

INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

TEST REPORT

SCOPE OF WORK

FCC TESTING-VTA-72

REPORT NUMBER

200722007SZN-002

ISSUE DATE

[REVISED DATE]

Error! Reference source not found.

PAGES

46

FCC ID 247_b © 2017 INTERTEK

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen.

Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 <u>www.intertek.com</u>

Intertek Report No.: 200722007SZN-002

INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

Application For Certification

FCC ID: 2AFHW-VTA72

Eastwood

Model: VTA-72

Brand name: Victrola

2.4GHz Transceiver

Report No.: 200722007SZN-002

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-19]

Tested by: Prepared and Checked by: Approved by:

Signed on files

Jason Gao Winkey Wang Kidd Yang

Test Engineer Senior Project Engineer Technical Supervisor

EMTEK (Shenzhen) Co., Ltd. Intertek Testing Services Shenzhen Ltd. Intertek Testing Services Shenzhen Ltd.

Longhua Branch
Date: 24 July 2020

Longhua Branch
Date: 24 July 2020

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen.
Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Version: 01-November-2017 Page: 1 of 46 FCC ID 247_b

MEASUREMENT/TECHNICAL REPORT

This report concerns (check o	ne:) Original Grant X	Class II Change
Equipment Type: <u>DSS - Part 1</u>	5 Spread Spectrum Transmitter	
Deferred grant requested per	· 47 CFR 0.457(d)(1)(ii)?	Yes NoX
	If yes, de	efer until:date
Company Name agrees to not	tify the Commission by:	
of the intended date of annou	uncement of the product so that	date t the grant can be issued on that date.
Transition Rules Request per	15.37?	Yes NoX
If no, assumed Part 15, Subprovision.	ppart C for intentional radiator	r – the new 47 CFR [10-1-19 Edition]
Report prepared by:		
	Winkey Wang Intertek Testing Services Shenzh 101, 201, Building B, No. 308 W Community, GuanHu Subdistric Tel: (86 755) 8601 6288 Fax: (86	uhe Avenue, Zhangkengjing t, LongHua District, Shenzhen.

Version: 01-November-2017 Page: 2 of 46 FCC ID 247_b

Table of Contents

1.0	Summary of Test Results	4
2.0	General Description	5
2.1	Product Description	5
2.2	Related Submittal(s) Grants	5
2.3	Test Methodology	5
2.4	Test Facility	5
3.0	System Test Configuration.	6
3.1	Justification	6
3.2	EUT Exercising Software	6
3.3	Special Accessories	6
3.4	Equipment Modification	7
3.5	Measurement Uncertainty	7
3.6	Support Equipment List and Description	7
4.0	Test Results	8
4.1	Radiated Test Result	8
4.1.	1 Field Strength Calculation	8
4.1.	2 Radiated Emission Configuration Photograph	9
4.1.	3 Radiated Emission	9
4.1.	4 Transmitter Spurious Emissions (Radiated)	12
4.2	Conducted Emission at Mains Terminal	16
4.2.	1 Conducted Emission Configuration Photograph	16
4.2.	2 Conducted Emissions	16
4.3	Peak Power	19
4.4	20dB Bandwidth	22
4.5	Channel Number (Number of Hopping Frequencies)	24
4.6	Channel Separation (Carrier Frequency Separation)	27
4.7	Dwell Time (Time of Occupancy)	
4.8	Band Edge	35
4.9	Transmitter Spurious Emission (Conducted)	38
5.0	Equipment Photographs	42
6.0	Product Labelling	42
7.0	Technical Specifications	
8.0	Instruction Manual	
9.0	Miscellaneous Information	
9.1	Discussion of Pulse Desensitization	
9.2	Calculation of Average Factor	
9.3	Emissions Test Procedures	44
10.0	Test Equipment List	46

Page: 3 of 46

1.0 Summary of Test Results

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

Address: 1 CHANNEL DRIVE, PORT WASHINGTON, NY 11050, USA

Model: VTA-72

FCC ID: Z8M-VTA72

TEST	REFERENCE	RESULTS
Max. Output power / Max. e.i.r.p.	FCC 15.247(b)(1)	Pass
20dB Bandwidth	FCC 15.247(a)(1)	Pass
Channel Separation	FCC 15.247(a)(1)	Pass
Channel Number	FCC 15.247(a)(1) (iii)	Pass
Dwell Time	FCC 15.247(a)(1)(iii)	Pass
Out of Band Antenna Conducted Emission	FCC 15.247(d)	Pass
Radiated Emission in Restricted Bands	FCC 15.247(d), FCC 15.209, FCC 15.205	Pass
Band Edge	FCC 15.247(d), FCC 15.209, FCC 15.205	Pass
AC Conducted Emission	FCC 15.209	Pass

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

Version: 01-November-2017 Page: 4 of 46 FCC ID 247_b

2.0 General Description

2.1 Product Description

The equipment under test (EUT) is an Eastwood with Bluetooth FHSS technology operating in 2402-2480MHz. The EUT is powered by AC 120V, 60Hz. The speakers will automatically be deactivated while headphones are plugged in. For more detail information pls. refer to the user manual.

Bluetooth Version: 4.2(single mode) Antenna Type: Integral antenna

Antenna Gain: 2dBi

Modulation Type: GFSK, $\pi/4$ -DQPSK

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of transceiver for the Eastwood which has Bluetooth function. Other digital functions were reported in the verification report: 200722006SZN-001.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

2.4 Test Facility

The Semi-anechoic chamber and shielding room used to collect the radiated data and conducted data are **EMTEK (SHENZHEN) CO., LTD.** and located at Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China. This test facility and site measurement data have been fully placed on file with File Number: CN1204.

Version: 01-November-2017 Page: 5 of 46 FCC ID 247_b

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by AC120V, 60Hz during the test. Test with or without headphones are considered during the test, only the worst case data was reported.

All packets DH1, DH3 & DH5 mode in modulation type GFSK, π /4-DQPSK were tested and only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the centre of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The rear of unit was flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

The EUT exercise program (provided by client) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst case configuration is used in all specified testing.

The parameters of test software setting:

During the test, Channel and power controlling software provided by the applicant was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the application and is going to be fixed on the firmware of the end product.

Test Software: FCC ASSIST 2.4

3.3 Special Accessories

No special accessory attached.

