximum Peak power spectral density (dBm/100K)	Result
11B	Antenna 1	LCH	2.56	Pass
		MCH	1.68	Pass
		HCH	2.47	Pass
11G	Antenna 1	LCH	0.65	Pass
		MCH	-0.61	Pass
		HCH	0.11	Pass
11N HT20	Antenna 1	LCH	-0.20	Pass
		MCH	-1.56	Pass
		НСН	-0.69	Pass
11N40SISO	Antenna 1	LCH	-4.85	Pass
		MCH	-4.99	Pass
		HCH	-5.58	Pass

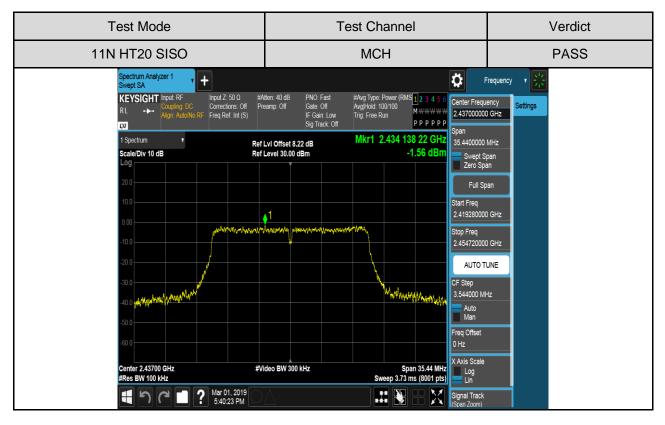
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

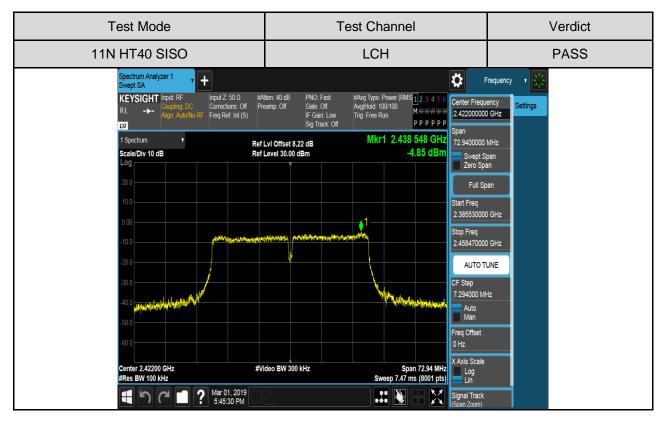


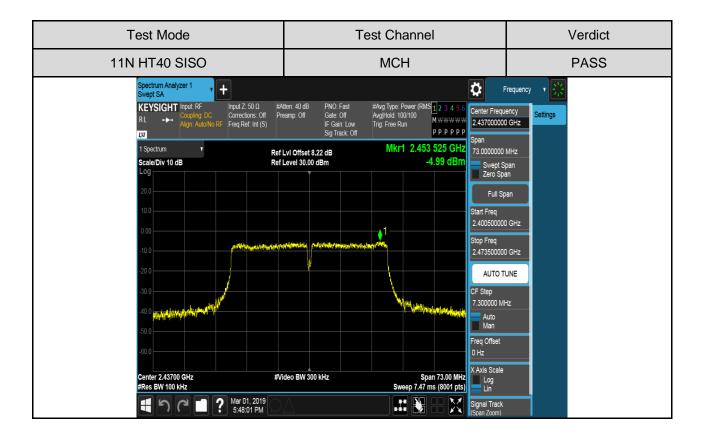

TEST GRAPHS













8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

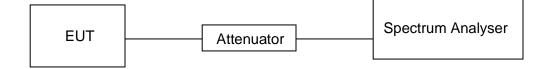
CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit				
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5 Spurious Emissions		at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	100K	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Use the peak marker function to determine the maximum PSD level.


