

FCC EVALUATION REPORT FOR CERTIFICATION

Manufacturer: SL CORPORATION

Date of Issue: August 10, 2015

77 Gongdan6-ro, Jillyang-eup, Gyeongsan-si,

Attn: Mr.Un-Yong, Jang / Assistant Manager

Order Number: GETEC-C1-15-391

Kyeongsangbuk-do, 712-837, Republic of Korea

Test Report Number: GETEC-E3-15-033

(FCC Test Firm Registration No.: 269701)

Test Site: GUMI UNIVERSITY EMC CENTER

FCC ID. :

2AFGCWC-LP02

Applicant:

SL CORPORATION

Rule Part(s)

: FCC Part 18

Test Method

: FCC/OET MP-5

EUT Type

: Wireless Charger

Equipment Class

: Part 18 Consumer Device(8CC)

Type of Authority

: Certification

Model Name

: WC-LP02

Trade Mark

: SL

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in FCC/OET MP-5 (1986)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by,

Reviewed by,

Soon-Hoon Jeong, Senior Engineer GUMI UNIVERSITY EMC CENTER

Jae-Hoon Jeong, Technical Manager GUMI UNIVERSITY EMC CENTER

GUMIUNIVERSITY

EMC CENTER

APPENDIX J - PART LIST

CONTENTS

: GETEC-C1-15-391

1. GENERAL INFORMATION.	•••••	•••••		•••••	3
2. INTRODUCTION		•••••	•••••	•••••	4
3. PRODUCT INFORMATION.	•••••	•••••	•••••	•••••	5
3.1 DESCRIPTION OF EUT		•••••	•••••	•••••	5
3.2 DEFINITION OF MODELS	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	5
3.3 SUPPORT EQUIPMENT / CAB	LES USED	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	6
3.4 MODIFICATION ITEM(S)	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	6
4. DESCRIPTION OF TESTS	•••••	•••••	•••••	•••••	7
4.1 TEST CONDITION		•••••	•••••	•••••	7
5. CONDUCTED EMISSION	•••••		•••••	•••••	9
5.1 OPERATING ENVIRONMENT	•••••	•••••	•••••	•••••	10
5.2 TEST SET-UP	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	10
5.3 MEASUREMENT UNCERTAIN	TY		• • • • • • • • • • • • • • • • • • • •	•••••	10
5.4 LIMIT	••••••		•••••	•••••	11
5.5 TEST EQUIPMENT USED	••••••	•••••	•••••	•••••	11
5.6 TEST DATA FOR CONDUCTED	EMISSION	•••••	•••••	•••••	11
6. RADIATED EMISSION	•••••	•••••	•••••	•••••	12
6.1 OPERATING ENVIRONMENT	•••••	•••••	•••••	•••••	12
6.2 TEST SET-UP	•••••	•••••	•••••	•••••	12
6.3 MEASUREMENT UNCERTAIN	JTY	•••••	•••••	•••••	13
6.4 LIMIT	••••••	•••••	•••••	•••••	14
6.5 TEST EQUIPMENT USED	••••••	•••••	•••••	•••••	14
6.6 TEST DATA FOR RADIATED I	EMISSION	•••••	•••••	•••••	15
7. SAMPLE CALCULATIONS	••••••	•••••	•••••	•••••	16
7.1 EXAMPLE 1:	••••••	•••••	•••••	•••••	16
7.2 EXAMPLE 2 :	••••••	•••••	•••••	•••••	16
8. RECOMMENDATION & CO	NCLUSION	•••••	•••••	•••••	16
APPENDIX A - ATTESTATION	N STATEMENT				
APPENDIX B - LABELLING					
APPENDIX C - BLOCK DIAG	RAM				
APPENDIX D - SCHEMATIC I	DIAGRAM				
APPENDIX E - TEST SETUP F	PHOTOGRAPH				
APPENDIX F - EXTERNAL PL	HOTOGRAPH				
APPENDIX G - INTERNAL PE	IOTOGRAPH				
APPENDIX H – USER'S MANU	J AL				
APPENDIX I - OPERATIONA	L DESCRIPTION				