Version: 01-November-2017 Page: 6 of 46 FCC ID 247_b

3.4 Equipment Modification

Any modifications installed previous to testing by INNOVATIVE TECHNOLOGY ELECTRONICS LLC. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by EMTEK (SHENZHEN) CO., LTD.

3.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

3.6 Support Equipment List and Description

Description	Manufacturer	Model No.		
Speaker	Qisheng	HF 210		
Adapter	INNOVATIVE TECHNOLOGY	Model: SK01G2-0500100U Input: 100-240Vac 50/60Hz;		
Adapter	ELECTRONICS LLC.	Output: 5Vdc 1000mA		
Audio In Cable	N/A	Unshielded, Length 100cm		
Headphones	KID	SM-V126MM		

Version: 01-November-2017 Page: 7 of 46 FCC ID 247_b

4.0 Test Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBuV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 62.0 dB\mu V$

AF = 7.4 dB

CF = 1.6 dB

 $AG = 29.0 \, dB$

PD = 0 dB

AV = -10 dB

 $FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 dB\mu V/m$

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

Version: 01-November-2017 Page: 8 of 46 FCC ID 247_b

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

4.1.3 Radiated Emissions- FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission

at 480.527600 MHz

Judgement: Passed by 6.33 dB

TEST PERSONNEL:

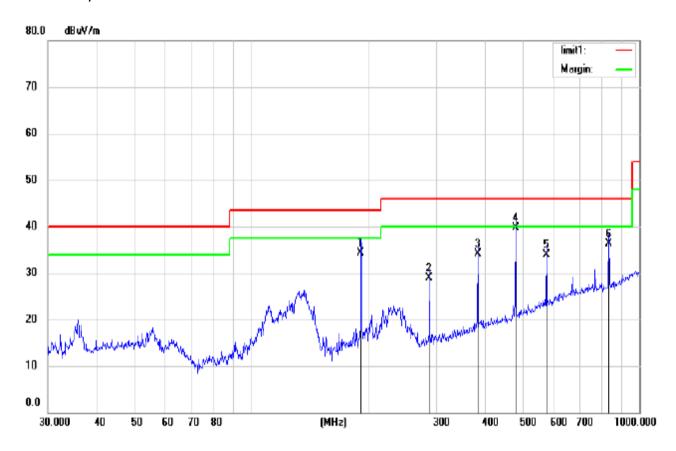
Sign on file

<u>Jason Gao, Test Engineer</u> Typed/Printed Name

July 10, 2020 Date

Version: 01-November-2017 Page: 9 of 46 FCC ID 247_b

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.


Date of Test: July 10, 2020

Model:VTA-72 Sample: 1/1

Worst-case operating Mode: BT link

Modulation type: GFSK

ANT Polarity: Horizontal

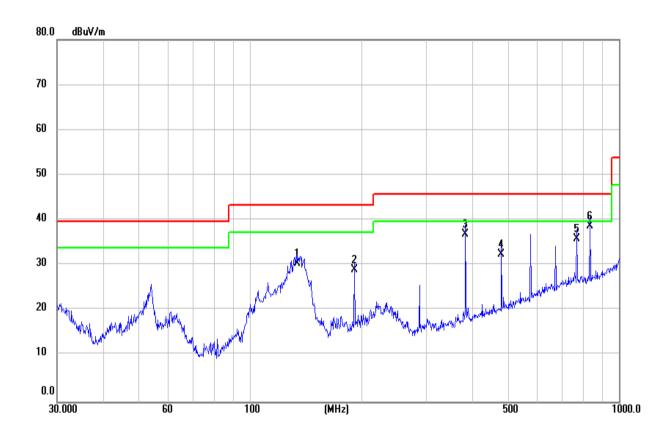
Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
191.745000	34.28	1000.0	120.000	100.0	Н	-18.02	9.22	43.5
287.990400	28.92	1000.0	120.000	100.0	Н	-14.21	17.08	46.0
383.931800	34.19	1000.0	120.000	100.0	Н	-11.28	11.81	46.0
480.527600	39.67	1000.0	120.000	100.0	Н	-9.58	6.33	46.0
576.644300	33.83	1000.0	120.000	100.0	Н	-7.08	12.17	46.0
836.244300	36.36	1000.0	120.000	100.0	Н	-3.01	9.64	46.0

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Limit Line(dB μ V/m) Level (dB μ V/m)

Version: 01-November-2017 Page: 10 of 46 FCC ID 247_b

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.


Date of Test: July 10, 2020

Model: VTA-72 Sample: 1/1

Worst-case operating Mode: BT link

Modulation type: GFSK

ANT Polarity: Vertical

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin - QPK	Limit - QPK (dBuV/m)
		(ms)					(dB)	
134.088100	30.60	1000.0	120.000	100.0	Н	-21.51	12.90	43.50
191.745000	29.15	1000.0	120.000	100.0	Н	-18.02	14.35	43.50
383.931800	37.15	1000.0	120.000	100.0	Н	-11.28	8.85	46.00
480.527600	32.63	1000.0	120.000	100.0	Н	-9.58	13.37	46.00
768.748100	36.02	1000.0	120.000	100.0	Н	-3.54	9.98	46.00
836.244300	38.94	1000.0	120.000	100.0	Н	-3.01	7.06	46.00

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Limit Line(dB μ V/m) Level (dB μ V/m)

Version: 01-November-2017 Page: 11 of 46 FCC ID 247_b

4.1.4 Transmitter Spurious Emissions (Radiated) - FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission

at 4960.000 MHz

Judgement: Passed by 7.1 dB

TEST PERSONNEL:

Sign on file

Jason Gao, Test Engineer
Typed/Printed Name

July 10, 2020 Date

Version: 01-November-2017 Page: 12 of 46 FCC ID 247_b

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

Date of Test: July 10, 2020

Model: VTA-72 Sample: 1/1

Worst-case operating Mode: Transmit (2402MHz)

Modulation type: GFSK

Table 1

Radiated Emissions

(2402MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBμV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2402.000	94.1	41.5	31.1	83.7		
Horizontal	*4804.000	68.1	43.3	39.4	64.2	74.0	-9.8

Polarization	Frequency (MHz)	Reading (dBμV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBμV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2402.000	94.1	41.5	31.1	22.5	61.2		
Horizontal	*4804.000	68.1	43.3	39.4	22.5	41.7	54.0	-12.3

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- ** Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

