

CFR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

Speakerphone

MODEL NUMBER: UC BM35, BM31, UC BMXXX(X:0~9, A~Z OR BLANK)

FCC ID: 2AFG6-BM31

REPORT NUMBER: 4790311613-9

ISSUE DATE: May 9, 2022

Prepared for

Guangzhou Shirui Electronics Co., Ltd.

192 Kezhu Road, Scientech Park, Guangzhou Economic & Technology

Development District, Guangzhou, Guangdong, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 98

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	05/09/2022	Initial Issue	

Summary of Test Results Clause **Test Items** FCC/ISED Rules **Test Results** 6dB Bandwidth and 99% 1 FCC Part 15.247 (a) (2) Pass Occupied Bandwidth 2 Peak Conducted Output Power Pass FCC Part 15.247 (b) (3) 3 Power Spectral Density FCC Part 15.247 (e) Pass Conducted Bandedge and 4 FCC Part 15.247 (d) Pass **Spurious Emission** FCC Part 15.247 (d) Radiated Bandedge and 5 FCC Part 15.209 Pass **Spurious Emission** FCC Part 15.205 Conducted Emission Test for AC 6 Pass FCC Part 15.207 Power Port 7 Antenna Requirement FCC Part 15.203 Pass

Note:

- 1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.
- 2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C > when <Accuracy Method> decision rule is applied.
- 3. The EUT has two independent RF Modules, each RF module supports one antenna. All the modules and antennas are identical. When we test one module, another module will be disabled.

TABLE OF CONTENTS

1	. AT	TESTATION OF TEST RESULTS	6
2	. TE	ST METHODOLOGY	7
3	. FA	CILITIES AND ACCREDITATION	7
4	. CA	LIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5	. EQ	UIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	CHANNEL LIST	9
	5.3.	MAXIMUM PEAK OUTPUT POWER	9
	5.4.	TEST CHANNEL CONFIGURATION	10
	THE	WORSE CASE POWER SETTING PARAMETER	10
	5.5.	DESCRIPTION OF AVAILABLE ANTENNAS	10
	5.6.	WORST-CASE CONFIGURATIONS	11
	5.7.	DESCRIPTION OF TEST SETUP	12
6	. ME	ASURING INSTRUMENT AND SOFTWARE USED	13
U			
7		TENNA PORT TEST RESULTS	
			15
	. AN	TENNA PORT TEST RESULTS	1 5
	. AN 7.1.	ON TIME AND DUTY CYCLE	1 5 15
	. AN 7.1. 7.2.	ON TIME AND DUTY CYCLE	15 15 16
	7.1. 7.2. 7.3.	ON TIME AND DUTY CYCLE	151618
	7.1. 7.2. 7.3. 7.4. 7.5.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY	15161819
7	7.1. 7.2. 7.3. 7.4. 7.5. RA	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE	1516192121
7	7.1. 7.2. 7.3. 7.4. 7.5. RA 8.1. 8.1	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	
7	7.1. 7.2. 7.3. 7.4. 7.5. RA 8.1. 8.1	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. LE 1M MODE 2. LE 2M MODE	15161921292933
7	7.1. 7.2. 7.3. 7.4. 7.5. RA 8.1. 8.1 8.2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	
7	7.1. 7.2. 7.3. 7.4. 7.5. RA 8.1. 8.1. 8.2. 8.2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. LE 1M MODE 2. LE 2M MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. LE 1M MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)	
7	7.1. 7.2. 7.3. 7.4. 7.5. RA 8.1. 8.1. 8.2. 8.2. 8.3. 8.3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE .1. LE 1M MODE .2. LE 2M MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) .1. LE 1M MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) .1. LE 1M MODE	
7	7.1. 7.2. 7.3. 7.4. 7.5. RA 8.1. 8.1. 8.2. 8.3. 8.3. 8.3	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. LE 1M MODE 2. LE 2M MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. LE 1M MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. LE 1M MODE 1. LE 1M MODE 1. LE 1M MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. LE 1M MODE	
7	7.1. 7.2. 7.3. 7.4. 7.5. RA 8.1. 8.1. 8.2. 8.3. 8.3. 8.3. 8.4.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE .1. LE 1M MODE .2. LE 2M MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) .1. LE 1M MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) .1. LE 1M MODE	

8.5.1. LE 1M MODE	56
8.6. SPURIOUS EMISSIONS BELOW 30 MHz 8.6.1. LE 1M MODE	
9. AC POWER LINE CONDUCTED EMISSIONS	61
9.1. LE 1M MODE	62
10. ANTENNA REQUIREMENTS	64
11. Photo	65
11.1. External Photo	65
11.2. Internal Photo	67
11.3. Setup Photo	73
12. Appendix	77
12.1. Appendix A: DTS Bandwidth	77
12.2. Appendix B: Occupied Channel Bandwidth	80
12.3. Appendix C: Maximum conducted output power	83 83
12.4. Appendix D: Maximum power spectral density	84
12.5. Appendix E: Band edge measurements	87
12.6. Appendix F: Conducted Spurious Emission	90
12.7. Appendix G: Duty Cycle	97

Page 6 of 98

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Guangzhou Shirui Electronics Co., Ltd.

Address: 192 Kezhu Road, Scientech Park, Guangzhou Economic &

Technology Development District, Guangzhou, Guangdong, China

Manufacturer Information

Company Name: Guangzhou Shirui Electronics Co., Ltd.

Address: 192 Kezhu Road, Scientech Park, Guangzhou Economic &

Technology Development District, Guangzhou, Guangdong, China

EUT Information

Laboratory Manager

EUT Name: Speakerphone

Model: UC BM35, BM31, UC BMXXX(X:0~9, A~Z OR BLANK)

Brand: MAXHUB

Sample Received Date: March 11, 2022

Sample Status: Normal Sample ID: 4819782

Date of Tested: March 11, 2022~ May 9, 2022

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS		

Prepared By: Dean Hua	Checked By:
Dean Hua Project Engineer	Shawn Wen Laboratory Leader
Approved By:	
Stephen Guo	

Page 7 of 98

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation	has been registered and fully described in a report filed with ISED.
Certificate	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

Page 8 of 98

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB	
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)	
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name:	Speakerphone			
Model Name:	UC BM35, BM31, UC BMXXX (X:0~9, A~Z OR BLANK)			
Model difference:	There are no difference except the model name.			
	Operation Frequency	2402 MHz ~ 2480 MHz		
Product Description	Modulation Type	Data Rate		
	GFSK	1Mbps		
	GFSK	2Mbps		
Ratings	DC 7.4 V			

Note:

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	1	1
8	2418	19	2440	30	2462	1	1
9	2420	20	2442	31	2464	1	1
10	2422	21	2444	32	2468	1	1

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz) Channel Number		Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
LE 1M	2402 ~ 2480	0-39[40]	1.72	4.72
LE 2M	2402 ~ 2480	0-39[40]	1.29	4.29

^{1.}The EUT has two independent RF Modules, each RF module supports one antenna. All the modules and antennas are identical. When we test one module, another module will be disabled.

Page 10 of 98

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency	
LE 1M	CH 0(Low Channel), CH 19(MID Channel),	2402 MHz, 2440 MHz, 2480	
	CH 39(High Channel)	MHz	
LE 2M	CH 0(Low Channel), CH 19(MID Channel),	2402 MHz, 2440 MHz, 2480	
LE ZIVI	CH 39(High Channel)	MHz	

THE WORSE CASE POWER SETTING PARAMETER

The W	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software	Version	FCC_assist 1.0.2.2				
Modulation	Transmit	Test Software setting value				
Туре	Antenna Number	CH 0	CH 19	CH 39		
GFSK(1Mbps)	1	default	default	default		
GFSK(2Mbps) 1		default	default	default		

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)	
1	2402-2480	PCB	3	

Note:

1.The EUT has two independent RF Modules, each RF module supports one antenna. All the modules and antennas are identical. When we test one module, another module will be disabled.

Test Mode	Transmit and Receive Mode	Description
GFSK(1Mbps)	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.
GFSK(2Mbps)	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

Note:

- 1. The value of the antenna gain was declared by customer.
- 2. The EUT has two independent RF Modules, each RF module supports one antenna. All the modules and antennas are identical. When we test one module, another module will be disabled.

Page 11 of 98

5.6. WORST-CASE CONFIGURATIONS

Test Mode	Modulation Type	Data Rate (Mbps)
LE 1M	GFSK	1Mbit/s
LE 2M	GFSK	2Mbit/s

Note:

The EUT has two independent RF Modules, each RF module supports one antenna. All the modules and antennas are identical. When we test one module, another module will be disabled.

REPORT NO.: 4790311613-9 Page 12 of 98

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

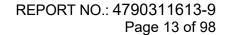
Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42	1
2	Laptop	Lenovo	E42	1

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	1	Type-C Cable	1.0	1


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Adapter	FEIYING	PS05L050K1000CU	Input: 100-240~, 50/60Hz, 0.25A Max Output: 5Vdc, 1A, 5W


TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Note: AC adapter only use for AC POWER LINE CONDUCTED EMISSIONS testing.