EUT Type: Wireless Charger

FCC ID.: 2AFGCWC-LP02

Scope: Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

1. General Information

Applicant: SL CORPORATION

Applicant Address: 77 Gongdan6-ro, Jillyang-eup, Gyeongsan, Kyeongsangbuk-do, 712-837, Republic of Korea

Applicant: SL CORPORATION

Applicant Address: 77 Gongdan6-ro, Jillyang-eup, Gyeongsan, Kyeongsangbuk-do, 712-837, Republic of Korea

Contact Person: Mr.Un-Yong, Jang / Regulation & Homologation Team Assistant Manager

Tel. Number: +82-53-850-8765 Fax Number: +82-53-850-8700

• FCC ID. 2AFGCWC-LP02

• EUT Type Wireless Charger

● Model Name WC-LP02

• Rule Part(s) FCC Part 18

• Test Method FCC/OET MP-5

• Type of Authority Certification

• Test Procedure(s) FCC/OET MP-5

• Dates of Test July 27, 2015

• Place of Test GUMI UNIVERSITY EMC CENTER (FCC Test Firm Registration Number:

269701) 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Republic of Korea.

• Test Report Number GETEC-E3-15-033

• Dates of Issue July 31, 2015

2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2009) was used in determining radiated and conducted emissions emanating from **SL CORPORATION. Wireless Charger.** (Model name: WC-LP02)

These measurement tests were conducted at GUMI UNIVERSITY EMC CENTER.

The site address is 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Gyeongnam 641-713, Korea

This test site is one of the highest point of GUMI UNIVERSITY at about 200 kilometers away from Seoul city and 40 kilometers away from Daegu city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of §2.948 according to ANSI C63.4 (2009)

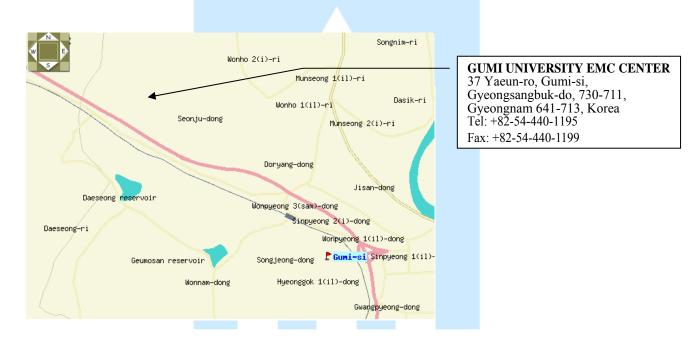


Fig 1. The map above shows the GUMI UNIVERSITY in vicinity area.

GETEC

: GETEC-C1-15-391

3. Product Information

3.1 Description of EUT

The Equipment under Test (EUT) is the SL CORPORATION. Wireless Charger.(Model Name: WC-LP02) FCC ID.: 2AFGCWC-LP02

Type of Equipment	Wireless Charger
Model Name	WC-LP02
Serial Number	Prototype
RF Frequency	110 kHz ±5 kHz
External connector	DC input 1 EA
Rated Voltage	Input: DC 13.5 V
Output Electricity Power	Max 5 W(5 V, 1 A)
Antenna type	A13 Standard Coil
Size(W x H x T)	77.4 (mm) x 136.5 (mm) x 23.2 (mm)
weight	256 g

3.2 Definition of models

- None.

: GETEC-C1-15-391

3.3 Support Equipment / Cables used

3.3.1 Used Support Equipment

Description	Manufacturer	Model Name	S/N & FCC ID.
LGIT Wireless charger RX module	LG innoteck	-	S/N: None. FCC ID.: None.

See "Appendix E – Test Setup Photographs" for actual system test set-up

3.3.2 System configuration

Description	Manufactu	rer	Model Name	S/N & FCC ID.
None.	-		-	S/N: FCC ID.:

3.3.3 Used Cable(s)

Cable Name	Condition					Description
Power cable	Connected to the	e EUT and DC 1	ower suj	pply		1.00 m Unshielded.