Version: 01-November-2017 Page: 13 of 46 FCC ID 247_b

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

Date of Test: July 10, 2020

Model: VTA-72 Sample: 1/1

Worst-case operating Mode: Transmit (2441MHz)

Modulation type: GFSK

Table 2

Radiated Emissions

(2441MHz)

Polarization	Frequency (MHz)	Reading (dBμV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBμV/m)	Peak Limit at 3m (dBμV/m)	Margin (dB)
Horizontal	*4882.000	69.6	43.3	39.4	65.7	74.0	-8.3
Horizontal	*7323.000	56.0	42.6	44.7	58.1	74.0	-15.9

	Polarization	Frequency (MHz)	Reading (dBμV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBμV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
	Horizontal	*4882.000	69.6	43.3	39.4	22.5	43.2	54.0	-10.8
Ī	Horizontal	*7323.000	56.0	42.6	44.7	22.5	35.6	54.0	-18.4

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Version: 01-November-2017 Page: 14 of 46 FCC ID 247_b

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

Date of Test: July 10, 2020

Model: VTA-72 Sample: 1/1

Worst-case operating Mode: Transmit (2480MHz)

Modulation type: GFSK

Table 3

Radiated Emissions

(2480MHz)

				,			
Polarization	Frequency	Reading	Pre-	Antenna	Net	Peak Limit	Margin
	(MHz)	(dBμV)	Amp	Factor	at 3m	at 3m	(dB)
			Gain	(dB)	(dBµV/m)	(dBµV/m)	
			(dB)				
Horizontal	**2480.000	97.2	41.5	31.1	86.8		-
Horizontal	*4960.000	70.8	43.3	39.4	66.9	74.0	-7.1
Horizontal	*7440.000	54.4	42.6	44.7	56.5	74.0	-17.5

Polarization	Frequency (MHz)	Reading (dBμV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBμV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2480.000	97.2	41.5	31.1	22.5	64.3		
Horizontal	*4960.000	70.8	43.3	39.4	22.5	44.4	54.0	-9.6
Horizontal	*7440.000	54.4	42.6	44.7	22.5	34.0	54.0	-20.0

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- ** Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

Version: 01-November-2017 Page: 15 of 46 FCC ID 247_b

4.2 Conducted Emission at Mains Terminal

4.2.1 Conducted Emissions Configuration Photograph

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photos.pdf.

4.2.2 Conducted Emissions

Worst Case Conducted Configuration

at 0.150 MHz

Judgement: Passed by 10.37 dB margin

TEST PERSONNEL:

Sign on file

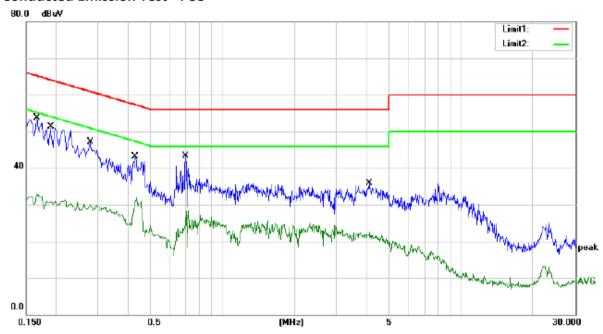
<u>Jason Gao, Test Engineer</u> Typed/Printed Name

July 10, 2020 Date

Version: 01-November-2017 Page: 16 of 46 FCC ID 247_b

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

Date of Test: July 10, 2020


Model: VTA-72 Sample: 1/1

Worst-case operating Mode: Transmit (CH00)

Modulation type: GFSK

Phase: Live

Conducted Emission Test - FCC

Result Table QP

Frequency	QuasiPeak	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBuV)	(kHz)		(dB)	(dB)	(dBuV)
0.166000	53.68	9.000	L1	10.02	11.48	65.16
0.190000	51.20	9.000	L1	10.03	12.84	64.04
0.277900	47.17	9.000	L1	10.07	13.71	60.88
0.430000	43.02	9.000	L1	10.15	14.23	57.25
0.698000	43.38	9.000	L1	10.18	12.62	56.00
4.102000	35.97	9.000	L1	10.18	20.03	56.00

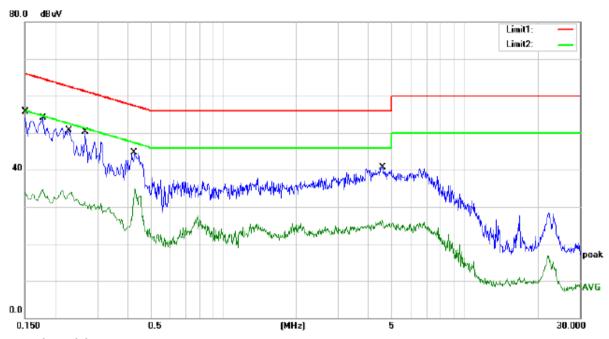
Result Table AV

Frequency	Average	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBuV)	(kHz)		(dB)	(dB)	(dBuV)
0.166000	33.04	9.000	L1	10.02	22.12	55.16
0.190000	30.98	9.000	L1	10.03	23.06	54.04
0.277900	29.81	9.000	L1	10.07	21.07	50.88
0.430000	31.92	9.000	L1	10.15	15.33	47.25
0.698000	28.54	9.000	L1	10.18	17.46	46.00
4.102000	22.51	9.000	L1	10.18	23.49	46.00

Version: 01-November-2017 Page: 17 of 46 FCC ID 247_b

Applicant: INNOVATIVE TECHNOLOGY ELECTRONICS LLC.