6. MEASURING INSTRUMENT AND SOFTWARE USED

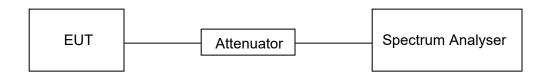
R&S TS 8997 Test System										
Equipment		Manufacturer		Model	No.	Serial No.	Last C	al.	Due. Date	
Power sensor, Power M	Power Meter R			3	OSP1	20	100921	Mar.23,2	2021	Mar.22,2022
Vector Signal Genera	tor		R&S	3	SMBV1	00A	261637	Oct.30, 2	2021	Oct.29, 2022
Signal Generator			R&S	6	SMB10)0A	178553	Oct.30, 2	2021	Oct.29, 2022
Signal Analyzer			R&S	3	FSV4	10	101118	Oct.30, 2	2021	Oct.29, 2022
					Softwar	е				
Description			N	Manut	facturer		Nam	ie		Version
For R&S TS 8997 Test	Syste	em	Rol	hde 8	k Schwai	z	EMC	32		10.60.10
Tonsend RF Test System										
Equipment	Manı	ufa	cturer	Mod	del No.	S	Serial No.	Last 0	Cal.	Due. Date
Wideband Radio Communication Tester	ı	R&	S	CM	1W500		155523	Oct.30,	2021	Oct.29, 2022
Wireless Connectivity Tester	ı	R&	S	CM	IW270	120	1.0002N75- 102	Sep.29,	2021	Sep.28, 2022
PXA Signal Analyzer	Ke	eysi	ght	N9	9030A	MY	′55410512	Oct.30,	2021	Oct.29, 2022
MXG Vector Signal Generator	Ke	eysi	ght	N5	5182B	MY	′56200284	Oct.30,	2021	Oct.29, 2022
MXG Vector Signal Generator	Ke	eysi	ght	N5	5172B	MY	′56200301	Oct.30,	2021	Oct.29, 2022
DC power supply	Keysight E			E3	8642A	MY	′ 55159130	Oct.30,	2021	Oct.29, 2022
Temperature & Humidity Chamber	SANMOOD SG-			SG-8	30-CC-2		2088	Nov.20,	2020	Nov.19,2022
	Software									
Description		Ма	nufact	turer			Name			Version
Tonsend SRD Test System Tonsend				nd	JS1	120-3	3 RF Test S	ystem	2	.6.77.0518

Radiated Emissions Manufacturer Model No. Serial No. Last Cal. **Due Date** Equipment MXE EMI **KESIGHT** N9038A MY56400036 Oct.30, 2021 Oct.29, 2022 Receiver Hybrid Log TDK HLP-3003C 130959 Aug.02, 2021 Aug.01, 2024 Periodic Antenna Preamplifier HP 8447D 2944A09099 Oct.30, 2021 Oct.29, 2022 EMI Measurement R&S ESR₂₆ 101377 Oct.30, 2021 Oct.29, 2022 Receiver Horn Antenna TDK HRN-0118 130940 July 20, 2021 July 19, 2024 TRS-305-Preamplifier TDK PA-02-0118 Oct.30, 2021 Oct.29, 2022 00067 Horn Antenna Schwarzbeck **BBHA9170** 697 July 20, 2021 July 19, 2024 TRS-307-Oct.31, 2021 Preamplifier TDK PA-02-2 Oct.30, 2022 00003 TRS-308-Oct.31, 2021 Preamplifier TDK PA-02-3 Oct.30, 2022 00002 80000 Dec.14, 2021 Dec.14, 2024 Loop antenna Schwarzbeck 1519B TRS-302-PA-02-001-Oct.31, 2021 TDK Preamplifier Oct.30, 2022 3000 00050 ZX60-83LN-SUP01201941 Preamplifier Mini-Circuits Oct.31, 2021 Oct.30, 2022 S+ WHKX10-High Pass Filter Wi 2700-3000-23 Oct.31, 2021 Oct.30, 2022 18000-40SS WRCJV8-**Band Reject** 2350-2400-Wainwright 4 Oct.31, 2021 Oct.30, 2022 Filter 2483.5-2533.5-40SS Software Description Manufacturer Name Version Test Software for Radiated Emissions Farad **EZ-EMC** Ver. UL-3A1

Page 15 of 98

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8 °C	Relative Humidity	54.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.4 V

RESULTS

Please refer to appendix G.

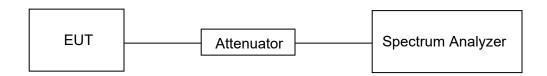
Page 16 of 98

7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5		

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 17 of 98

TEST ENVIRONMENT

Temperature	23.8 °C	Relative Humidity	54.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.4 V

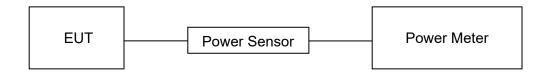
RESULTS

Please refer to appendix A & B.

Page 18 of 98

7.3. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3)	Peak Conducted Output Power	1 watt or 30 dBm	2400-2483.5		

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8 °C	Relative Humidity	54.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.4 V

RESULTS

Please refer to appendix C.

Page 19 of 98

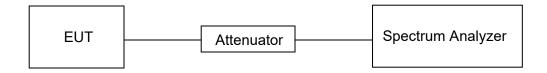
7.4. **POWER SPECTRAL DENSITY**

LIMITS

	CFR 47 FCC Part15 (15.247) Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8 °C	Relative Humidity	54.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.4 V

Page 20 of 98

RESULTS

Please refer to appendix D.

Page 21 of 98

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section Test Item Limit		
		at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

ISDAD	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

EUT _____ Attenuator ____ Spectrum Analyzer

TEST ENVIRONMENT

Temperature	23.8 °C	Relative Humidity	54.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.4 V

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

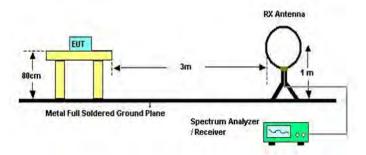
Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Stren (dBuV/m) Quasi-I	at 3 m
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

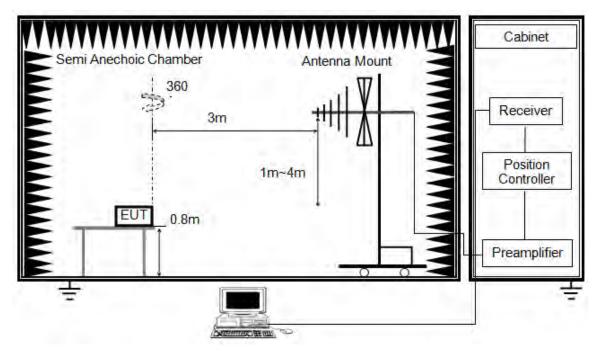
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

Page 25 of 98

TEST SETUP AND PROCEDURE

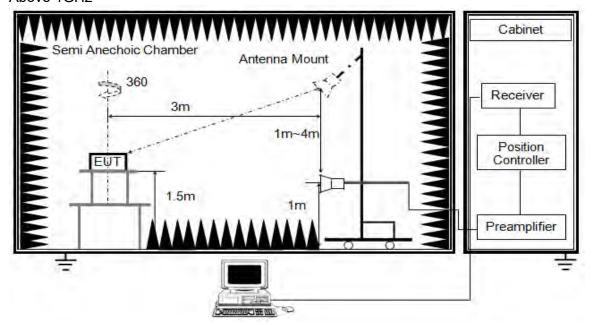
Below 30 MHz


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

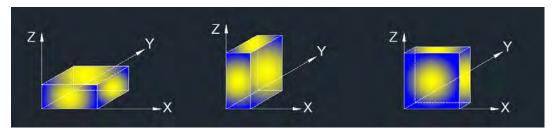
Below 1 GHz and above 30 MHz


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1GHz


The setting of the spectrum analyser

RBW	1 MHz
IVRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

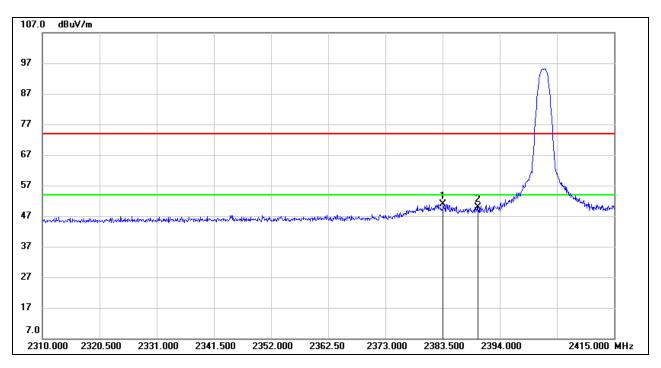
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	61 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.4 V

RESULTS

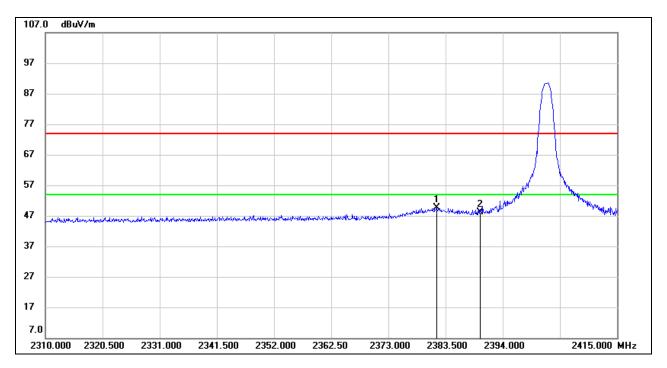


8.1. RESTRICTED BANDEDGE

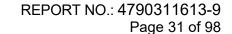
8.1.1. LE 1M MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

