

TEST REPORT

Report Reference No	CHTEW20080059 Report Verification:				
Project No	SHT2006045103EW				
FCC ID:	2AFIB-YHS5020				
Applicant's name:	Shanghai Xiaoyi Technology Co., Ltd.				
Address:	Building 18, Lane 55, Chuanhe Road, China(shanghai) Pilot Free Trade Zone, Shanghai, China, 20103				
Manufacturer	Shanghai Xiaoyi Technology Co., Ltd.				
Address	Building 18, Lane 55, Chuanhe Road, China(shanghai) Pilot Free Trade Zone, Shanghai, China, 20103				
Test item description:	YI Dome Camera U				
Trade Mark	YI				
Model/Type reference	YHS.5020				
Listed Model(s)					
Standard:	47 CFR FCC Part 15 Subpart B				
Date of receipt of test sample	Jun. 11, 2020				
Date of testing	Jun. 12, 2020- Aug. 05, 2020				
Date of issue	Aug. 06, 2020				
Result	Pass				
Compiled by					
(position+printed name+signature):	File administrators Silvia Li Chenexiao				
Supervised by	Chener Silus				
(position+printed name+signature):	Project Engineer Xiao Cheng				
Approved by	1 tour Hu				
(position+printed name+signature):	RF Manager Hans Hu				
Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd.				
Address	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
Shenzhen Huatongwei International Ir	nspection Co., Ltd. All rights reserved.				

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1. 1.2. 误!未定义	Test Standards Report version 义书签。	3 错
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
	Product Description EUT operation mode Configuration of Tested System	5 5 5 错
3.5. 误!未定义	Support unit used in test configuration	错
<u>4.</u>	TEST ENVIRONMENT	5
4.1. 4.2. 4.3. 4.4. 4.5.	Address of the test laboratory Test Facility Environmental conditions Statement of the measurement uncertainty Equipments Used during the Test	5 5 7 7 8
<u>5.</u>	TEST CONDITIONS AND RESULTS	9
5.1. 5.2.	Conducted Emissions Test Radiated Emissions Test	9 12
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	<u>16</u>

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT 17

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

ANSI C63.4: 2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2020-08-06	Original

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer	
Conducted Emissions	15.107(a)	PASS	Jianquan Wu	
Radiated Emissions	15.109(a)	PASS	Jian Li	

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	Shanghai Xiaoyi Technology Co., Ltd.
Address:	Building 18, Lane 55, Chuanhe Road, China(shanghai) Pilot Free Trade Zone, Shanghai, China, 20103
Manufacturer:	Shanghai Xiaoyi Technology Co., Ltd.
Address:	Building 18, Lane 55, Chuanhe Road, China(shanghai) Pilot Free Trade Zone, Shanghai, China, 20103

3.2. Product Description

Name of EUT:	YI Dome Camera U
Trade Mark:	YI
Model No.:	YHS.5020
Listed Model(s)	-
Power supply:	DC 5.0V
	Model:GQ05-050100-ZU
Adapter information:	Input: AC100-240V, 50/60Hz,0.3A Max
	Output: 5.0Vdc,1.0A
Remark	This model YHS.5020 will be shipped with two models of cameras, but the models are different. Both models have been tested. This report only records the worst data.

3.3. EUT operation mode

Test mode	Describe		
Recording video	Keep recording		

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd.

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C		
Relative Humidity:	30~60 %		
Air Pressure:	950~1050mba		

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emissions	30~1000MHz	4.90 dB	(1)
Radiated Emissions	1~18GHz	4.96 dB	(1)
Conducted Disturbance	0.15~30MHz	3.02 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

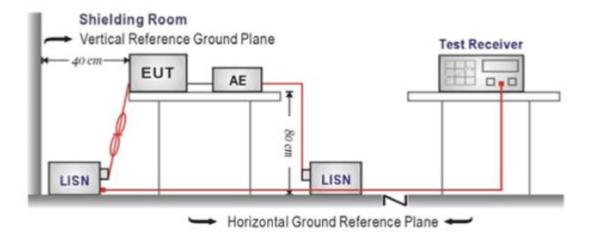
•	Conducted Emission							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27	
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2019/10/26	2020/10/25	
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2019/10/23	2020/10/22	
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2019/10/23	2020/10/22	
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2019/10/23	2020/10/22	
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A	