Date of Test: July 10, 2020


Model: VTA-72 Sample: 1/1

Worst-case operating Mode: Transmit (CH00)

Modulation type: GFSK

Phase: Neutral

Conducted Emission Test - FCC

Result Table QP

Frequency	QuasiPeak	Bandwidth	Line	Corr.	Margin	Limit	
(MHz)	(dBuV)	(kHz)		(dB)	(dB)	(dBuV)	
0.150000	55.63	9.000	N	10.01	10.37	66.00	
0.178000	54.10	9.000	N	10.02	10.48	64.58	
0.228000	50.64	9.000	N	10.05	11.88	62.52	
0.266000	50.27	9.000	N	10.07	10.97	61.24	
0.426000	44.67	9.000	N	10.14	12.66	57.33	
4.554000	40.77	9.000	N	10.18	15.23	56.00	

Result Table AV

Frequency	Average	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBuV)	(kHz)		(dB)	(dB)	(dBuV)
0.326000	34.34	9.000	N	10.01	21.66	56.00
0.538000	34.68	9.000	N	10.02	19.90	54.58
2.434000	33.94	9.000	N	10.05	18.58	52.52
3.706000	31.52	9.000	N	10.07	19.72	51.24
4.154000	34.94	9.000	N	10.14	12.39	47.33
15.154000	26.39	9.000	N	10.18	19.61	46.00

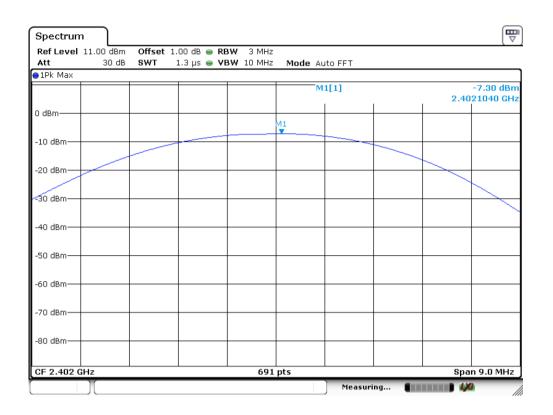
Version: 01-November-2017 Page: 18 of 46 FCC ID 247_b

4.3 Peak Power

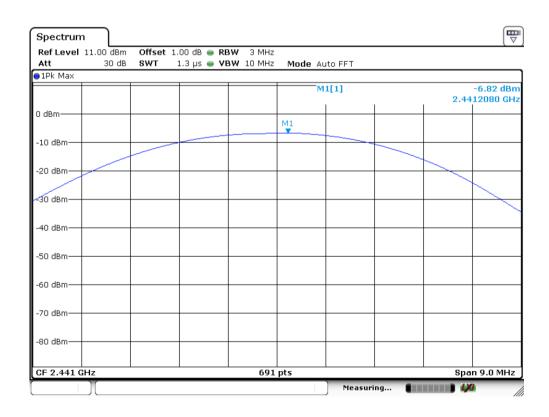
Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1). The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm.

For antenna with gains of 6dBi or less, and frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, the systems operate with an output power no greater than 125 mW.

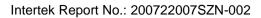
Antenna Gain = 2dBi								
Modulation Type	Frequency (MHz)	Output Power (Peak Reading) (dBm)	Output Power (mW)					
	2402	-7.30	0.186					
GFSK	2441	-6.82	0.208					
	2480	-7.27	0.187					


Cable loss: 1.0 dB External Attenuation: 0 dB

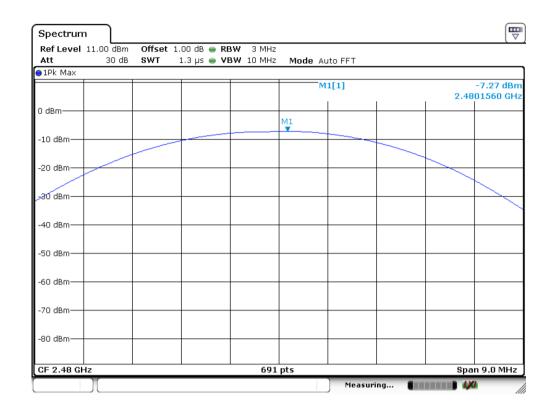
Version: 01-November-2017 Page: 19 of 46 FCC ID 247_b



Modulation Type: GFSK


CH00

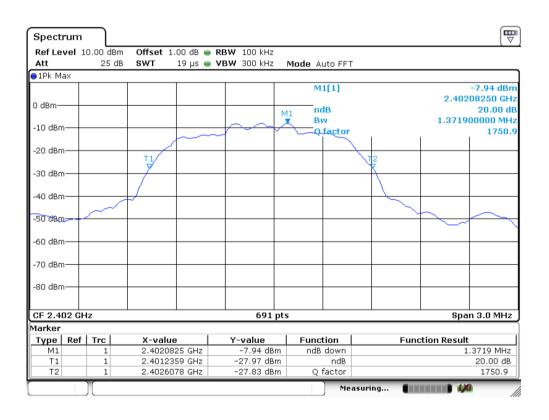
CH39



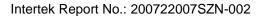
Version: 01-November-2017 Page: 20 of 46 FCC ID 247_b

CH78

4.4 20dB Bandwidth

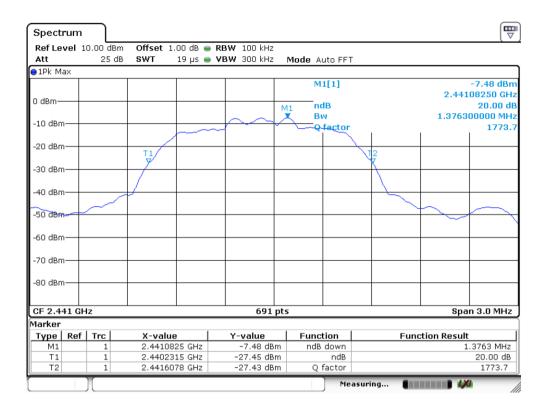

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a) (1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