3.4 Modification Item(s)

-. None

4. Description of tests

4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used.

The measurements were carried out while varying operating modes and cable positions within typically arrangement to determine maximum emission level.

The representative and worst test mode(s) were noted in the test report.

- Test Voltage / Frequency: DC 13.5 V
 - * The supplying power of this device is DC 13.5 V from a Car Battery. Therefore conducted emission test was not applicable.
- Operating condition during the test(s):

This device has been tested in the configurations of charging mode

Charging Curren	t	Support Equipment				Comment			
1 000 mA		LGI	T Wire	ess cha	rger RX	modu	le(5W)		

r : GETEC-C1-15-391 Jumber : GETEC-E3-15-033

4.2 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 (2009) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which Fixed at 2 m above the ground plane to find out the highest emission.

And also, each emission was to be maximized by the table was turned from 0 degrees to 360 degrees. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4 (2009).

5. Conducted Emission

-Test Description

The Line conducted emission test facility is inside a 4 m \times 8 m \times 2.5 m shielded enclosure. (FCC Test Firm Registration No.: 269701)

The EUT was placed on a non-conducting 1.0 m by 1.5 m table, which is 0.8 m in height and 0.4 m away from the vertical wall of the shielded enclosure.

The EUT is powered from the Rohde & Schwarz LISN (ENV216) and the support equipment is powered from the Rohde & Schwarz LISN (ENV216). Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver (Rohde & Schwarz, ESCI).

Exploratory measurements were conducted to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Exploratory measurements were scanned using Peak mode of EMI Test receiver from 150 kHz to 30 MHz with 20 ms sweep time. The final measurements were measured with Quasi-Peak and Average mode.

The bandwidth of EMI Test Receiver was set to 9 kHz. Interface cables were connected to the available interface ports of the test unit. Excess cable lengths were bundled at center with $30 \text{ cm} \sim 40 \text{ cm}$.

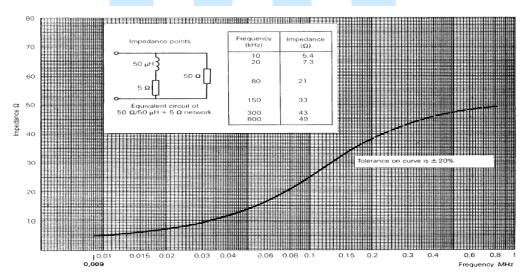


Fig 2. Impedance of LISN

5.1 Operating Environment

Temperature : -. Relative Humidity : -.

5.2 Test Set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.8 m heights above the floor, 0.4 m from the reference ground plane (GRP) wall and 0.8 m from AMN & ISN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines entering the shield room, were filtered.

5.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement."

The measurement uncertainty was given with a confidence of 95 %.

Test Items	Uncertainty	Remark
Conducted emission (9 kHz ~ 150 kHz)	3.94 dB	Confidence level of approximately 95 % ($k = 2$)
Conducted emission (150 kHz ~ 30 MHz)	3.43 dB	Confidence level of approximately 95 % ($k = 2$)

5.4 Limit

· · · · · · · · · · · · · · · · · · ·							
RFI Conducted	FCC Limit(dBμV/m)						
Freq. Range	Quasi-Peak	Average					
150 kHz ~ 0.5 MHz	66 ~ 56*	56 ~ 46*					
0.5 MHz ~ 5 MHz	56	46					
5 MHz ~ 30 MHz	60	50					

^{*}Limits decreases linearly with the logarithm of frequency.

5.5 Test Equipment used

	Model Name	Manufacturer	Description	Serial Number	Due to Calibration
□ -	ESCI	Rohde & Schwarz	EMI test receiver	100237	Apr 23, 2016
□ -	ENV216	Rohde & Schwarz	LISN	100173	Apr 23, 2016
□ -	ENV216	Rohde & Schwarz	LISN	100172	Apr 23, 2016
□-	ISN T8	TESEQ. GmbH	ISN	24568	May 27, 2016

5.6 Test data for Conducted Emission

-. Test Date -. Reference Standard

-. Test Procedure(s) : -. Operating Condition :

-. Frequency rage :

-. Comment : $N/A^{(1)}$

Note.

