

FCC EVALUATION REPORT

For Certification of Conformity

Manufacturer: SL CORPORATION

Date of Issue: Dec. 06, 2019

77 Gongdanó-ro, Jillyang-eup, Gyeongsan-si,

Order Number: GETEC-C1-19-481

Kyeongsangbuk-do, 712-837, Republic of Korea

Test Report Number: GETEC-E3-19-027-R2

Attn: Mr.Un-Yong, Jang / Assistant Manager

Test Site: GUMI UNIVERSITY EMC CENTER

(FCC Test Firm Registration No.: 269701)

RESPONSIBLE PARTY: SL CORPORATION

ADDRESS

: 77 Gongdan6-ro, Jillyang-eup, Gyeongsan,

Kyeongsangbuk-do, 712-837, Republic of Korea

CONTACT PERSON

: Mr.Un-Yong, Jang / Regulation

& Homologation Team Assistant Manager

Rule Part(s)

: FCC Part 18

Test Method

: FCC/OET MP-5

EUT Type

: Wireless Charger

Equipment Class

: Part 18 Consumer Device(8CC)

Type of Authority

: Certification

Model Name

: WC-LP11

Trade Mark

: SL

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in FCC/OET MP-5 (1986)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by,

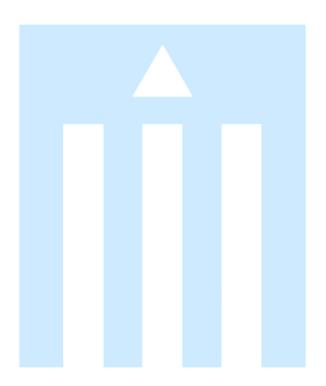
Reviewed by,

Hyun Kim, Senior Engineer

GUMI UNIVERSITY EMC CENTER

Jae-Hoon Jeong, Technical Manager GUMI UNIVERSITY EMC CENTER

GETEC-QP-28-007 (Rev.03)


EMC CENTER

: GETEC-C1-19-481

Version

Test Report No.	Date	Description
GETEC-E3-19-027	Nov. 15, 2019	- First Approval Report
GETEC-E3-19-027-R1	Nov. 28, 2019	- Added test summary - Changed the section 6.6
GETEC-E3-19-027-R2	Dec. 06, 2019	- Changed the section 7.6

CONTENTS

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
3. PRODUCT INFORMATION	6
3.1 DESCRIPTION OF EUT	6
3.2 DEFINITION OF MODELS	6
3.3 SUPPORT EQUIPMENT / CABLES USED	7
3.4 MODIFICATION ITEM(S)	7
4. DESCRIPTION OF TESTS	8
4.1 TEST CONDITION	8
4.2 GENERAL TEST PROCEDURES	8
5. SUMMARY OF TEST RESULTS	9
6. CONDUCTED EMISSION	10
6.1 OPERATING ENVIRONMENT	11
6.2 TEST SET-UP	11
6.3 MEASUREMENT UNCERTAINTY	11
6.4 LIMIT	12
6.5 TEST EQUIPMENT USED	12
6.6 TEST DATA FOR CONDUCTED EMISSION	12
7. RADIATED EMISSION	13
7.1 OPERATING ENVIRONMENT	13
7.2 TEST SET-UP	13
7.3 MEASUREMENT UNCERTAINTY	14
7.4 LIMIT	15
7.5 TEST EQUIPMENT USED	15
7.6 TEST DATA FOR RADIATED EMISSION	
8. SAMPLE CALCULATIONS	17
8.1 EXAMPLE 1:	17
8.2 EXAMPLE 2:	17
9. RECOMMENDATION & CONCLUSION	17
APPENDIX A - ATTESTATION STATEMENT	
APPENDIX B - LABELLING	
APPENDIX C – BLOCK DIAGRAM	
APPENDIX D – SCHEMATIC DIAGRAM	
APPENDIX E – TEST SETUP PHOTOGRAPH	
APPENDIX F – EXTERNAL PHOTOGRAPH	
APPENDIX G – INTERNAL PHOTOGRAPH	
APPENDIX H – USER'S MANUAL	
APPENDIX I - OPERATIONAL DESCRIPTION	

APPENDIX J - PART LIST

Scope: Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

1. General Information

Applicant: SL CORPORATION

Applicant Address: 77 Gongdan6-ro, Jillyang-eup, Gyeongsan, Kyeongsangbuk-do, 712-837, Republic of Korea