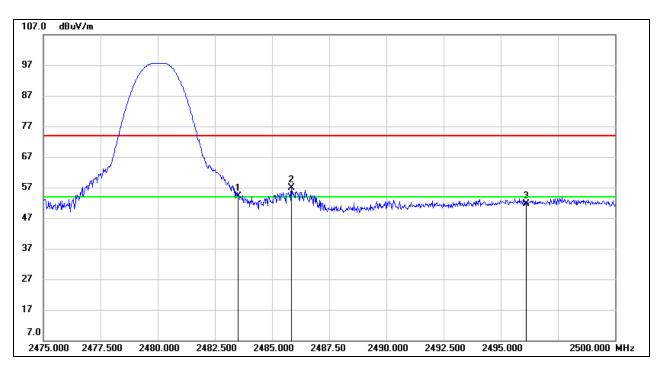

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2383.605	18.28	32.61	50.89	74.00	-23.11	peak
2	2390.000	17.24	32.66	49.90	74.00	-24.10	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

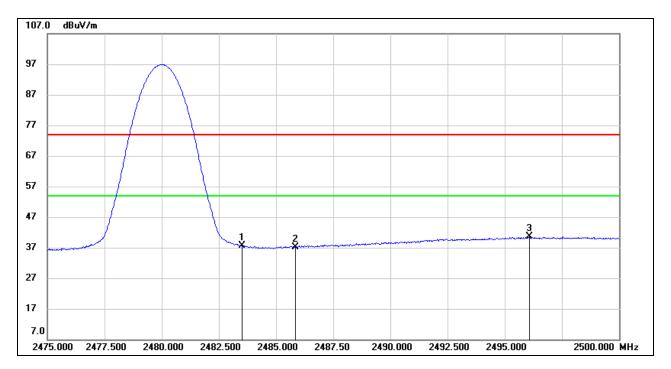
PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.820	17.10	32.59	49.69	74.00	-24.31	peak
2	2390.000	15.43	32.66	48.09	74.00	-25.91	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	21.09	33.10	54.19	74.00	-19.81	peak
2	2485.850	23.78	33.10	56.88	74.00	-17.12	peak
3	2496.075	18.52	33.14	51.66	74.00	-22.34	peak

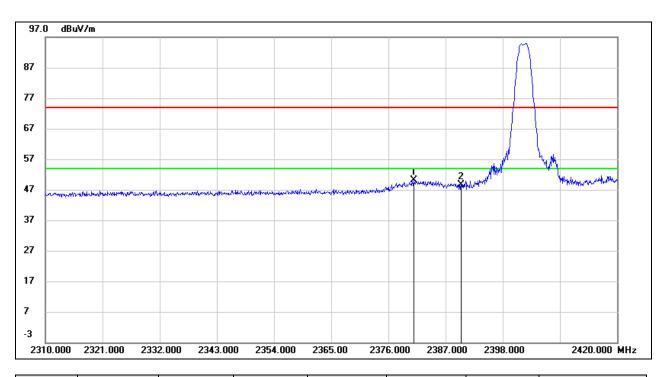
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	4.49	33.10	37.59	54.00	-16.41	AVG
2	2485.850	4.14	33.10	37.24	54.00	-16.76	AVG
3	2496.075	7.46	33.14	40.60	54.00	-13.40	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

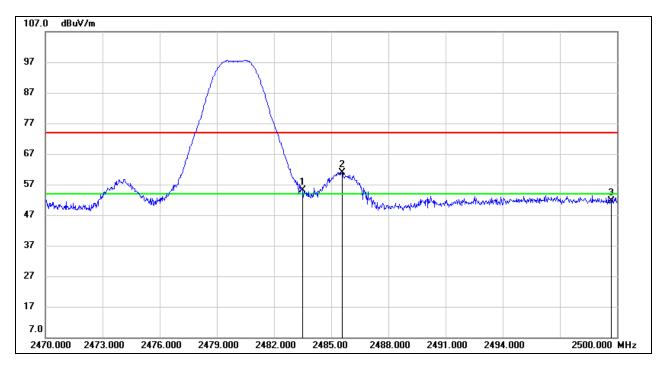

Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report.

8.1.2. LE 2M MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2380.840	17.50	32.59	50.09	74.00	-23.91	peak
2	2390.000	16.09	32.66	48.75	74.00	-25.25	peak

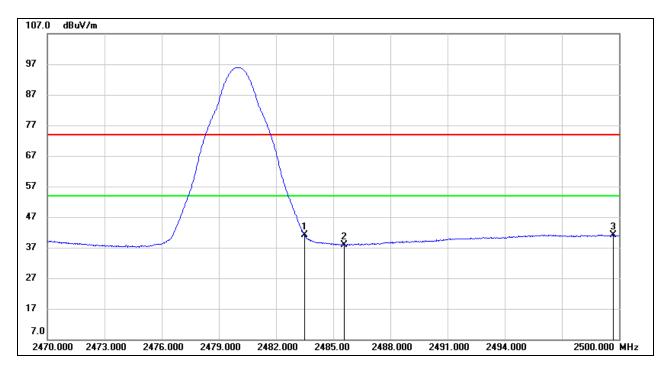

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PERTURE PANDEDOE (HOU OHANNEL HODIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	22.00	33.10	55.10	74.00	-18.90	peak
2	2485.570	27.90	33.10	61.00	74.00	-13.00	peak
3	2499.700	18.39	33.16	51.55	74.00	-22.45	peak


Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

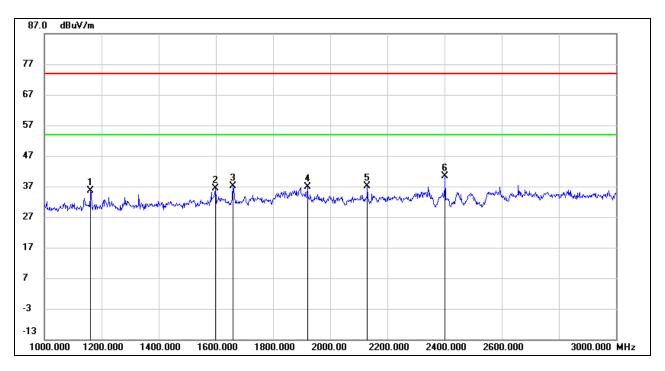
Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.00	33.10	41.10	54.00	-12.90	AVG
2	2485.570	4.84	33.10	37.94	54.00	-16.06	AVG
3	2499.700	8.02	33.16	41.18	54.00	-12.82	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

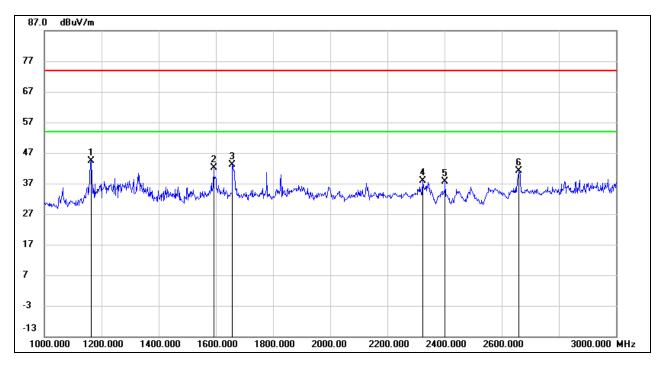

Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report.

