FCC RF EXPOSURE REPORT

FCC ID: 2AFG6-SA05

Project No.	$:$	$1703 C 056 J$
Equipment	$:$	Android Module
Brand Name	$:$	SEEWO
Test Model	$:$	SA05
Series Model	$:$	N/A
Applicant	$:$	Guangzhou Shirui Electronics Co., Ltd
Address	$:$	192 Kezhu Road, Scientech Park, Guangzhou Economic \& Technology
		Development District, Guangzhou, Guangdong, China
Manufacturer	$:$	Guangzhou Shirui Electronics Co.,Ltd
Address	$:$	192 Kezhu Road, Scientech Park, Guangzhou Economic \& Technology
		Development District, Guangzhou, Guangdong, China
Date of Receipt	$:$	May 21, 2020
Date of Test	$:$	May 29, 2020 ~ Jul. 01, 2020
Issued Date	$:$	Jul. 22, 2020
Report Version	$:$	R00
Test Sample	$:$	Engineering Sample No.: DG2020052225
Standard(s)	$:$	FCC Guidelines for Human Exposure IEEE C95.1 \& FCC Part 2.1091
		FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Nick Chen

Approved by : Ethan Ma

Certificate \#5123.02
Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town,Dongguan, Guangdong, China.
Tel: +86-769-8318-3000
Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Jul. 22, 2020

1. TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3,Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.
BTL's Test Firm Registration Number for FCC: 357015
BTL's Designation Number for FCC: CN1240

2. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:
$S=\frac{P G}{4 \pi r^{2}}=\frac{E I R P}{4 \pi r^{2}}$
where:
$\mathrm{S}=$ power density
$\mathrm{P}=$ power input to the antenna
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$\mathrm{R}=$ distance to the center of radiation of the antenna
Table for Filed Antenna:
For BT/BLE/2.4G:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	N/A	N/A	Dipole	N/A	2.55

For 5G:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	N/A	N/A	Dipole	N/A	3.87

3. TEST RESULTS

For BT:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Max. Peak Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
2.55	1.7989	6.92	4.9204	0.00176	1	Complies

For LE:

Antenna Gain (dBi)	Antenna Gain $($ numeric $)$	Max. Peak Output Power (dBm)	Max. Peak Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
2.55	1.7989	6.68	4.6559	0.00167	1	Complies

For 2.4 GHz :

Antenna Gain (dBi)	Antenna Gain $($ numeric $)$	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
2.55	1.7989	17.35	54.3250	0.01945	1	Complies

For 5GHz UNII-1:

Antenna Gain (dBi)	Antenna Gain $($ numeric $)$	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
3.87	2.4378	19.75	94.4061	0.04581	1	Complies

For 5GHz UNII-3:

Antenna Gain (dBi)	Antenna Gain $($ numeric $)$	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mWW} / \mathrm{cm}^{2}\right)$	Test Result
3.87	2.4378	19.25	84.1395	0.04083	1	Complies

Note: The calculated distance is 20 cm .

End of Test Report