Radiated emission-6th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2019/10/26	2020/10/25
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0119	VULB9163	546	2018/04/04	2021/04/03
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2019/11/14	2020/11/13
•	RF Connection Cable	HUBER+SUHNER	HTWE0062- 01	N/A	N/A	2019/08/21	2020/08/20
•	RF Connection Cable	HUBER+SUHNER	HTWE0062- 02	SUCOFLEX 104	501184/4	2020/05/27	2021/05/26
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emission-7th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26	
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25	
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31	
•	Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	25841	2018/10/11	2021/10/10	
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/10	
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2019/11/14	2020/11/13	
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2020/05/23	2021/05/22	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2020/05/10	2021/05/09	
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A	

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions Test


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.107:

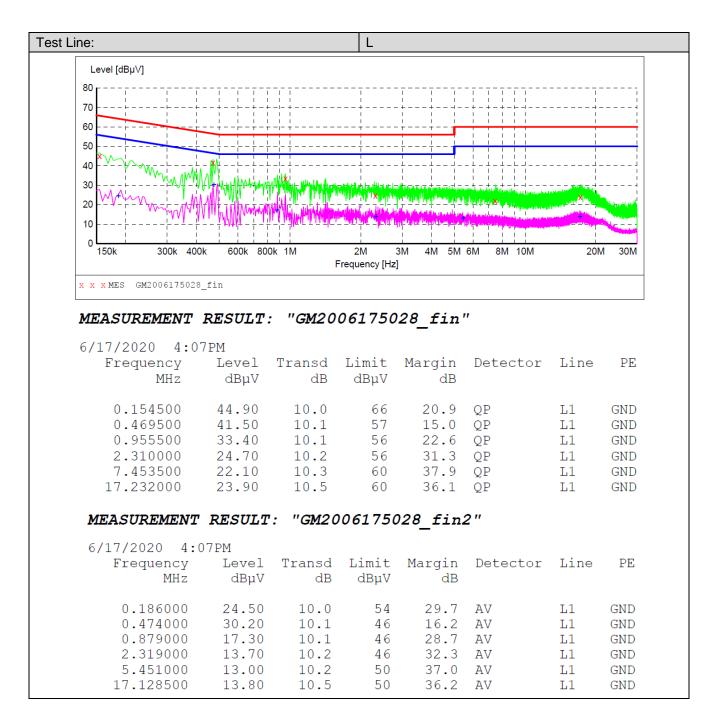
Frequency range (MHz)	Limit (dBuV)			
Frequency range (Mirz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- The peripheral devices are also connected to the main power through a LISN. (Please refer to the block 4. diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- The excess length of the power cord between the EUT and the LISN receptacle were folded back and 6. forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 7. receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


TEST MODE:

Please refer to the clause 3.3

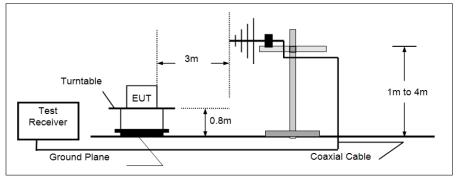
TEST RESULTS

Passed

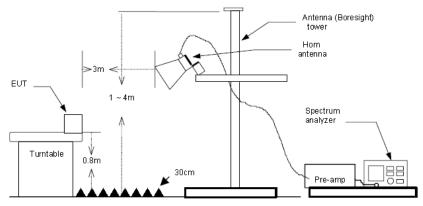
Not Applicable

	ne:			Ν			
Level [dBµV]							
80							
70++		 - -+	 +			 	
60			i I			i I	
			+	++			
50		i- i	<u>+</u>			i	
40 4 ×						<u>-</u>	
30 +	• + *** *** ****				diduct the standard stand	নুর চার্চ জন্মন	line de la com
20	WA TIMAMA	Mills unless			المشاهر والعرق والمتحافظ المتعادية والمتعادية والتما المشاهر والعرق والمتحافظ المتعادية والمتعادية والتما	арана <u>С – С ч</u> ар	land the second
10	. I - <u>+W</u> WW <u>W</u>	a i tildutu an a line and a line a			and the product of th		
0	0k 600k 80	0k 1M	2M	3M 4M 5M	6M 8M 10M	20N	1 30M
			Frequency [Hz			2010	1 3010
x x x MES GM2006175027	7 fin						
MEASUREMENT	RESULT	: "GM20	061750	27 fin'	"		
				-			
6/17/2020 4:0							
Frequency	Level	Transd	Lımıt	Margin	Detector	1.1 n 🗠	PE
N #T T	10 17	10			Decoder	штис	
MHz	dBµV	dB	dBµV	dB	20000001	птис	
			dBµV	dB			
0.186000	42.90	10.0	dBµV 64	dB 21.3	QP	N N	GNE
			dBµV	dB		Ν	GNE GNE
0.186000 0.460500	42.90 37.20	10.0 10.1	dBµV 64 57	dB 21.3 19.5	QP QP	N N	GNE GNE GNE
0.186000 0.460500 1.180500	42.90 37.20 27.50 26.30 22.90	10.0 10.1 10.1 10.2 10.2	dBµV 64 57 56	dB 21.3 19.5 28.5 29.7 37.1	QP QP QP QP QP	N N N	GND GND GND GND GND
0.186000 0.460500 1.180500 2.584500	42.90 37.20 27.50 26.30	10.0 10.1 10.1 10.2	dBμV 64 57 56 56	dB 21.3 19.5 28.5 29.7	QP QP QP QP	N N N N	GND GND GND GND
0.186000 0.460500 1.180500 2.584500 5.203500	42.90 37.20 27.50 26.30 22.90 23.50	10.0 10.1 10.1 10.2 10.2 10.5	dBμV 64 57 56 56 60 60	dB 21.3 19.5 28.5 29.7 37.1 36.5	QP QP QP QP QP QP	N N N N	GNE GNE GNE GNE GNE
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT	42.90 37.20 27.50 26.30 22.90 23.50 RESULT	10.0 10.1 10.1 10.2 10.2 10.5	dBμV 64 57 56 56 60 60	dB 21.3 19.5 28.5 29.7 37.1 36.5	QP QP QP QP QP QP	N N N N	GND GND GND GND GND
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT 6/17/2020 4:0	42.90 37.20 27.50 26.30 22.90 23.50 RESULT	10.0 10.1 10.1 10.2 10.2 10.5	dBμV 64 57 56 56 60 60 0061750	dB 21.3 19.5 28.5 29.7 37.1 36.5	QP QP QP QP QP QP 2 "	N N N N N	GNE GNE GNE GNE GNE
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT	42.90 37.20 27.50 26.30 22.90 23.50 RESULT	10.0 10.1 10.1 10.2 10.2 10.5	dBμV 64 57 56 56 60 60 0061750	dB 21.3 19.5 28.5 29.7 37.1 36.5)27_fin	QP QP QP QP QP QP 2 "	N N N N N	GNE GNE GNE GNE GNE