REPORT NO.: 4790311613-9 Page 36 of 98

8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

8.2.1. LE 1M MODE

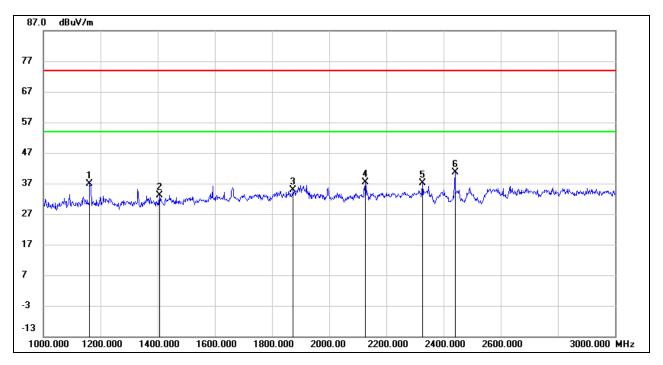
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1163.000	49.49	-13.96	35.53	74.00	-38.47	peak
2	1599.000	48.18	-11.85	36.33	74.00	-37.67	peak
3	1660.000	48.49	-11.47	37.02	74.00	-36.98	peak
4	1920.000	47.64	-10.81	36.83	74.00	-37.17	peak
5	2130.000	47.39	-10.15	37.24	74.00	-36.76	peak
6	2402.000	49.30	-8.94	40.36	74.00	-33.64	peak

Note:

- 1. Peak Result = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

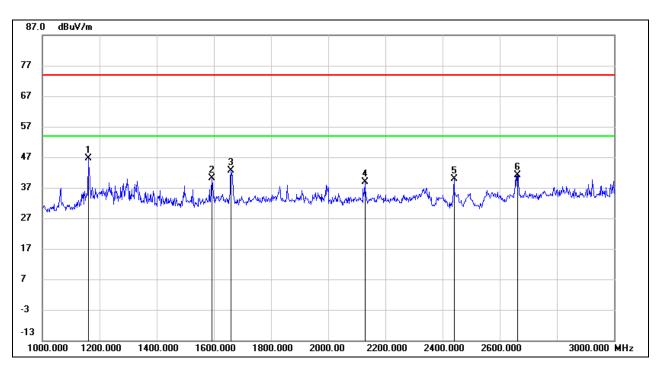
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1164.000	58.30	-13.95	44.35	74.00	-29.65	peak
2	1593.000	54.06	-11.89	42.17	74.00	-31.83	peak
3	1659.000	54.69	-11.48	43.21	74.00	-30.79	peak
4	2325.000	47.18	-9.24	37.94	74.00	-36.06	peak
5	2402.000	46.52	-8.94	37.58	74.00	-36.42	peak
6	2661.000	49.34	-8.30	41.04	74.00	-32.96	peak

- 1. Peak Result = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

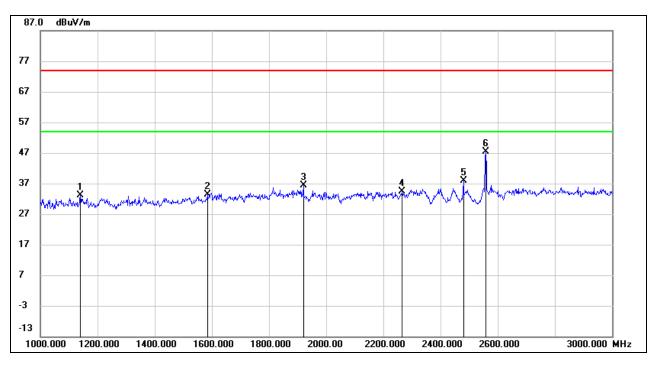
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1162.000	50.78	-13.97	36.81	74.00	-37.19	peak
2	1407.000	46.04	-13.02	33.02	74.00	-40.98	peak
3	1875.000	45.59	-10.72	34.87	74.00	-39.13	peak
4	2126.000	47.55	-10.17	37.38	74.00	-36.62	peak
5	2327.000	46.31	-9.23	37.08	74.00	-36.92	peak
6	2440.000	49.46	-8.86	40.60	74.00	-33.40	peak

- 1. Peak Result = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

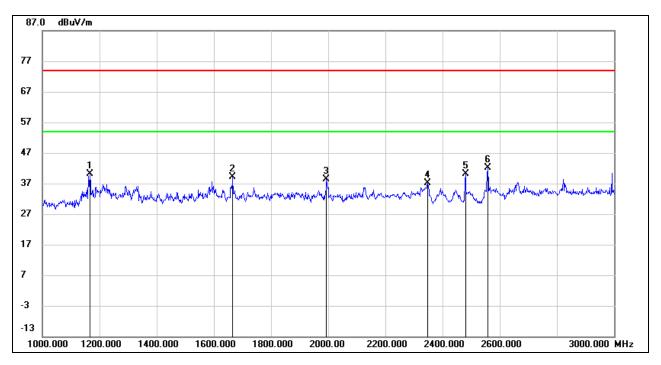
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1161.000	60.54	-13.97	46.57	74.00	-27.43	peak
2	1592.000	52.08	-11.90	40.18	74.00	-33.82	peak
3	1660.000	54.11	-11.47	42.64	74.00	-31.36	peak
4	2128.000	49.16	-10.16	39.00	74.00	-35.00	peak
5	2440.000	48.80	-8.86	39.94	74.00	-34.06	peak
6	2662.000	49.39	-8.30	41.09	74.00	-32.91	peak

- 1. Peak Result = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1140.000	47.19	-14.11	33.08	74.00	-40.92	peak
2	1585.000	45.38	-11.94	33.44	74.00	-40.56	peak
3	1920.000	47.22	-10.81	36.41	74.00	-37.59	peak
4	2266.000	43.94	-9.46	34.48	74.00	-39.52	peak
5	2480.000	46.63	-8.76	37.87	74.00	-36.13	peak
6	2559.000	55.94	-8.63	47.31	74.00	-26.69	peak

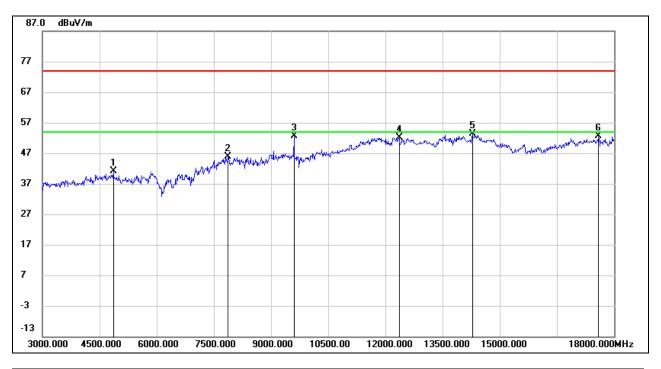
- 1. Peak Result = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1166.000	54.19	-13.94	40.25	74.00	-33.75	peak
2	1666.000	50.58	-11.43	39.15	74.00	-34.85	peak
3	1995.000	49.25	-10.95	38.30	74.00	-35.70	peak
4	2348.000	46.28	-9.16	37.12	74.00	-36.88	peak
5	2480.000	48.92	-8.76	40.16	74.00	-33.84	peak
6	2559.000	50.88	-8.63	42.25	74.00	-31.75	peak

Note:

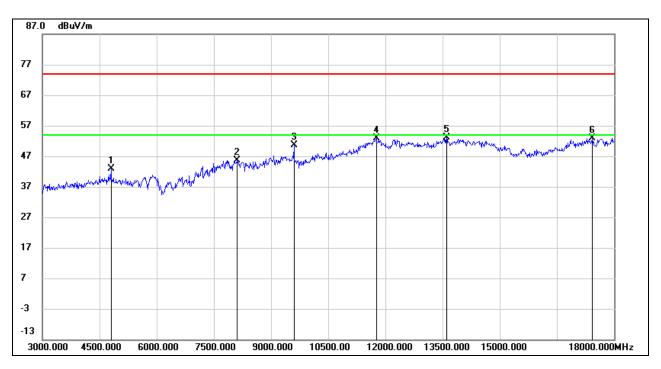
- 1. Peak Result = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All the modes and channels had been tested, but only the worst data was recorded in the report.

8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. **LE 1M MODE**

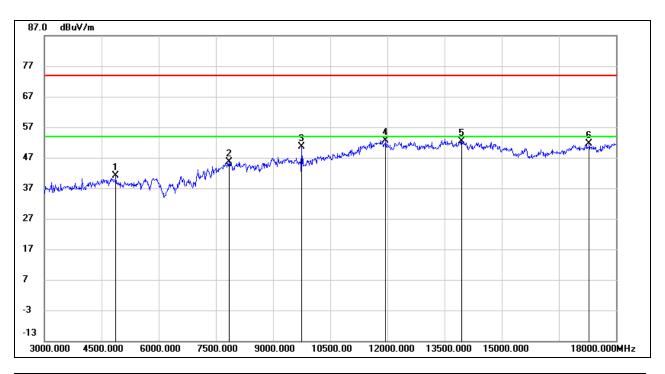
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.51	-0.49	41.02	74.00	-32.98	peak
2	7882.500	39.11	6.72	45.83	74.00	-28.17	peak
3	9607.500	41.90	10.67	52.57	74.00	-21.43	peak
4	12360.000	34.68	17.55	52.23	74.00	-21.77	peak
5	14287.500	32.68	20.66	53.34	74.00	-20.66	peak
6	17595.000	30.11	22.62	52.73	74.00	-21.27	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

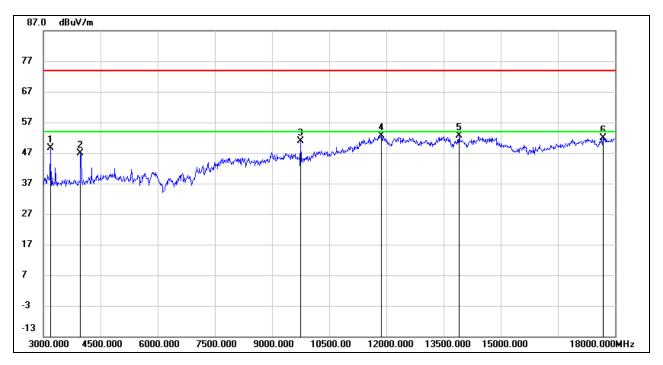
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	43.14	-0.33	42.81	74.00	-31.19	peak
2	8107.500	37.63	7.94	45.57	74.00	-28.43	peak
3	9607.500	39.86	10.67	50.53	74.00	-23.47	peak
4	11760.000	36.02	16.86	52.88	74.00	-21.12	peak
5	13612.500	32.54	20.47	53.01	74.00	-20.99	peak
6	17430.000	31.37	21.46	52.83	74.00	-21.17	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