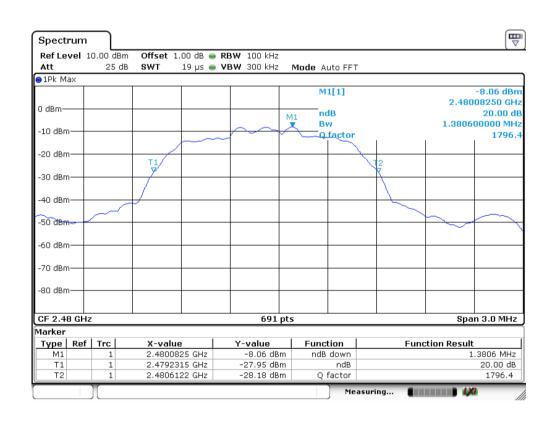

Frequency (MHz)	20 dB Bandwidth (MHz)
2402	1.372
2441	1.376
2480	1.381

Modulation Type: Π/4-DQPSK

CH00



Version: 01-November-2017 Page: 22 of 46 FCC ID 247_b

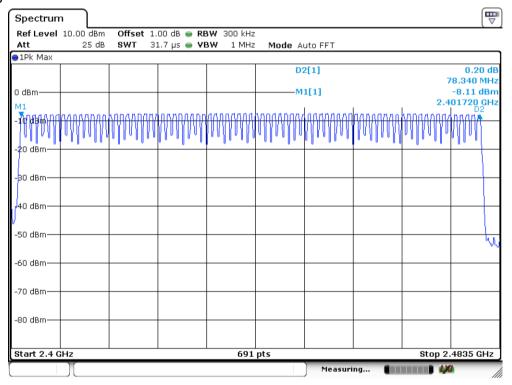


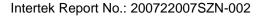
CH39

CH78

4.5 Channel Number (Number of Hopping Frequencies)

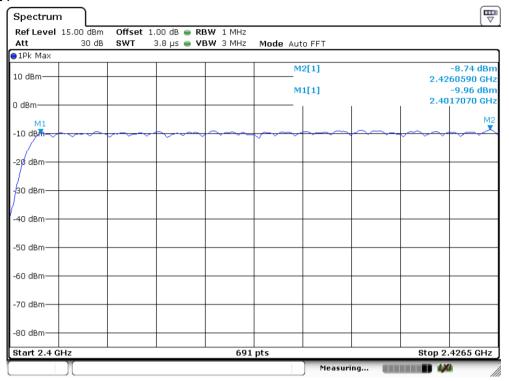
Minimum Number of Hopping Frequencies, FCC Rule 15.247(a) (1) (iii):


The RF passband of the EUT was divided into 3 approximately equal bands. With the analyzer set to MAX HOLD readings were taken for 2-3 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

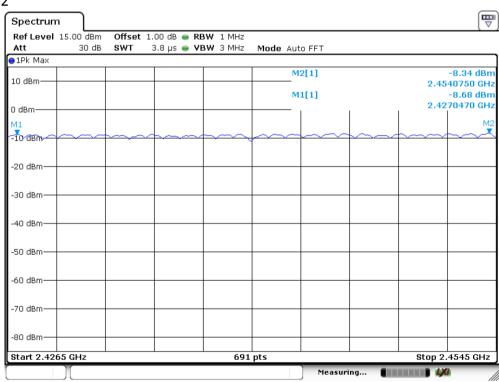

Note: In AFH mode, this device operates using 20 channels and it's satisfied the requirement of limit of minimum of 15 hopping channels.

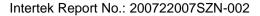
Modulation Type: GFSK

CH00-CH78

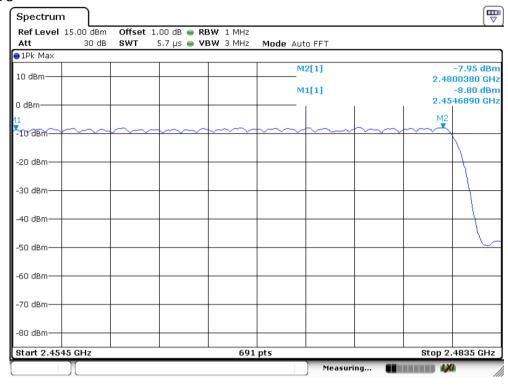


Version: 01-November-2017 Page: 24 of 46 FCC ID 247_b





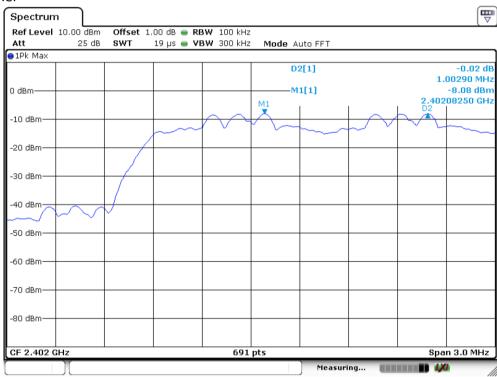
CH00-CH24


CH25-CH52

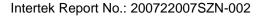
CH53-CH78

4.6 Channel Separation (Carrier Frequency Separation)

Minimum Hopping Channel Carrier Frequency Separation, FCC Ref: 15.247(a)(1):

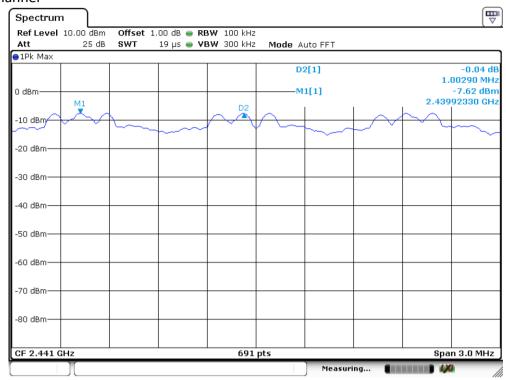

Using the DELTA MARKER function of the analyzer, the frequency separation between two adjacent channels was measured and compared against the limit:

Not less than 2/3 of 20dB bandwidth of hopping channel: $1.381 \times 2/3 = 0.921 \text{MHz}$


Minimum Channel Se	naration	0.999 MHz
William Charine 3e	paration	U.333 IVII IZ

Modulation Type: Π/4-DQPSK

Low Channel



Version: 01-November-2017 Page: 27 of 46 FCC ID 247_b

Middle Channel

High Channel

Version: 01-November-2017 Page: 28 of 46 FCC ID 247_b

4.7 Dwell Time (Time of Occupancy)

Average Channel Occupancy Time, FCC Ref: 15.247(a) (1)(iii):

The spectrum analyzer center frequency was set to one of the known hopping channels with a longer sweep time to show two successive hops on a channel; the SPAN was set to ZERO SPAN, and the TRIGGER was set to VIDEO. RBW shall be ≤channel spacing and where possible RBW should be set >>1/T, where T is the expected dwell time per channel. The time duration of the transmissions so captured was measured with the MARKER DELTA function.

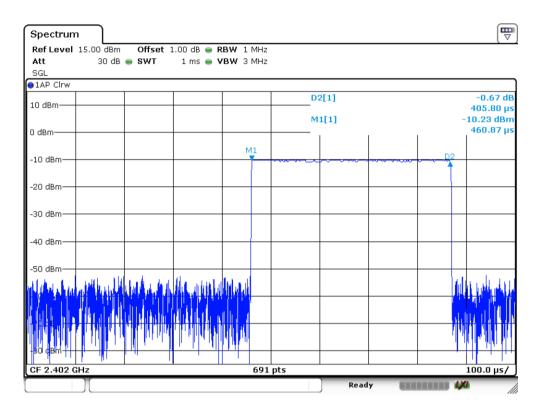
Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Different modes of operation were performed and only the worst case data was reported.