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT 6/17/2020 4:0 Frequency MHz	42.90 37.20 27.50 26.30 22.90 23.50 RESULT D5PM Level dBμV	10.0 10.1 10.1 10.2 10.2 10.5 7: "GM20 Transd dB	dBμV 64 57 56 56 60 60 9061750 Limit dBμV	dB 21.3 19.5 28.5 29.7 37.1 36.5 D27_fin Margin dB	QP QP QP QP QP QP 2 " Detector	N N N N Line	GNE GNE GNE GNE GNE
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT 6/17/2020 4:0 Frequency MHz 0.154500	42.90 37.20 27.50 26.30 22.90 23.50 RESULT 05PM Level dBμV 26.40	10.0 10.1 10.1 10.2 10.2 10.5 7: "GM20 Transd dB 10.0	dBμV 64 57 56 56 60 60 0061750 Limit dBμV 56	dB 21.3 19.5 28.5 29.7 37.1 36.5 D27_fin Margin dB 29.4	QP QP QP QP QP QP Z" Detector AV	N N N N Line	GNE GNE GNE GNE PE GNE
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT 6/17/2020 4:0 Frequency MHz 0.154500 0.478500	42.90 37.20 27.50 26.30 22.90 23.50 RESULT 05PM Level dBμV 26.40 28.90	10.0 10.1 10.1 10.2 10.2 10.5 7: "GM20 Transd dB 10.0 10.1	dBμV 64 57 56 56 60 60 0061750 Limit dBμV 56 46	dB 21.3 19.5 28.5 29.7 37.1 36.5 D27_fin Margin dB 29.4 17.5	QP QP QP QP QP QP Z" Detector AV AV	N N N N Line N	GNE GNE GNE GNE PE GNE
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT 6/17/2020 4:0 Frequency MHz 0.154500 0.478500 1.419000	42.90 37.20 27.50 26.30 22.90 23.50 RESULT 05PM Level dBμV 26.40 28.90 15.80	10.0 10.1 10.2 10.2 10.5 7: "GM20 Transd dB 10.0 10.1 10.1	dBμV 64 57 56 56 60 60 0061750 Limit dBμV 56 46 46	dB 21.3 19.5 28.5 29.7 37.1 36.5 D27_fin Margin dB 29.4 17.5 30.2	QP QP QP QP QP Z" Detector AV AV	N N N N N Line N N	GNI GNI GNI GNI GNI GNI GNI GNI GNI
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT 6/17/2020 4:0 Frequency MHz 0.154500 0.478500 1.419000 3.354000	42.90 37.20 27.50 26.30 22.90 23.50 RESULT 05PM Level dBμV 26.40 28.90 15.80 12.40	10.0 10.1 10.2 10.2 10.5 7: "GM20 Transd dB 10.0 10.1 10.1 10.2	dBμV 64 57 56 56 60 60 061750 Limit dBμV 56 46 46 46	dB 21.3 19.5 28.5 29.7 37.1 36.5 D27_fin Margin dB 29.4 17.5 30.2 33.6	QP QP QP QP QP Z" Detector AV AV AV	N N N N N Line N N N N	GNE GNE GNE GNE GNE GNE GNE GNE GNE GNE
0.186000 0.460500 1.180500 2.584500 5.203500 16.071000 MEASUREMENT 6/17/2020 4:0 Frequency MHz 0.154500 0.478500 1.419000	42.90 37.20 27.50 26.30 22.90 23.50 RESULT 05PM Level dBμV 26.40 28.90 15.80	10.0 10.1 10.2 10.2 10.5 7: "GM20 Transd dB 10.0 10.1 10.1	dBμV 64 57 56 56 60 60 0061750 Limit dBμV 56 46 46	dB 21.3 19.5 28.5 29.7 37.1 36.5 D27_fin Margin dB 29.4 17.5 30.2	QP QP QP QP QP Z" Detector AV AV	N N N N N Line N N	GND GND GND GND GND