Applicant: SL CORPORATION

Applicant Address: 77 Gongdan6-ro, Jillyang-eup, Gyeongsan, Kyeongsangbuk-do, 712-837, Republic of Korea

Contact Person: Mr.Un-Yong, Jang / Regulation & Homologation Team Assistant Manager

Tel. Number: +82-53-850-8765 Fax Number: +82-53-850-8700

•	FCC ID.	2AFGCWC-LP11
•	EUT Type	Wireless Charger

• Model Name WC-LP11

• Rule Part(s) FCC Part 18

• Test Method FCC/OET MP-5

• Type of Authority Certification

• Test Procedure(s) FCC/OET MP-5

• **Dates of Test** Nov. 01, 2019

• Place of Test GUMI UNIVERSITY EMC CENTER (FCC Test Firm Registration Number: 269701) 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, South Korea.

• Test Report Number GETEC-E3-19-027-R2

• **Dates of Issue** Dec. 06, 2019

GETEC

2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014) was used in determining radiated and conducted emissions emanating from **SL CORPORATION.** Wireless Charger. (Model name: WC-LP11)

These measurement tests were conducted at GUMI UNIVERSITY EMC CENTER.

The site address is 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, South Korea

This test site is one of the highest point of GUMI UNIVERSITY at about 200 kilometers away from Seoul city and 40 kilometers away from Daegu city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of §2.948 according to ANSI C63.4 (2014)

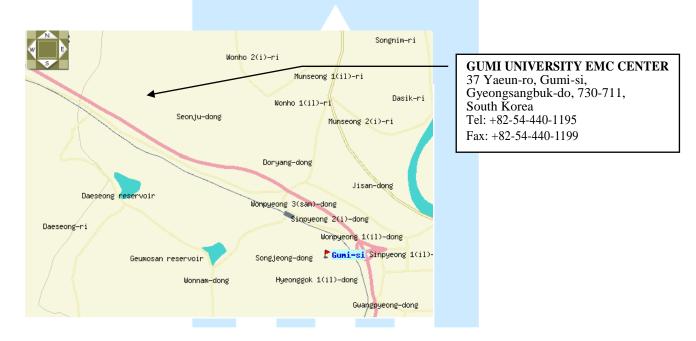


Fig 1. The map above shows the GUMI UNIVERSITY in vicinity area.

: GETEC-C1-19-481 Test Report Number : GETEC-E3-19-027-R2

3. Product Information

3.1 Description of EUT

The Equipment under Test (EUT) is the SL CORPORATION. Wireless Charger.(Model Name: WC-LP11) FCC ID.: 2AFGCWC-LP11

Type of Equipment	Wireless Charger
Model Name	WC-LP10
Serial Number	Prototype
RF Frequency	110 kHz ±5 kHz
External connector	DC input 1 EA
Rated Voltage	Input: DC 13.5 V
Output Electricity Power	Max 5 W(5 V, 1 A)
Antenna type	A13 Standard Coil
Size(W x H x T)	80.2 (mm) x 147.8 (mm) x 23.2 (mm)
weight	273.9 g

GETEC-QP-28-007 (Rev.03)

- None.

: GETEC-C1-19-481 Test Report Number : GETEC-E3-19-027-R2

3.3 Support Equipment / Cables used

3.3.1 Used Support Equipment

Description	Manufacturer	Model Name	S/N & FCC ID.
LGIT Wireless charger RX module	LG innoteck	-	S/N: None. FCC ID.: None.

See "Appendix E – Test Setup Photographs" for actual system test set-up

3.3.2 System configuration

Description	Manufacturer	Model Name	S/N & FCC ID.
None.	-	-	S/N: FCC ID.:

3.3.3 Used Cable(s)

Cable Name	Condition						Description
Power cable	Connected t	to the EUT	Γ and DC po	wer sup	ply		1.00 m Unshielded.

3.4 Modification Item(s)

-. None

4. Description of tests

4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used.

The measurements were carried out while varying operating modes and cable positions within typically arrangement to determine maximum emission level.

The representative and worst test mode(s) were noted in the test report.