1) The supplying power of this device is DC 13.5 V from a Car Battery.

6. Radiated Emission

6.1 Operating Environment

Temperature : $21.8 \, ^{\circ}\text{C}$ Relative Humidity : $49.3 \, ^{\circ}\text{R.H.}$

6.2 Test Set-up

The Radiated emission measurements were conducted at the worst test conditions.

The measurements of below 1 GHz were made at 3 m Semi Anechoic Chamber or 10 m Semi Anechoic Chamber (FCC Test Firm Registration No.: 269701) that complies with CISPR 16/ANSI C63.4.

The frequency range of 9 kHz to 30 MHz, The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane. The turntable with EUT was rotated 360° and the receive antenna was fixed 2.0 m on the ground plane.

The frequency range of 30 MHz to 1 000 MHz, The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane. The turntable with EUT was rotated 360° and adjusting the receive antenna height from 1.0 m to 4.0 m. All frequencies were investigated in both horizontal and vertical antenna polarity.

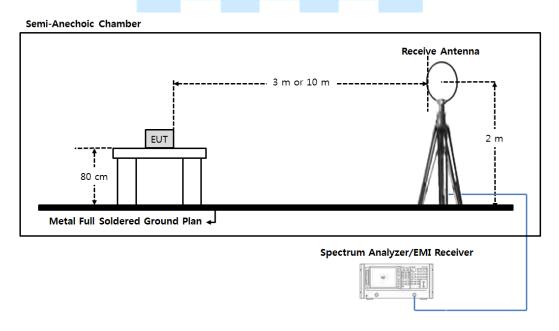


Fig 3. Configurations of Radiated emission test (9 kHz to 30 MHz)

: GETEC-E3-15-033

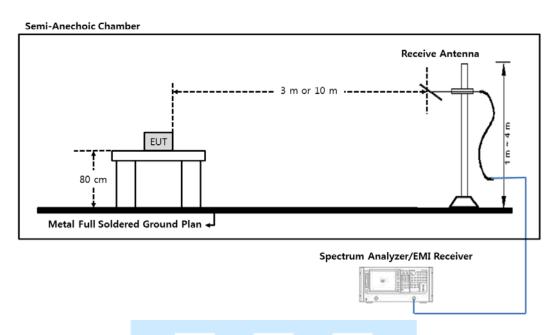


Fig 4. Configurations of Radiated emission test (30 MHz to 1 000 MHz)

6.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95 %.

Test Items(Anechoic Chamber)	Uncertainty	Remark
Radiated emission (30 MHz ~ 300 MHz, 3 m, Vertical)	4.66 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (30 MHz ~ 300 MHz, 3 m, Horizontal)	4.65 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Vertical)	4.91 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Horizontal)	4.88 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (1 000 MHz ~ 6 000 MHz, 3 m)	5.32 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (1 000 MHz ~ 18 000 MHz, 3 m)	5.45 dB	Confidence level of approximately 95 % ($k = 2$)

6.4 Limit

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (μV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25×SQRT(power/500)	300 1300
	Any non-ISM frequency	Below 500 500 or more	15 × SQRT (power/500)	300 1300
Industrial heaters and RF stabilized arc welders	On or below 5,725 MHz Above 5,725 MHz	Any Any	10 (2)	1,600
Medical diathermy	Any ISM frequency Any non-ISM frequency	Any Any	25 15	300 300
Ultrasonic	Below 490 kHz	Below 500 500 or more	2,400/F(kHz) 2,400/F(kHz)× SQRT(power/500)	300 ³ 300
	490 to 1,600 kHz Above 1,600 kHz	Any Any	24,000/F(kHz) 15	30 30
Induction cooking ranges	Below 90 kHz On or above 90 kHz	Any Any	1,500 300	⁴ 30 ⁴ 30

Note.