Worst Test Result:

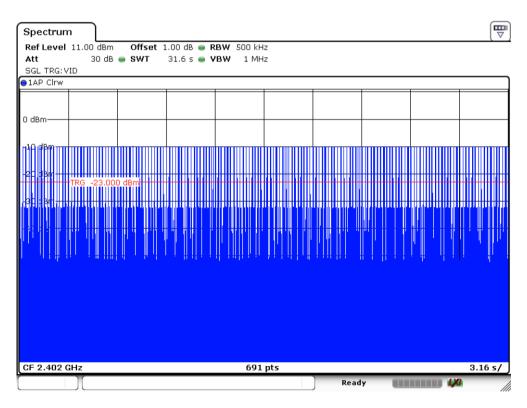
Normal hopping mode

Modulation Type	Packet	Max Dwell Time	Limit (s)	Result
	DH1	0.406ms * 180 = 73.08ms	0.4	Pass
П/4-DQPSK	DH3	1.661ms * 121 = 200.98ms	0.4	Pass
	DH5	2.900ms * 96 = 278.40ms	0.4	Pass

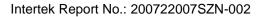
AFH mode:


Modulation Type	Packet	Max Dwell Time	Limit (s)	Result
	DH1	0.406ms * 80 = 32.48ms	0.4	Pass
П/4-DQPSK	DH3	1.661ms * 38 = 63.12ms	0.4	Pass
	DH5	2.900ms * 31= 89.90ms	0.4	Pass

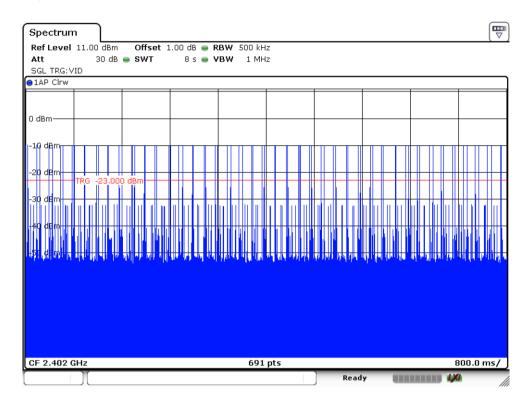
Version: 01-November-2017 Page: 29 of 46 FCC ID 247_b



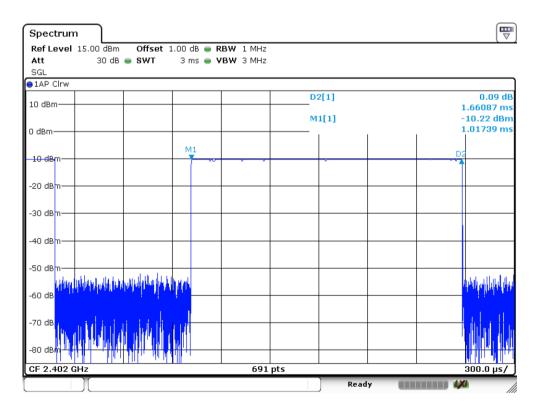
Modulation Type: Π/4-DQPSK


Packet: DH1

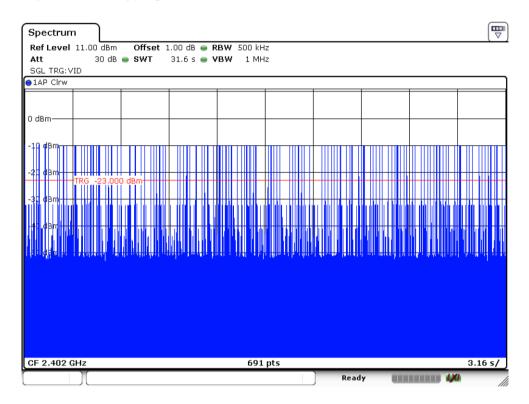
Number of hops (Normal hopping mode)

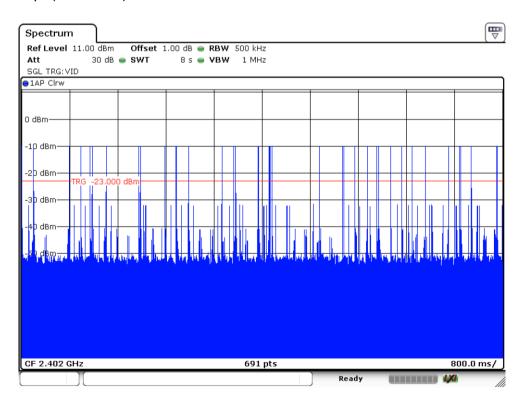


Version: 01-November-2017 Page: 30 of 46 FCC ID 247_b

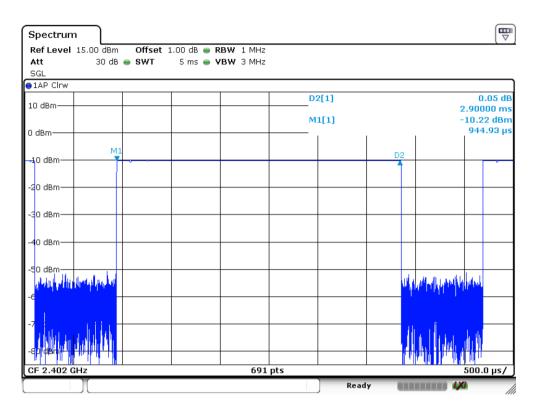


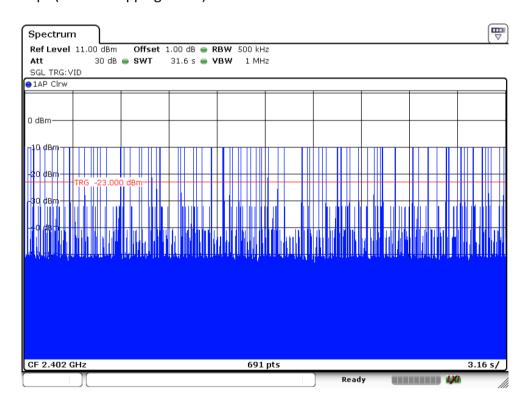
Number of hops (AFH mode)