ISpan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

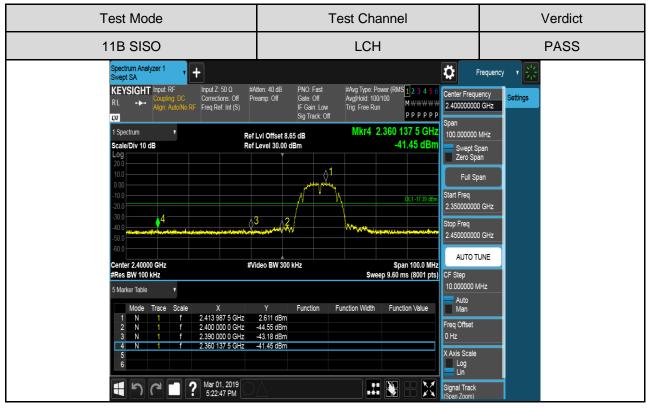
Use the peak marker function to determine the maximum amplitude level.

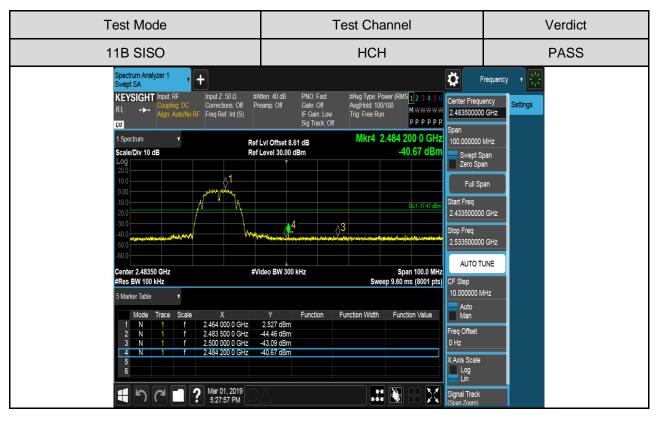
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

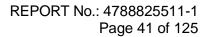
TEST SETUP

TEST ENVIRONMENT

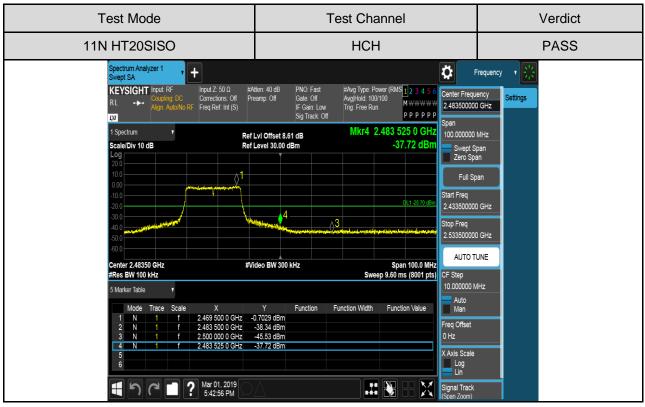
Temperature	25°C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V


Part I: CONDUCTED BANDEDGE

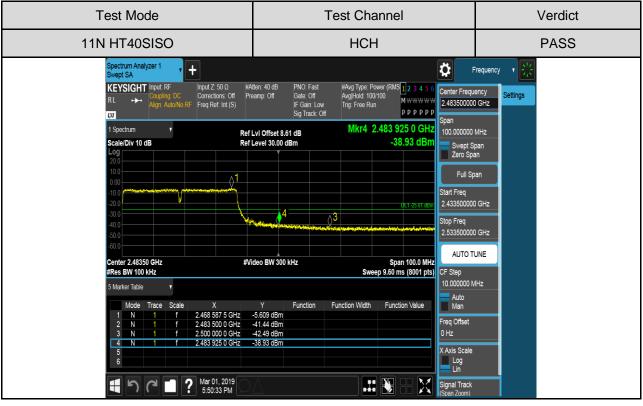

RESULTS TABLE


Test Mode	Test Antenna	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11B	Antenna 1	LCH	2.611	-41.450	-17.39	PASS
IID	Antenna i	HCH	2.527	-40.665	-17.47	PASS
11G	Antenna 1	LCH	0.284	-40.076	-19.72	PASS
ПG	Antenna I	HCH	0.051	-39.437	-19.95	PASS
11N20SISO	Antenna 1	LCH	-0.330	-38.775	-20.33	PASS
111203130	Antenna i	HCH	-0.703	-37.719	-20.7	PASS
11N40SISO	A . 1	LCH	-4.934	-39.290	-24.93	PASS
1111405150	Antenna 1	HCH	-5.609	-38.930	-25.61	PASS