- 1) Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.
- 2) Reduced to the greatest extent possible.
- 3) Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 watts.
- 4) Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.

6.5 Test Equipment used

Model Name	Manufacturer	Description	Serial Number	Due to Calibration
■ - ESIB26	Rohde & Schwarz	EMI Test Receiver	830482/010	Apr. 23, 2016
■ - HFH2-Z2	Rohde & Schwarz	Loop ANT	100041	Dec. 23, 2015
□ - VULB9160	Schwarzbeck	Broad Band Test Antenna	3193	Mar. 25, 2016
□ - BBHA9120D	Schwarzbeck	Horn ANT	207	Mar. 06, 2016
■ - MCU066	maturo GmbH	Position Controller	1390306	N/A
■ - TT2.5SI	maturo GmbH	Turntable	1390307	N/A
□ - AM 4.0	maturo GmbH	Antenna Mast	1390308	N/A

All test equipment used is calibrated on a regular basis.

6.6 Test data for Radiated Emission

-. Test Date : July. 27, 2015

-. Measurement Distance : 3 m

-. Note : frequency range to be scanned up to 30 MHz, because the frequency band in which the

EUT operates less than 1.705 MHz

-. Measurement setting

Frequency range	9 kHz ~ 150 kHz	0.15 MHz ~ 30 MHz		
Detector mode	Peak	Peak		
Resolution bandwidth	200 Hz	9 kHz		

-. Measurement Data: Wireless charging mode (5 W)

Note.2	Frequency [MHz]	Detector mode	ANT Pol.	Reading [dBuV]	T.F [dB/m]	D.C.F	Field Strength [dBuV/m]	Limits [dBuV/m]	Margin [dB]
F	0.113	Peak	N/A	55.11	19.3	80	-5.59	23.52	29.11
S	0.460	Peak	N/A	28.2	19.1	80	-32.70	23.52	56.22
S	0.911	Peak	N/A	22.74	19.2	80	-38.01	23.52	61.53
S	1.732	Peak	N/A	21.6	19.3	80	-39.10	23.52	62.62

Note.1 The worst case data were reported

And no other spurious and harmonic emissions were reported greater than listed emission above table

Note.2 "F"=Fundamental / "S"=Spurious / "*" = Noise Floor

Note.3 All measurements were recorded using a spectrum analyzer employing a peak detector for below 30 MHz

Note.4 Distance Correction Factor (D.C.F.)

For 300 m: $40 \log(300/3) = 80 \text{ dB}$

Note.5 Sample calculation

T.F = AF + CL - AG

Field Strength = Reading + T.F - D.C.F

Margin = Limit – Field Strength

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

D.C.F = Distance Correction Factor

7. Sample Calculations

$$\begin{split} dB\mu V &= 20\ Log_{\ 10}(\mu V/m) \\ dB\mu V &= dBm + 107 \\ \mu V &= 10^{\ (dB\mu V/20)} \end{split}$$

7.1 Example 1:

■ 20.3 MHz

Class B Limit = $250 \mu V = 48 dB\mu V$

Reading = $39.2 \text{ dB}\mu\text{V}$

 $10^{(39.2dB\mu V/20)} = 91.2 \mu V$

Margin = $48 dB\mu V - 39.2 dB\mu V$

= 8.8 dB

7.2 Example 2:

■ 66.7 MHz

Class B Limit = $100 \mu V/m = 40.0 dB\mu V/m$

Reading = $31.0 \text{ dB}\mu\text{V}$

Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 \text{ dB}\mu\text{V/m}$

Margin = $40.0 \text{ dB}\mu\text{V/m} - 36.8 \text{ dB}\mu\text{V/m}$

= 3.2 dB

8. Recommendation & Conclusion

The data collected shows that the **SL CORPORATION.** Wireless Charger(Model Name: WC-LP02) was complies with §18.305 and 18.307 of the FCC Rules.

- The end -

EUT Type: Wireless Charger

FCC ID.: 2AFGCWC-LP02