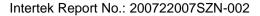

Packet: DH3


Version: 01-November-2017 Page: 31 of 46 FCC ID 247_b

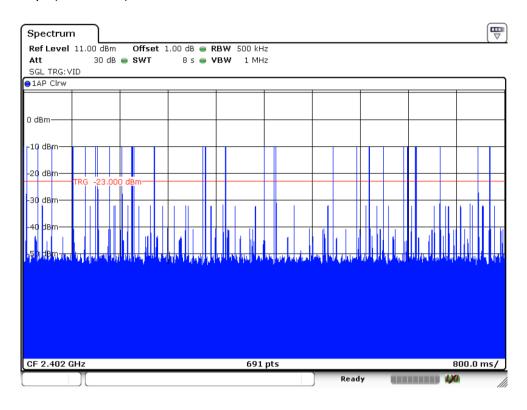
Number of hops (Normal hopping mode)


Number of hops (AFH mode)


Version: 01-November-2017 Page: 32 of 46 FCC ID 247_b


Packet: DH5

Number of hops (Normal hopping mode)



Version: 01-November-2017 Page: 33 of 46 FCC ID 247_b

Number of hops (AFH mode)

Version: 01-November-2017 Page: 34 of 46 FCC ID 247_b

4.8 Band Edge

Out of Band Conducted Emissions, FCC Rule 15.247(d):

In any 100 KHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.

Furthermore, delta measurement technique for measuring bandage emissions was shown as below:

(i) Lower channel 2402MHz:

Peak Resultant field strength = Fundamental emissions (peak value) — delta from the bandedge plot

= 83.7dBμv/m-32.2dB

 $= 51.5 dB\mu v/m$

Average Resultant field strength = Fundamental emissions (Average value) – delta from the bandedge plot

= 61.2dBµv/m-32.2dB

 $= 29.0 dB \mu v/m$

(ii) Upper channel 2480MHz:

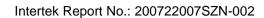
Peak Resultant field strength = Fundamental emissions (peak value) — delta from the bandedge plot

06.0.15 / 44.2

 $= 86.8 dB\mu v/m-44.2 dB$

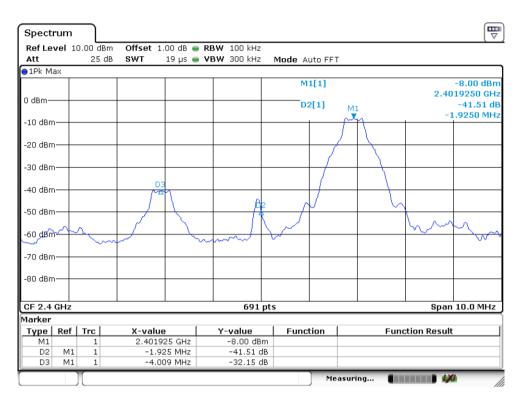
= 42.6dBμv/m

Average Resultant field strength = Fundamental emissions (Average value) – delta from the


bandedge plot

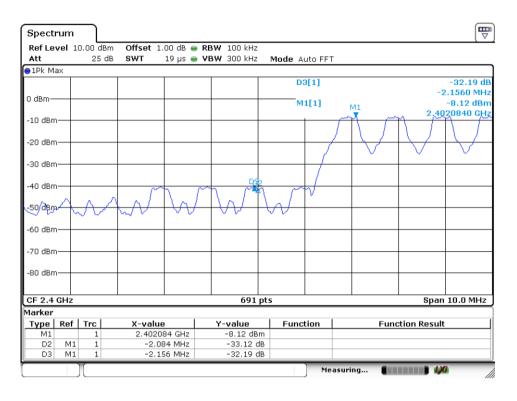
 $= 64.3 dB \mu v/m-44.2 dB$

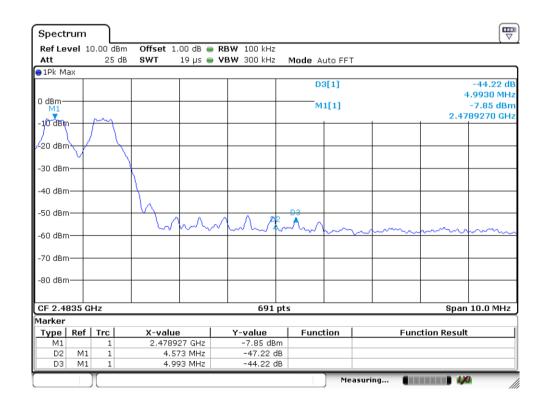
 $= 20.1 dB\mu v/m$


The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed $74dB\mu\nu/m$ (Peak Limit) and $54dB\mu\nu/m$ (Average Limit).

Version: 01-November-2017 Page: 35 of 46 FCC ID 247_b

Modulation Type: GFSK Hopping function off





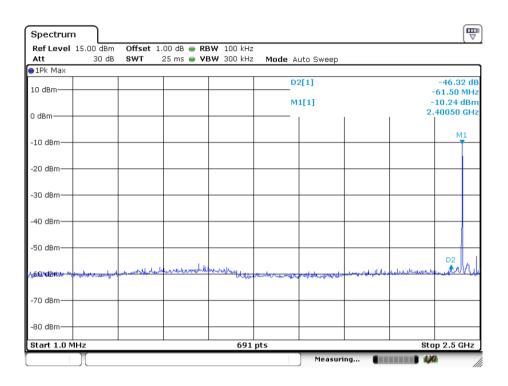
Version: 01-November-2017 Page: 36 of 46 FCC ID 247_b

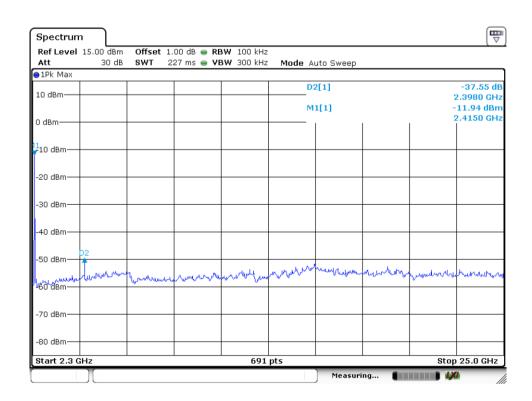
Hopping function on

Version: 01-November-2017 Page: 37 of 46 FCC ID 247_b

4.9 Transmitter Spurious Emissions (Conducted)

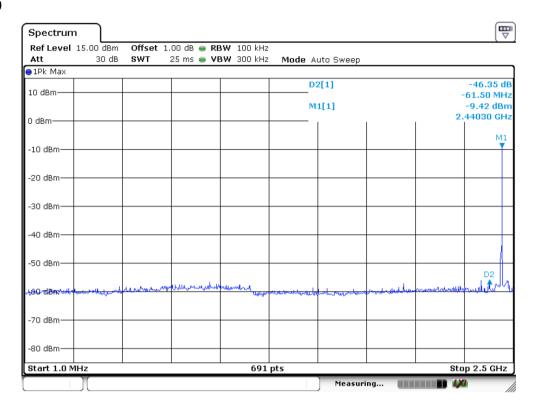
Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