- Test Voltage / Frequency: DC 13.5 V
 - * The supplying power of this device is DC 13.5 V from a Car Battery. Therefore conducted emission test was not applicable.
- Operating condition during the test(s):

This device has been tested in the configurations of charging mode

Charging Current	Support Equipment	Comment
1 000 mA	LGIT Wireless charger RX module(5W)	

4.2 General Test Procedures

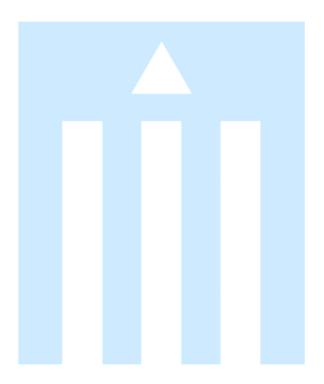
Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 (2014) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which Fixed at 2 m above the ground plane to find out the highest emission.

And also, each emission was to be maximized by the table was turned from 0 degrees to 360 degrees. In order to find out the max emission, the relative positions of this hand-held transmitter (EUT) were rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4 (2014).



5. Summary of test results

FCC Part Section(s)	Test Description	Test Result
§18.305	Radiated Spurious Emissions	Pass
§18.307	AC Power line Conducted Emissions	N/A ¹⁾

Note)

1) The supplying power of this device is DC 13.5 V from a Car Battery.

6. Conducted Emission

-Test Description

The Line conducted emission test facility is inside a 4 m \times 8 m \times 2.5 m shielded enclosure. (FCC Test Firm Registration No.: 269701)

The EUT was placed on a non-conducting 1.0 m by 1.5 m table, which is 0.8 m in height and 0.4 m away from the vertical wall of the shielded enclosure.

The EUT is powered from the Rohde & Schwarz LISN (ENV216) and the support equipment is powered from the Rohde & Schwarz LISN (ENV216). Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver (Rohde & Schwarz, ESCI).

Exploratory measurements were conducted to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Exploratory measurements were scanned using Peak mode of EMI Test receiver from 150 kHz to 30 MHz with 20 ms sweep time. The final measurements were measured with Quasi-Peak and Average mode.

The bandwidth of EMI Test Receiver was set to 9 kHz. Interface cables were connected to the available interface ports of the test unit. Excess cable lengths were bundled at center with $30 \text{ cm} \sim 40 \text{ cm}$.

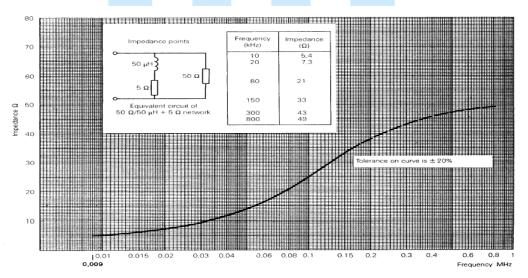


Fig 2. Impedance of LISN

GETEC

6.1 Operating Environment

Temperature : -. Relative Humidity : -.

6.2 Test Set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.8 m heights above the floor, 0.4 m from the reference ground plane (GRP) wall and 0.8 m from AMN & ISN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines entering the shield room, were filtered.

6.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement."

The measurement uncertainty was given with a confidence of 95 %.

Test Items	Uncertainty	Remark
Conducted emission (9 kHz ~ 150 kHz)	3.84 dB	Confidence level of approximately 95 % ($k = 2$)
Conducted emission (150 kHz ~ 30 MHz)	3.31 dB	Confidence level of approximately 95 % $(k = 2)$

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

The listed uncertainties are the worst case uncertainty for the entire range of measurement. please note that the uncertainty values are provided for informational purposes only are not used in determining the PASS/FAIL results

6.4 Limit

. Zmmy							
RFI Conducted	FCC Limit(dBμV/m)						
Freq. Range	Quasi-Peak	Average					
150 kHz ~ 0.5 MHz	66 ~ 56*	56 ~ 46*					
0.5 MHz ~ 5 MHz	56	46					
5 MHz ~ 30 MHz	60	50					

^{*}Limits decreases linearly with the logarithm of frequency.

6.5 Test Equipment used

	Model Name	Manufacturer	Description	Serial Number	Due to Calibration
□ -	ESCI	Rohde & Schwarz	EMI test receiver	100237	Apr 13, 2020
□ -	ENV216	Rohde & Schwarz	LISN	100173	Apr 09, 2020
□ -	ENV216	Rohde & Schwarz	LISN	100172	Apr 10, 2020

6.6 Test data for Conducted Emission

-. Test Date :
-. Reference Standard :
-. Test Procedure(s) :
-. Operating Condition :
-. Frequency rage :

-. Comment : N/A 1)

Note.