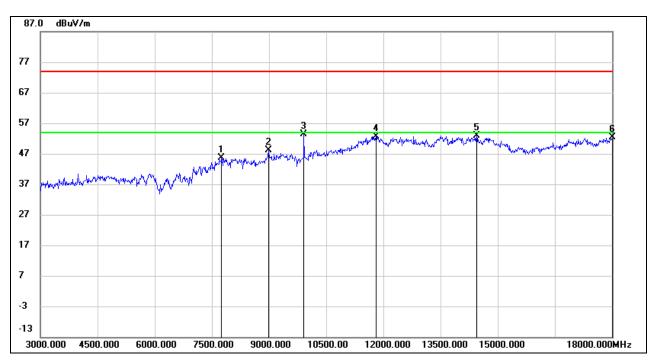
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	41.53	-0.52	41.01	74.00	-32.99	peak
2	7845.000	38.79	6.94	45.73	74.00	-28.27	peak
3	9757.500	40.54	10.21	50.75	74.00	-23.25	peak
4	11955.000	35.37	17.28	52.65	74.00	-21.35	peak
5	13950.000	31.01	21.33	52.34	74.00	-21.66	peak
6	17295.000	29.88	21.86	51.74	74.00	-22.26	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

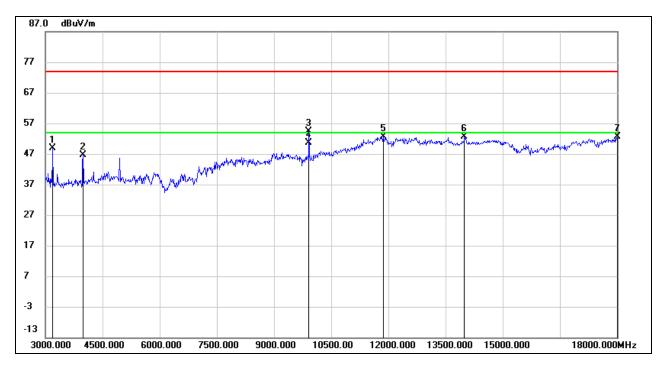
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3187.500	53.90	-5.23	48.67	74.00	-25.33	peak
2	3982.500	50.61	-3.61	47.00	74.00	-27.00	peak
3	9757.500	40.60	10.21	50.81	74.00	-23.19	peak
4	11872.500	35.40	17.11	52.51	74.00	-21.49	peak
5	13912.500	31.43	21.22	52.65	74.00	-21.35	peak
6	17692.500	28.23	23.61	51.84	74.00	-22.16	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

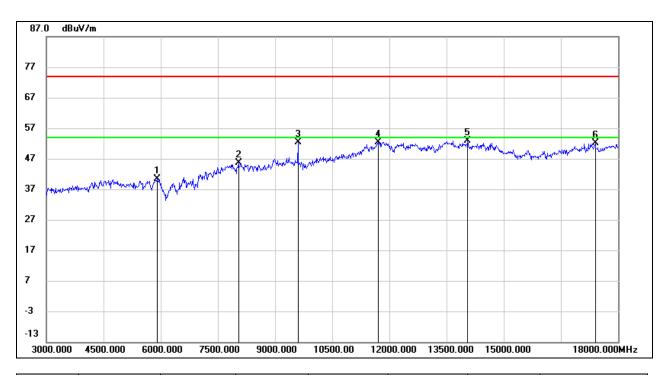
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7762.500	38.86	6.87	45.73	74.00	-28.27	peak
2	8992.500	38.05	10.01	48.06	74.00	-25.94	peak
3	9922.500	42.07	11.30	53.37	74.00	-20.63	peak
4	11812.500	35.76	16.89	52.65	74.00	-21.35	peak
5	14445.000	33.66	19.23	52.89	74.00	-21.11	peak
6	18000.000	27.20	25.28	52.48	74.00	-21.52	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

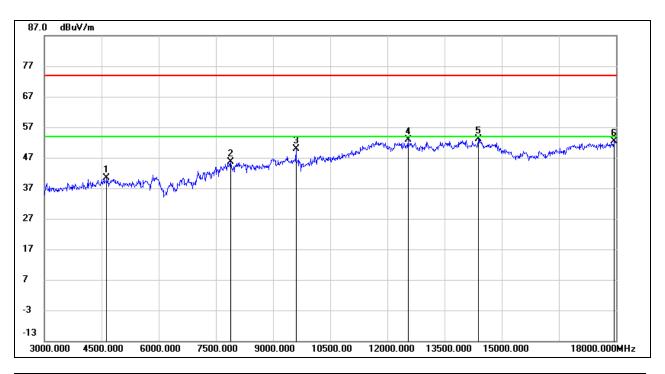
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3195.000	54.20	-5.28	48.92	74.00	-25.08	peak
2	3990.000	50.24	-3.57	46.67	74.00	-27.33	peak
3	9922.500	42.96	11.30	54.26	74.00	-19.74	peak
4	9922.500	39.23	11.30	50.53	54.00	-3.47	AVG
5	11865.000	35.57	17.08	52.65	74.00	-21.35	peak
6	14002.500	31.17	21.45	52.62	74.00	-21.38	peak
7	18000.000	27.27	25.28	52.55	74.00	-21.45	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8.3.2. LE 2M MODE

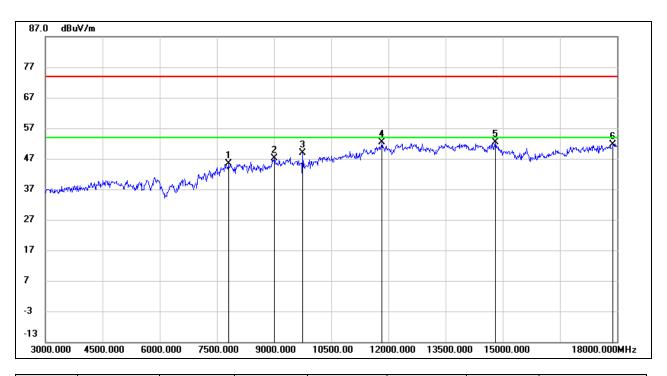
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5917.500	37.79	2.52	40.31	74.00	-33.69	peak
2	8047.500	38.56	7.10	45.66	74.00	-28.34	peak
3	9607.500	41.80	10.67	52.47	74.00	-21.53	peak
4	11707.500	35.60	16.87	52.47	74.00	-21.53	peak
5	14055.000	31.73	21.11	52.84	74.00	-21.16	peak
6	17407.500	30.66	21.38	52.04	74.00	-21.96	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

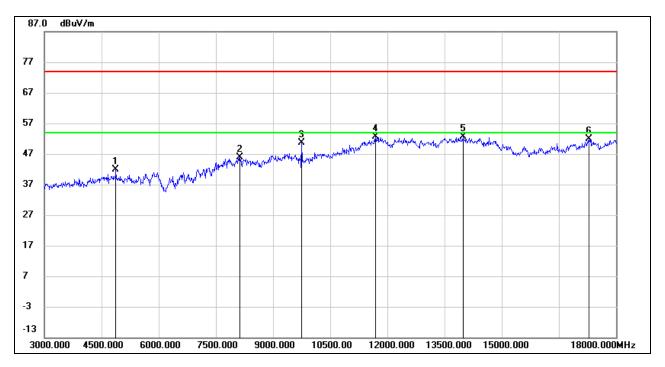
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4642.500	41.52	-1.24	40.28	74.00	-33.72	peak
2	7897.500	38.96	6.64	45.60	74.00	-28.40	peak
3	9607.500	39.21	10.67	49.88	74.00	-24.12	peak
4	12547.500	35.60	17.22	52.82	74.00	-21.18	peak
5	14385.000	33.54	19.66	53.20	74.00	-20.80	peak
6	17962.500	27.34	25.03	52.37	74.00	-21.63	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

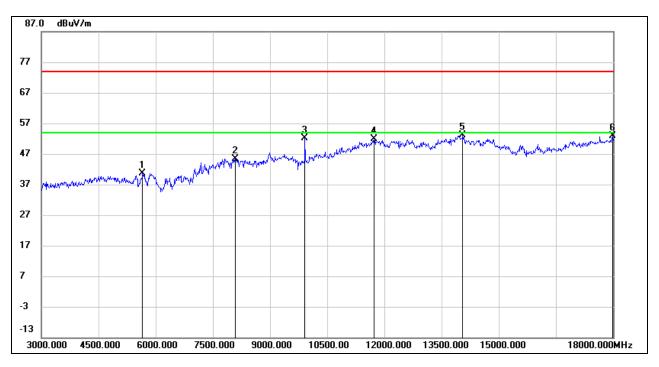
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7807.500	38.34	7.13	45.47	74.00	-28.53	peak
2	9022.500	37.09	9.94	47.03	74.00	-26.97	peak
3	9757.500	38.62	10.21	48.83	74.00	-25.17	peak
4	11842.500	35.28	17.00	52.28	74.00	-21.72	peak
5	14812.500	33.96	18.37	52.33	74.00	-21.67	peak
6	17895.000	26.96	24.62	51.58	74.00	-22.42	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

