FCC 47 CFR MPE REPORT

INNOVATIVE TECHNOLOGY ELECTRONICS LLC

BLUETOOTH TURNTABLE

Model Number: VSC-550BT

Additional Model: VSC-580BT

FCC ID: 2AFHW-VSC550BT

Prepared for:	INNOVATIVE TECHNOLOGY ELECTRONICS LLC				
	1 CHANNEL DRIVE, PORT WASHINGTON, New York 11050, United States.				
Prepared By:	EST Technology Co., Ltd.				
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China				
Tel: 86-769-83081888-808					

Report Number:	ESTE-R2008040
Date of Test:	Aug. 04~12, 2020
Date of Report:	Aug. 25, 2020

EST Technology Co. ,Ltd Report No. ESTE-R2008040 Page 1 of 4

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

EST Technology Co. ,Ltd Report No. ESTE-R2008040 Page 2 of 4

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency	Peak output power	Peak output	Target power	Antenna gain	
Wiode	(MHz)	(dBm)	power (mW)	(dBm)	(dBi)	(Linear)
GFSK	2402	-2.63	0.5458	-2±1	0	1
	2441	-3.25	0.4732	-3±1	0	1
	2480	-3.92	0.4055	-3±1	0	1
8-DPSK	2402	0.59	1.1455	0±1	0	1
	2441	-0.01	0.9977	0±1	0	1
	2480	-0.74	0.8433	0±1	0	1

3. Calculated Result and Limit

Mode	Target power	Antenna gain		Power Density (S)	Limited of Power Density	Test Result	
	(dBm)	(dBi)	(Linear)	2	(S) (mW/cm^2)		
2.4G Band							
GFSK	-1	0	1	0.00016	1	Compiles	
8-DPSK	1	0	1	0.00025	1	Compiles	

End of Test Report