1) The supplying power of this device is DC 13.5 V from a Car Battery.

GETEC

7. Radiated Emission

7.1 Operating Environment

Temperature : $23.1~^{\circ}\text{C}$ Relative Humidity : $47.3~^{\circ}\text{R.H.}$

7.2 Test Set-up

The Radiated emission measurements were conducted at the worst test conditions.

The measurements of below 1 GHz were made at 3 m Semi Anechoic Chamber or 10 m Semi Anechoic Chamber (FCC Test Firm Registration No.: 269701) that complies with CISPR 16/ANSI C63.4.

The frequency range of 9 kHz to 30 MHz, The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane. The turntable with EUT was rotated 360° and the receive antenna was fixed 2.0 m on the ground plane.

The frequency range of 30 MHz to 1 000 MHz, The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane. The turntable with EUT was rotated 360° and adjusting the receive antenna height from 1.0 m to 4.0 m. All frequencies were investigated in both horizontal and vertical antenna polarity.

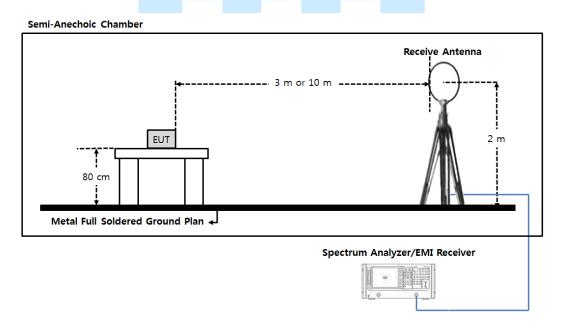


Fig 3. Configurations of Radiated emission test (9 kHz to 30 MHz)

GETEC

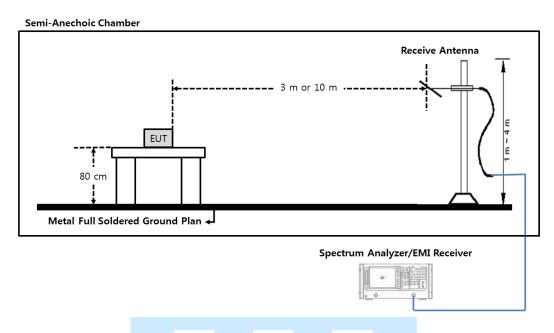


Fig 4. Configurations of Radiated emission test (30 MHz to 1 000 MHz)

7.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95 %.

Test Items(Anechoic Chamber)	Uncertainty	Remark		
Radiated emission (30 MHz ~ 300 MHz, 3 m, Vertical)	5.14 dB	Confidence level of approximately 95 % $(k = 2)$		
Radiated emission (30 MHz ~ 300 MHz, 3 m, Horizontal)	5.10 dB	Confidence level of approximately 95 % $(k = 2)$		
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Vertical)	6.05 dB	Confidence level of approximately 95 % ($k = 2$)		
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Horizontal)	5.19 dB	Confidence level of approximately 95 % ($k = 2$)		
Radiated emission (1 000 MHz ~ 6 000 MHz, 3 m)	5.77 dB	Confidence level of approximately 95 % ($k = 2$)		
Radiated emission (6 000 MHz ~ 18 000 MHz, 3 m)	5.77 dB	Confidence level of approximately 95 % ($k = 2$)		

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

The listed uncertainties are the worst case uncertainty for the entire range of measurement. please note that the uncertainty values are provided for informational purposes only are not used in determining the PASS/FAIL results

7.4 Limit

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (µV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25×SQRT(power/500)	300 ¹300
	Any non-ISM frequency	Below 500 500 or more	15×SQRT(power/500)	300 1300
Industrial heaters and RF stabilized arc welders	On or below 5,725 MHz Above 5,725 MHz	Any Any	10 (2)	1,600 (2)
Medical diathermy	Any ISM frequency Any non-ISM frequency	Any Any	25 15	300 300
Ultrasonic	Below 490 kHz	Below 500 500 or more	2,400/F(kHz) 2,400/F(kHz)× SQRT(power/500)	300 ³ 300
	490 to 1,600 kHz Above 1,600 kHz	Any Any	24,000/F(kHz) 15	30 30
Induction cooking ranges	Below 90 kHz On or above 90 kHz	Any Any	1,500 300	⁴ 30 ⁴ 30

Note.