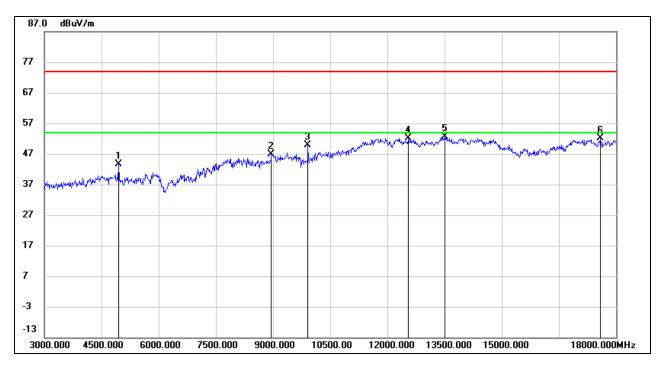
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	42.49	-0.52	41.97	74.00	-32.03	peak
2	8130.000	38.05	7.87	45.92	74.00	-28.08	peak
3	9757.500	40.34	10.21	50.55	74.00	-23.45	peak
4	11685.000	35.79	16.76	52.55	74.00	-21.45	peak
5	13980.000	31.31	21.41	52.72	74.00	-21.28	peak
6	17295.000	29.94	21.86	51.80	74.00	-22.20	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.33	1.26	40.59	74.00	-33.41	peak
2	8085.000	37.79	7.71	45.50	74.00	-28.50	peak
3	9922.500	40.73	11.30	52.03	74.00	-21.97	peak
4	11737.500	35.05	16.86	51.91	74.00	-22.09	peak
5	14062.500	32.00	21.07	53.07	74.00	-20.93	peak
6	17985.000	27.59	25.18	52.77	74.00	-21.23	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4957.500	43.89	-0.18	43.71	74.00	-30.29	peak
2	8962.500	37.52	9.40	46.92	74.00	-27.08	peak
3	9922.500	38.65	11.30	49.95	74.00	-24.05	peak
4	12555.000	34.89	17.23	52.12	74.00	-21.88	peak
5	13507.500	32.11	20.40	52.51	74.00	-21.49	peak
6	17602.500	29.35	22.70	52.05	74.00	-21.95	peak

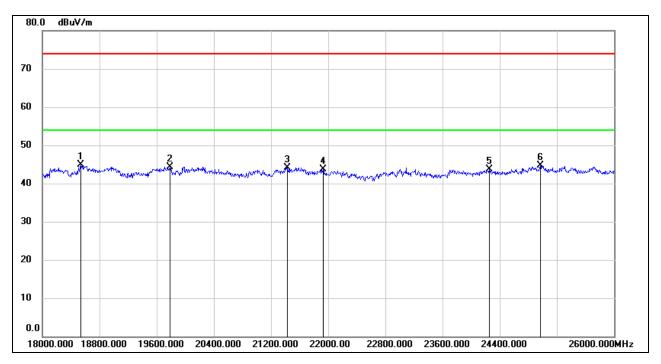
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1. **LE 1M MODE**

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18144.000	49.77	-5.48	44.29	74.00	-29.71	peak
2	20016.000	50.06	-5.47	44.59	74.00	-29.41	peak
3	20504.000	49.71	-5.35	44.36	74.00	-29.64	peak
4	22784.000	47.98	-3.65	44.33	74.00	-29.67	peak
5	23744.000	48.15	-3.20	44.95	74.00	-29.05	peak
6	25616.000	46.18	-1.24	44.94	74.00	-29.06	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

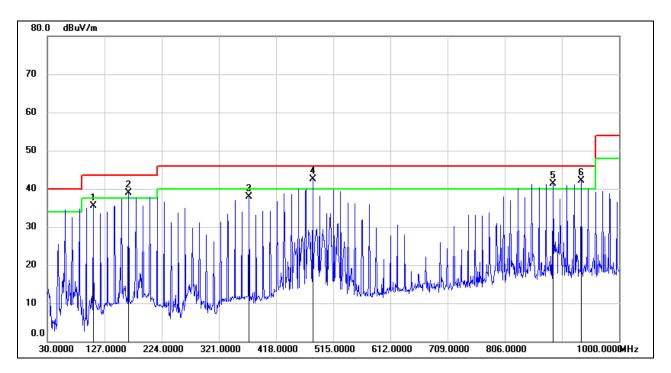
3. Peak: Peak detector.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18536.000	50.10	-5.27	44.83	74.00	-29.17	peak
2	19784.000	49.57	-5.28	44.29	74.00	-29.71	peak
3	21432.000	48.74	-4.71	44.03	74.00	-29.97	peak
4	21928.000	48.05	-4.43	43.62	74.00	-30.38	peak
5	24256.000	46.62	-2.82	43.80	74.00	-30.20	peak
6	24968.000	46.76	-2.14	44.62	74.00	-29.38	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

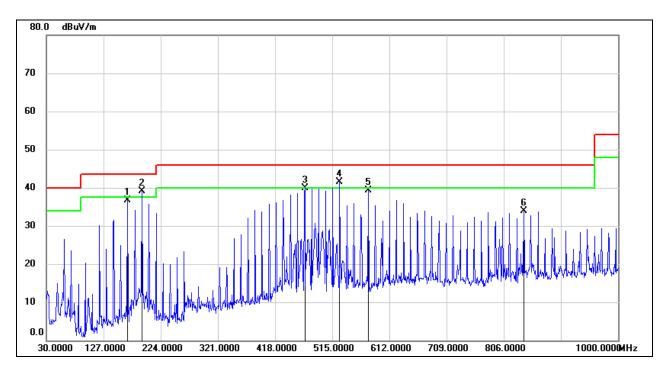
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.


Note: All the modes and antenna have been tested, only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.5.1. **LE 1M MODE**

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	107.6000	56.11	-20.58	35.53	43.50	-7.97	QP
2	167.7400	56.33	-17.41	38.92	43.50	-4.58	QP
3	372.4100	51.71	-13.87	37.84	46.00	-8.16	QP
4	480.0800	54.30	-11.79	42.51	46.00	-3.49	QP
5	888.4500	46.63	-5.29	41.34	46.00	-4.66	QP
6	935.9800	46.77	-4.61	42.16	46.00	-3.84	QP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

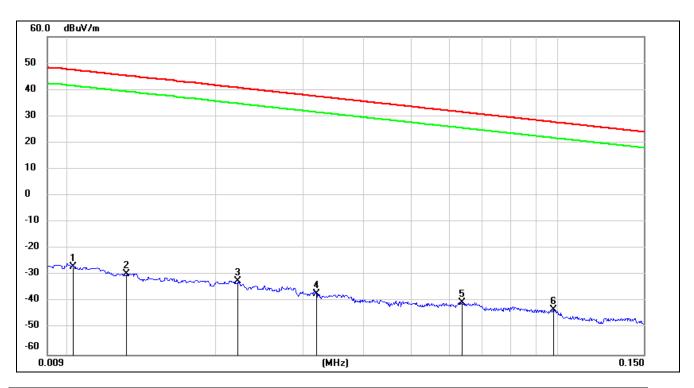
SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	167.7400	54.21	-17.41	36.80	43.50	-6.70	QP
2	191.9900	55.63	-16.56	39.07	43.50	-4.43	QP
3	468.4400	51.90	-12.04	39.86	46.00	-6.14	QP
4	527.6100	52.48	-10.88	41.60	46.00	-4.40	QP
5	576.1100	49.31	-10.02	39.29	46.00	-6.71	QP
6	839.9500	40.46	-6.47	33.99	46.00	-12.01	QP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modes and antenna have been tested, only the worst data was recorded in the report.