5.2. Radiated Emissions Test


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

> 30MHz ~ 1GHz

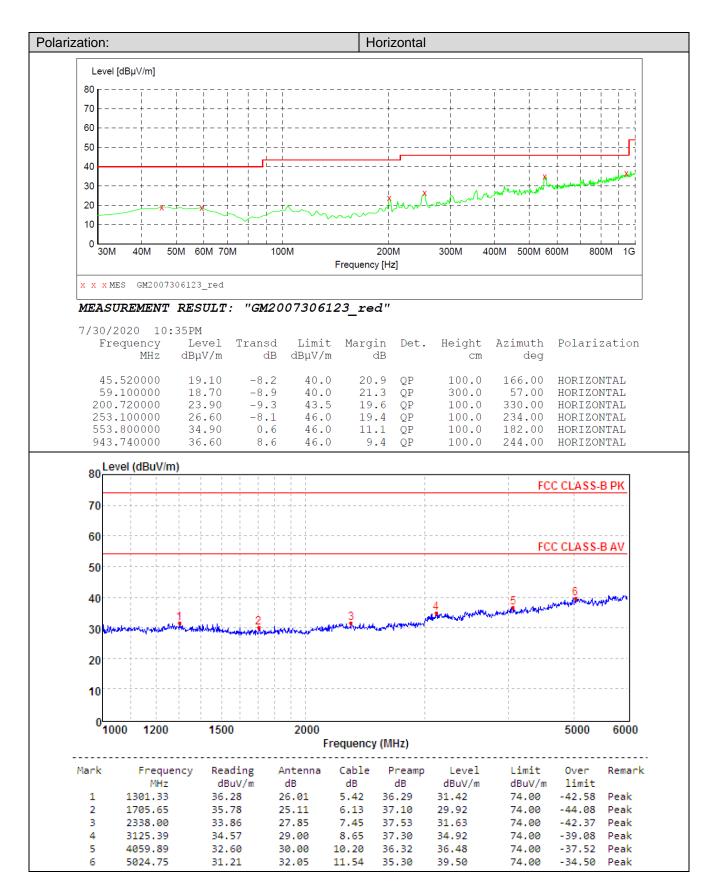
> Above 1GHz

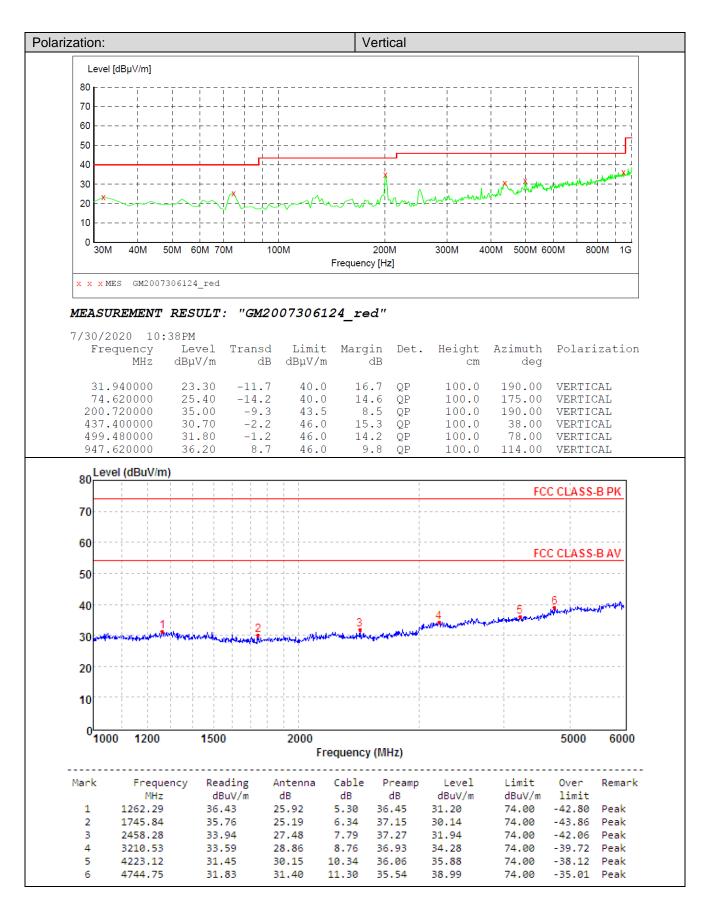
TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;(2) Below 1GHz,

RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz

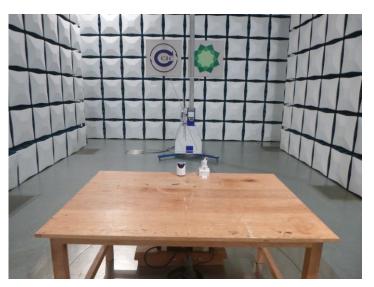

TEST MODE:


Please refer to the clause 3.3

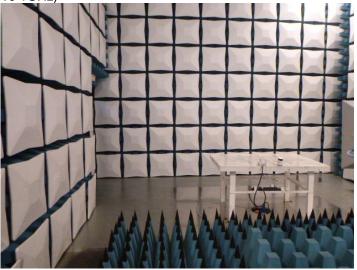
TEST RESULTS

☑ Passed □ Not Applicable

Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.



6. TEST SETUP PHOTOS OF THE EUT


Conducted Emissions (AC Mains)

Radiated Emissions (30MHz-1GHz)

Radiated Emissions (Above 1GHz)

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No.: CHTEW20080058

-----End of Report------