- 1) Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.
- 2) Reduced to the greatest extent possible.
- 3) Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 watts.
- 4) Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.

7.5 Test Equipment used

Model Name	Manufacturer	Description	Serial Number	Due to Calibration	
■ - ESU 40	Rohde & Schwarz	EMI Test Receiver	100266	Apr. 12, 2020	
■ - HFH2-Z2	Rohde & Schwarz	Loop ANT	100041	Dec. 06, 2019	
□ - VULB9160	Schwarzbeck	Broad Band Test Antenna	3099	Sep. 29, 2019	
□ - BBHA9120D	Schwarzbeck	Horn ANT	207	Sep. 18, 2020	
■ - MCU066	maturo GmbH	Position Controller	1390306	N/A	
■ - TT2.5SI	maturo GmbH	Turntable	1390307	N/A	
□ - AM 4.0	maturo GmbH	Antenna Mast	1390308	N/A	

All test equipment used is calibrated on a regular basis.

7.6 Test data for Radiated Emission

-. Test Date : Nov. 01, 2019

-. Measurement Distance : 3 m

-. Note : frequency range to be scanned up to 30 MHz, because the frequency band in which the

EUT operates less than 1.705 MHz

-. Measurement setting

Frequency range	9 kHz ~ 150 kHz	0.15 MHz ~ 30 MHz			
Detector mode	Average	Average			
Resolution bandwidth	200 Hz	9 kHz			

-. Measurement Data: Wireless charging mode (5 W)

Division	Frequency [MHz]	Detector mode	ANT Pol.	Reading [dBuV]	T.F [dB/m]	Field Strength [dBuV/m]		Lin [dBu		Margin [dB]
						3 m	300 m	3 m	300 m	
F	0.112	AV	V1	68.40	19.7	88.1	8.10	103.52	23.52	15.42
S	0.010	AV	V1	48.93	19.7	68.63	- 11.37	103.52	23.52	34.89
S	0.035	AV	V1	46.80	19.7	66.5	- 13.50	103.52	23.52	37.02
S	0.451	AV	V1	27.51	19.5	47.01	- 32.99	103.52	23.52	56.51

Note.1 The worst case data were reported

And no other spurious and harmonic emissions were reported greater than listed emission above table

Note.2 "F"=Fundamental / "S"=Spurious / "*" = Noise Floor

Note.3 All measurements were recorded using a spectrum analyzer employing a peak detector for below 30 MHz

Note.4 Distance Correction Factor

For 300 m: $40 \log(300/3) = 80 \text{ dB}$

Note.5 Sample calculation

T.F = AF + CL - AG

Field Strength = Reading + T.F

Margin = Limit – Field Strength

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

Note.6 "V1"= Vertical and perpendicular to the centerline / "V2"=vertical and parallel to the centerline

"H" = horizontal (parallel to the ground)

None.7 << The margin is More than 20 dB

GETEC

8. Sample Calculations

$$\begin{split} dB\mu V &= 20\ Log\ _{10}(\mu V/m)\\ dB\mu V &= dBm + 107\\ \mu V &= 10\ ^{(dB\mu V/20)} \end{split}$$

8.1 Example 1:

■ 20.3 MHz

Class B Limit $= 250 \mu V = 48 dB\mu V$

Reading = $39.2 dB\mu V$

 $10^{(39.2dB\mu V/20)} = 91.2 \mu V$

Margin = $48 \text{ dB}\mu\text{V} - 39.2 \text{ dB}\mu\text{V}$

= 8.8 dB

8.2 Example 2:

■ 66.7 MHz

Class B Limit = $100 \mu V/m = 40.0 dB\mu V/m$

Reading = $31.0 \text{ dB}\mu\text{V}$

Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 \text{ dB}\mu\text{V/m}$

Margin = $40.0 \text{ dB}\mu\text{V/m} - 36.8 \text{ dB}\mu\text{V/m}$

= 3.2 dB

9. Recommendation & Conclusion

The data collected shows that the **SL CORPORATION. Wireless Charger**(**Model Name: WC-LP11**) was complies with §18.305 of the FCC Rules.

- The end -