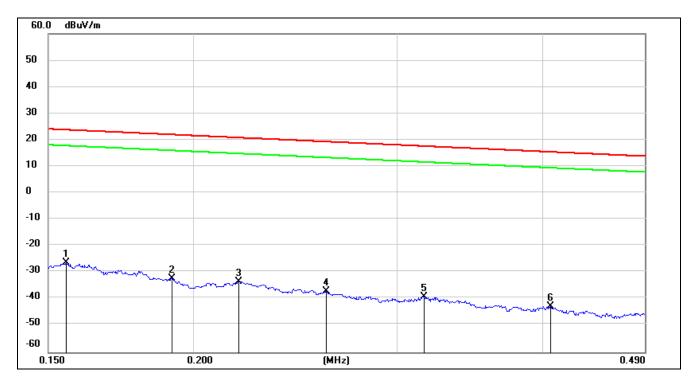


8.6. SPURIOUS EMISSIONS BELOW 30 MHz

8.6.1. LE 1M MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

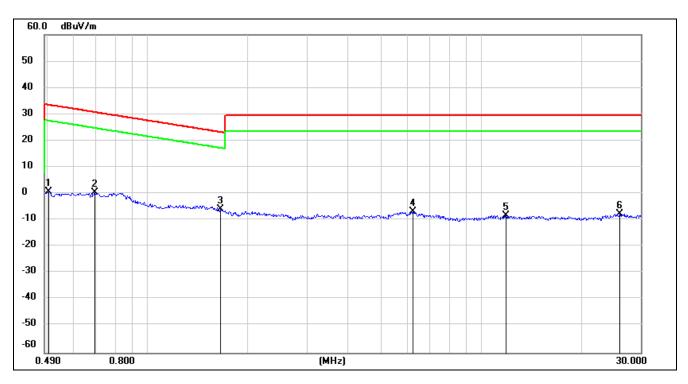
9 kHz~ 150 kHz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0102	74.55	-101.40	-26.85	47.43	-74.28	peak
2	0.0131	71.95	-101.38	-29.43	45.25	-74.68	peak
3	0.0221	69.13	-101.35	-32.22	40.71	-72.93	peak
4	0.0320	64.34	-101.40	-37.06	37.5	-74.56	peak
5	0.0636	61.31	-101.54	-40.23	31.53	-71.76	peak
6	0.0981	58.77	-101.78	-43.01	27.77	-70.78	peak

- 1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 2. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150 kHz ~ 490 kHz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	75.27	-101.65	-26.38	23.77	-50.15	peak
2	0.1917	69.54	-101.70	-32.16	21.95	-54.11	peak
3	0.2190	68.27	-101.75	-33.48	20.79	-54.27	peak
4	0.2605	64.64	-101.81	-37.17	19.28	-56.45	peak
5	0.3163	62.70	-101.87	-39.17	17.6	-56.77	peak
6	0.4062	59.14	-101.96	-42.82	15.43	-58.25	peak

- 1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 2. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

490 kHz ~ 30 MHz

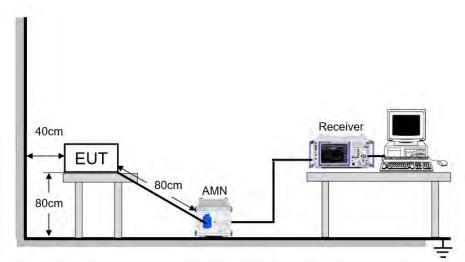
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5039	62.93	-62.07	0.86	33.56	-32.70	peak
2	0.6965	62.55	-62.11	0.44	30.74	-30.30	peak
3	1.6491	56.05	-61.98	-5.93	23.26	-29.19	peak
4	6.2445	54.63	-61.32	-6.69	29.54	-36.23	peak
5	11.8513	52.56	-60.88	-8.32	29.54	-37.86	peak
6	25.8978	52.76	-60.36	-7.6	29.54	-37.14	peak

Note:

- 1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 2. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and antenna have been tested, only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

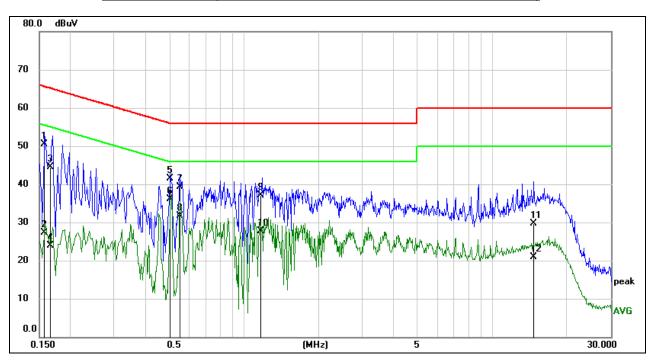
TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

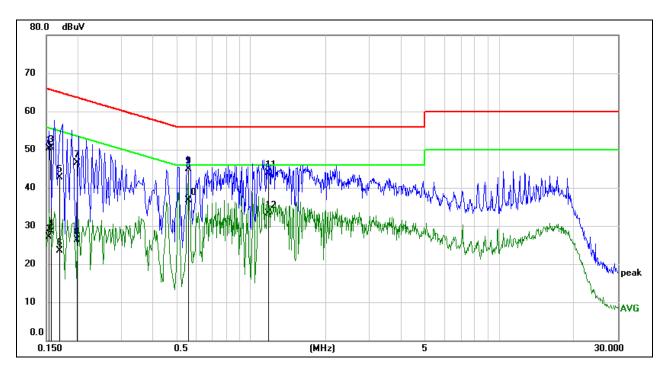
TEST ENVIRONMENT


Temperature	21.7 °C	Relative Humidity	52.4 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

9.1. **LE 1M MODE**

LINE L RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1576	41.05	9.51	50.56	65.59	-15.03	QP
2	0.1576	17.76	9.51	27.27	55.59	-28.32	AVG
3	0.1652	35.03	9.52	44.55	65.20	-20.65	QP
4	0.1652	14.44	9.52	23.96	55.20	-31.24	AVG
5	0.5068	31.92	9.50	41.42	56.00	-14.58	QP
6	0.5068	26.65	9.50	36.15	46.00	-9.85	AVG
7	0.5558	29.85	9.50	39.35	56.00	-16.65	QP
8	0.5558	22.22	9.50	31.72	46.00	-14.28	AVG
9	1.1776	27.53	9.53	37.06	56.00	-18.94	QP
10	1.1776	18.25	9.53	27.78	46.00	-18.22	AVG
11	14.7172	19.95	9.66	29.61	60.00	-30.39	QP
12	14.7172	11.25	9.66	20.91	50.00	-29.09	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

LINE N RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1538	40.88	9.50	50.38	65.79	-15.41	QP
2	0.1538	17.65	9.50	27.15	55.79	-28.64	AVG
3	0.1578	41.05	9.51	50.56	65.58	-15.02	QP
4	0.1578	18.92	9.51	28.43	55.58	-27.15	AVG
5	0.1696	33.16	9.53	42.69	64.98	-22.29	QP
6	0.1696	13.99	9.53	23.52	54.98	-31.46	AVG
7	0.1992	36.84	9.59	46.43	63.64	-17.21	QP
8	0.1992	16.76	9.59	26.35	53.64	-27.29	AVG
9	0.5588	35.49	9.50	44.99	56.00	-11.01	QP
10	0.5588	27.26	9.50	36.76	46.00	-9.24	AVG
11	1.1803	34.41	9.53	43.94	56.00	-12.06	QP
12	1.1803	23.72	9.53	33.25	46.00	-12.75	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

Note: All the modes and antenna have been tested, only the worst data was recorded in the report.