TEST GRAPHS







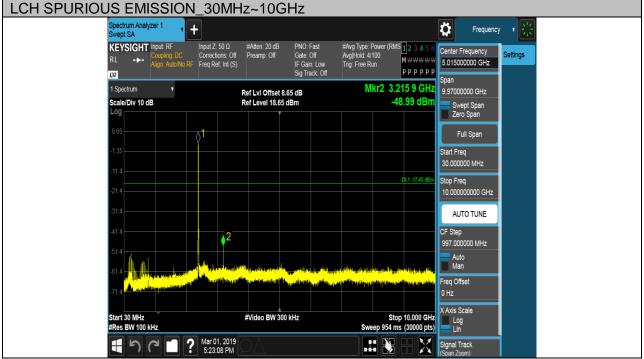
Part II: Conducted Spurious Emissions

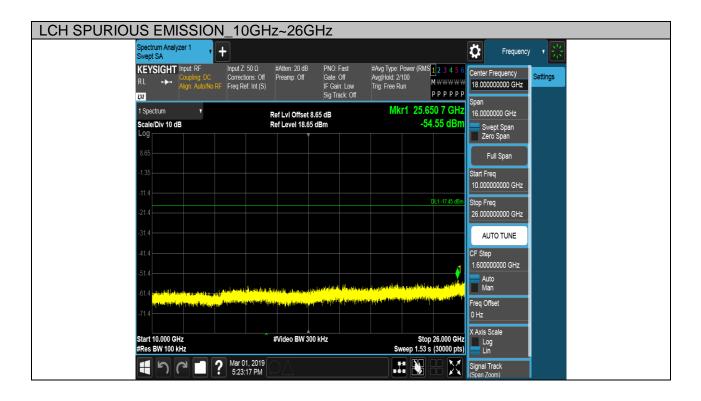
TEST RESULT TABLE

Test Mode	Test Antenna	Channel	Pref(dBm)	Puw(dBm)	Verdict
		LCH	2.55	<limit< td=""><td>PASS</td></limit<>	PASS
11B SISO	Antenna 1	MCH	1.67	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	2.45	<limit< td=""><td>PASS</td></limit<>	PASS
		LCH	0.51	<limit< td=""><td>PASS</td></limit<>	PASS
11G SISO	Antenna 1	MCH	-0.81	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	0.13	<limit< td=""><td>PASS</td></limit<>	PASS
		LCH	-0.20	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20 SISO	Antenna 1	MCH	-1.73	<limit< td=""><td>PASS</td></limit<>	PASS
0100	HCH	-0.85	<limit< td=""><td>PASS</td></limit<>	PASS	
	Antenna 1	LCH	-4.80	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40 SISO		MCH	-5.00	<limit< td=""><td>PASS</td></limit<>	PASS
5150		HCH	-5.49	<limit< td=""><td>PASS</td></limit<>	PASS

