FCC 47 CFR MPE REPORT

INNOVATIVE TECHNOLOGY ELECTRONICS LLC

3-IN-1 TURNTABLE

Model Number: VTA-65XXXX (XXXX can be 0-9,A-Z or blank and means unit color or pattern)

FCC ID:2AFHW-VTA65

Prepared for:	INNOVATIVE TECHNOLOGY ELECTRONICS LLC			
	1 CHANNEL DRIVE, PORT WASHINGTON, New York 11050, United States.			
Prepared By:	EST Technology Co., Ltd.			
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R1807023		
Date of Test:	June 20~ July 07, 2018		
Date of Report:	July 10, 2018		

EST Technology Co. ,Ltd Report No. ESTE-R1807023

Maximum Permissible Exposure

1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

(a) Limits for Occupational / Controlled Exposure

Frequency	Electric Field	Magnetic	Power	Averaging
Range (MHz)	Strength E)	Field Strength	Density (S)	Times E
	(V/m)	(H) (A/m)	(mW/cm2)	2 , H 2 or
				S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic	Power	Averaging
Range (MHz)	Strength E)	Field Strength	Density (S)	Times E
	(V/m)	(H) (A/m)	(mW/cm2)	2, H 2 or
				S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

2. MPE Calculation Method

E (V/m) = (30*P*G) 0.5/d Power Density: Pd (W/m2) = E2/377

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

Pd = (30*P*G) / (377*d2)

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

EST Technology Co. ,Ltd Report No. ESTE-R1807023 Page 2 of 3

3. Conducted Power Result

Mode	Frequency (MHz)	Peak output power (dBm)		Target	Antenna gain	
			Peak output power (mW)	power (dBm)	(dBi)	(Linear)
GFSK	2402	1.676	1.471	1±1	0	1
	2441	1.906	1.551	1±1	0	1
	2480	2.350	1.718	2 ± 1	0	1
8-DPSK	2402	0.379	1.091	0 ± 1	0	1
	2441	0.662	1.165	0±1	0	1
	2480	1.011	1.262	1±1	0	1

4. Calculated Result and Limit

		Antenna gain			Limited	
Mode	Target power (dBm)	(dBi)	(Linear)	Power Density (S) (mW /cm2)	of Power Density (S) (mW	Test Result
					/cm2)	
GFSK	3	0	1	0.00040	1	Compiles
8-DPSK	2	0	1	0.00032	1	Compiles

EST Technology Co. ,Ltd Report No. ESTE-R1807023 Page 3 of 3