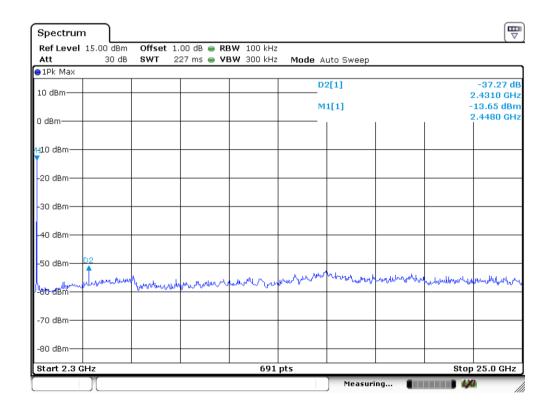

All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.


Version: 01-November-2017 Page: 38 of 46 FCC ID 247_b

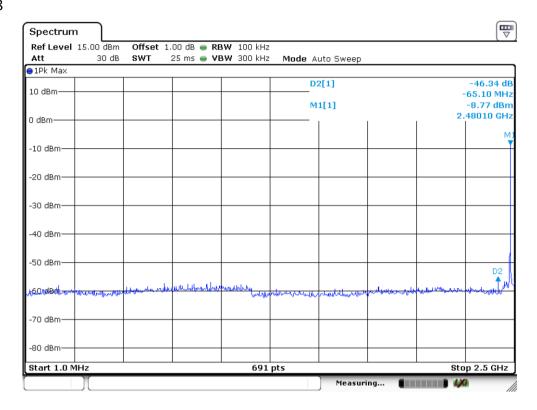
Modulation Type: GFSK

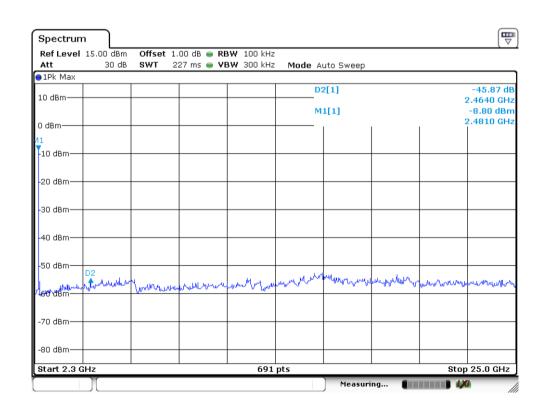
CH00





Version: 01-November-2017 Page: 39 of 46 FCC ID 247_b


CH39



CH78

5.0 **Equipment Photographs**

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

6.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

8.0 <u>Instruction Manual</u>

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

Version: 01-November-2017 Page: 42 of 46 FCC ID 247_b

9.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandedge, the test procedure and calculation of factor such as pulse desensitization.

9.1 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 625 μ s for Bluetooth. With a resolution bandwidth (3dB) of 1MHz, so the pulse desensitivity factor is 0dB.

9.2 Calculation of Average Factor

Based on the Bluetooth Specification Version 4.2 (without BLE) and worst case AFH mode, transmitter ON time is independent of packet type (DH1, DH3 and DH5) and packet length, the AFH mode Duty cycle connection factor as below:

Channel hop rate = 800 hops/second (AFH Mode)

Adjusted channel hop rate for DH5 mode = 133.33 hops/second

Time per channel hop = 1/133.33 hops/second = 7.5 ms

Time to cycle through all channels = 7.5 x 20 channels = 150 ms

Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)

Worst case dwell time = 7.5 ms

Duty cycle connection factor = 20log10 (7.5ms / 100ms) = -22.5 dB

Version: 01-November-2017 Page: 43 of 46 FCC ID 247_b

9.3 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10: 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter, up to 1GHz 0.8m and above 1GHz 1.5m in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 9.2.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz with RBW 9KHz used.

Version: 01-November-2017 Page: 44 of 46 FCC ID 247_b

9.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.10: 2013.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used (RBW 3MHz used for fundamental emission).

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

Version: 01-November-2017 Page: 45 of 46 FCC ID 247_b

10 <u>Test Equipment List</u>

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
EE-089	EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	16-May-2020	15-May-2021
EE-040	Pre-Amplifier	НР	8447F	2944A07999	16-May-2020	15-May-2021
EE-245	Bilog Antenna	Schwarzbeck	VULB9163	142	16-May-2020	15-May-2021
EE-157	Loop Antenna	ARA	PLA- 1030/B	1029	16-May-2020	15-May-2021
EE-351	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	16-May-2020	15-May-2021
EE-095	Horn Antenna	Schwarzbeck	BBHA 9120	D143	16-May-2020	15-May-2021
EE-085-1	Cable	Schwarzbeck	AK9513	ACRX1	16-May-2020	15-May-2021
EE-085-2	Cable	Rosenberger	N/A	FP2RX2	16-May-2020	15-May-2021
EE-085-4	Cable	Schwarzbeck	AK9513	CRPX1	16-May-2020	15-May-2021
EE-085-5	Cable	Schwarzbeck	AK9513	CRRX2	16-May-2020	15-May-2021
EE-229	Test Receiver	Rohde & Schwarz	ESCS30	828985/018	16-May-2020	15-May-2021
EE-156	L.I.S.N.	Schwarzbeck	NNLK8129	8129203	16-May-2020	15-May-2021
EE-032	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	16-May-2020	15-May-2021
EE-407	Voltage Probe	Rohde & Schwarz	TK9416	N/A	16-May-2020	15-May-2021

Version: 01-November-2017 Page: 46 of 46 FCC ID 247_b