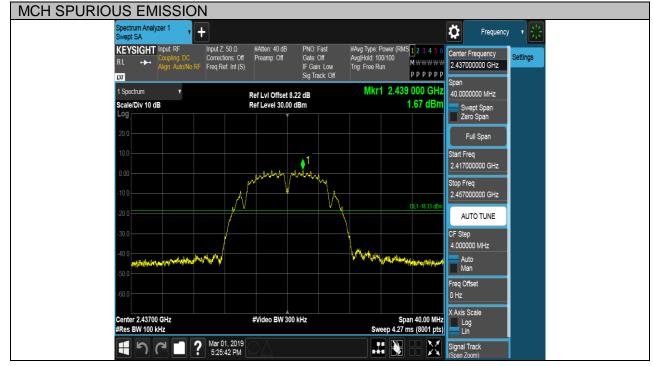
TEST GRAPHS

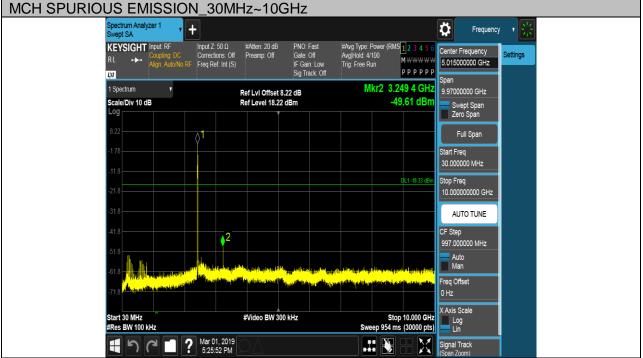
ANTENNA1

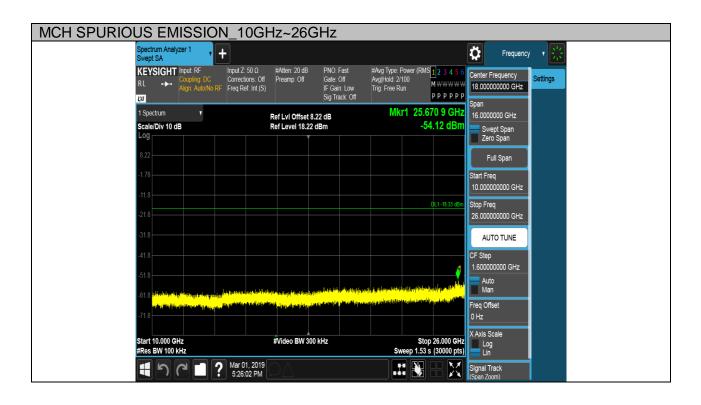

Test Mode	Channel	Verdict
11B SISO	LCH	PASS


Pref test Plot

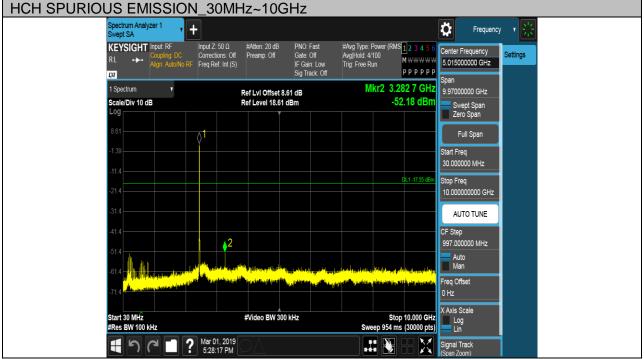
Puw test Plot

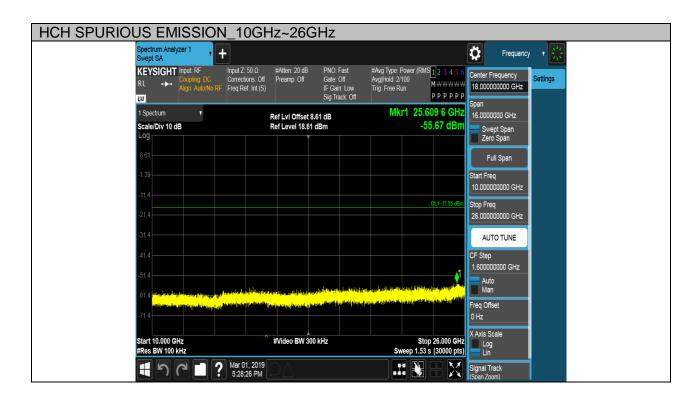



Test Mode	Channel	Verdict
11B SISO	MCH	PASS


Pref test Plot

Puw test Plot


Test Mode	Channel	Verdict
11B SISO	НСН	PASS


Pref test Plot

Puw test Plot