REPORT NO.: 4790311613-9

Page 64 of 98

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

11. Photo

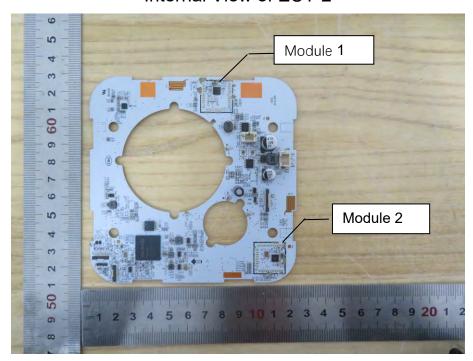
11.1. External Photo

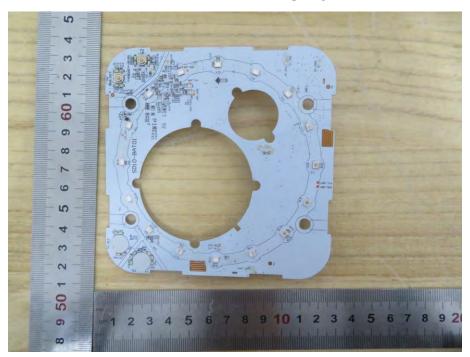
View of EUT-1

View of EUT-2

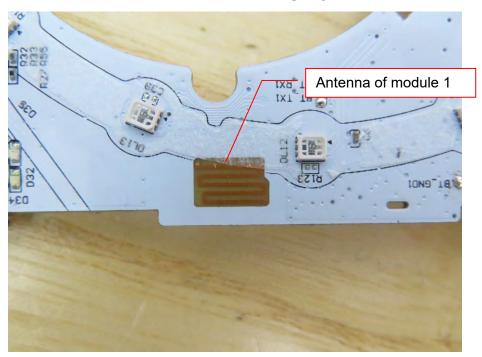
View of EUT-3

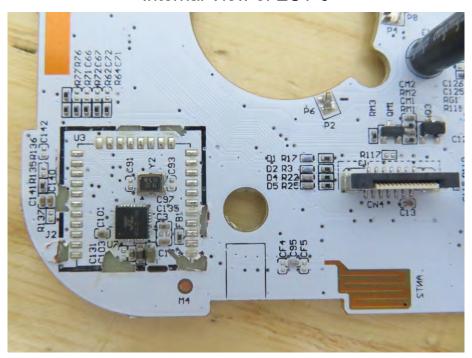
View of EUT-4

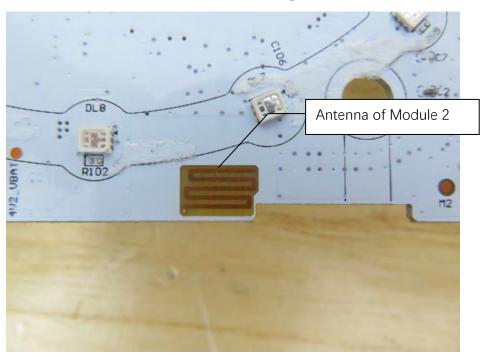


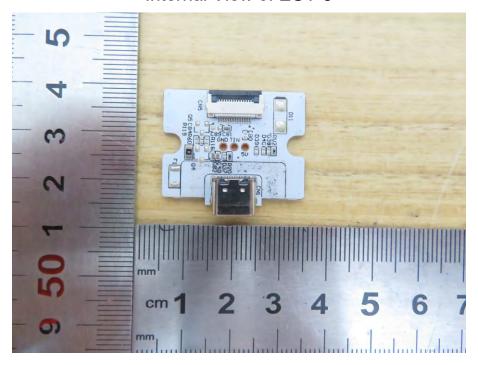

11.2. Internal Photo

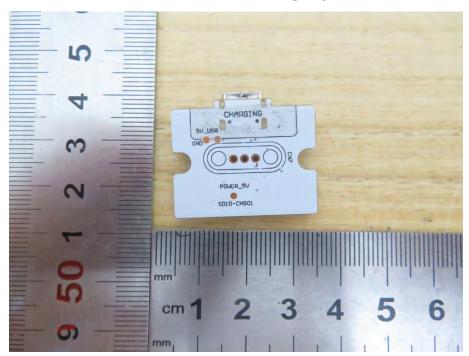
Internal View of EUT-1



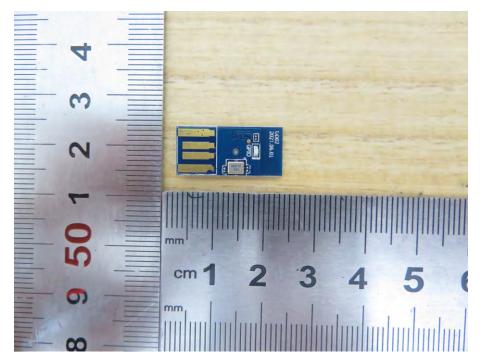

Internal View of EUT-4

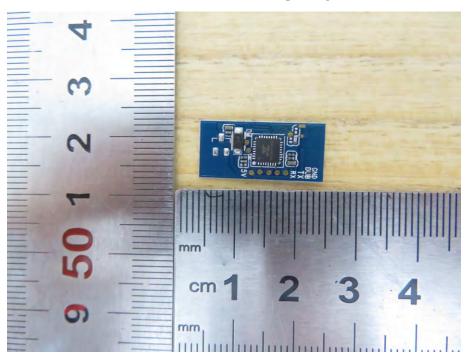



Internal View of EUT-6



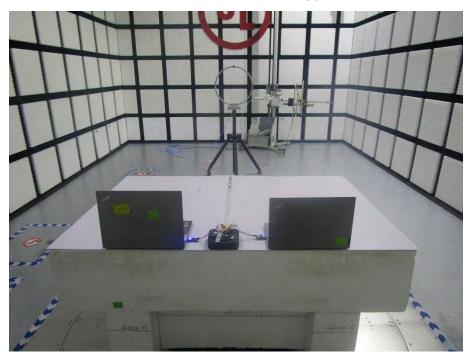

Internal View of EUT-8


Internal View of EUT-10



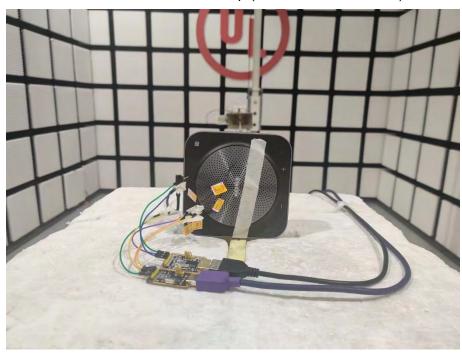
Internal View of EUT-12

Internal View of EUT-13


11.3. Setup Photo

Radiated Disturbance below 1 GHz and above 30 MHz

Radiated Disturbance below 30 MHz



Radiated Disturbance Setup (Above 1 GHz – X axis)

Radiated Disturbance Setup (Above 1 GHz - Y axis)

Radiated Disturbance Setup (Above 1 GHz – Z axis)

Radiated Disturbance Setup (Above 1 GHz – Worst Case)

REPORT NO.: 4790311613-9

Page 77 of 98

12. Appendix

12.1. Appendix A: DTS Bandwidth 12.1.1. Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.660	2401.664	2402.324	0.5	PASS
BLE_1M	Ant1	2440	0.690	2439.646	2440.336	0.5	PASS
		2480	0.666	2479.661	2480.327	0.5	PASS
		2402	0.832	2401.420	2402.252	0.5	PASS
BLE_2M	Ant1	2440	0.844	2439.420	2440.264	0.5	PASS
		2480	0.840	2479.420	2480.260	0.5	PASS

Note:

12.1.2. Test Graphs

Center Freq 2.402000000 GHz

NFE PNO: Wide PNO: Wide Action of PNO 7:38 PM Mar 23, 2022 TRACE 1 2 3 4 5 TYPE 11 WWW. 1004 DET P P P P P #Avg Type: RMS ΔMkr3 832 kHz -0.23 dB Ref Offset 12.1 dB Ref 20.00 dBm Center Fre Stop Fre Span 4.000 MHz Sweep 2.000 ms (1001 pts) 2.401 420 GHz 2.401 996 GHz 832 kHz (Δ) BLE_2M_Ant1_2402 TYPE IN WARRANGE DET P P P P P Ref Offset 12.2 dB Ref 20.00 dBm Center Fr Start Fre 1 N f 2 N f 3 Δ1 f (Δ) BLE_2M_Ant1_2440 Rice PNO: Wide Conter Freq 2.480000000 GHz

Center Freq 2.480000000 GHz

NFE PNO: Wide Federacow Frederictow Fatter: 30 dB Stop Fre enter 2.480000 GHz Res BW 100 kHz Span 4,000 MHz Sweep 2,000 ms (1001 pts CF Step 400,000 kHz Freq Offse Scale Typ BLE 2M Ant1 2480

12.2. Appendix B: Occupied Channel Bandwidth 12.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	1.0299	2401.479	2402.509	PASS
BLE_1M	Ant1	2440	1.0318	2439.478	2440.510	PASS
		2480	1.0362	2479.478	2480.515	PASS
BLE_2M		2402	2.0371	2401.001	2403.038	PASS
	Ant1	2440	2.0322	2439.002	2441.034	PASS
		2480	2.0179	2479.007	2481.025	PASS

Note:

12.2.2. Test Graphs

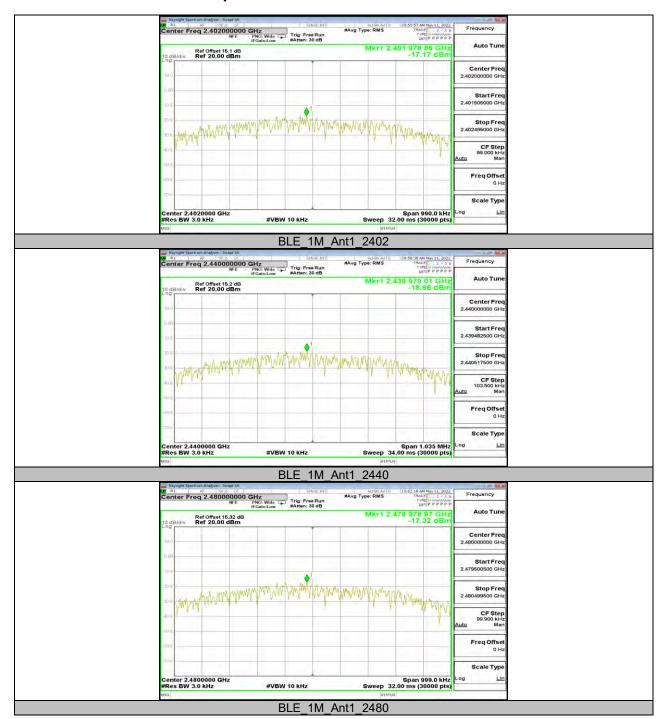
RE NF 50 to DC Center Freq 2.402000000 GHz 2,402008 GHz -2,2320 dBm Center Fre CF Step 400,000 kH: Mar #VBW 130 kHz **Total Power** 4.03 dBm Occupied Bandwidth 2.0371 MHz Freq Offse Transmit Freg Error 19.766 kHz % of ORW Power 99.00 % x dB Bandwidth 2.179 MHz x dB -26.00 dB BLE_2M_Ant1_2402 Rt Rt So D DC Center Freq 2,440000000 GHz Ref Offset 12.2 dB Ref 20.00 dBm Center Fre Occupied Bandwidth Total Power 5.26 dBm 2.0322 MHz Freq Offse Transmit Freq Error 18.106 kHz % of OBW Power 99.00 % x dB Bandwidth 2.182 MHz x dB -26.00 dB BLE 2M Ant1 2440 Center Freq 2.480000000 GHz Radio Device: BTS CF Step #VBW 130 kHz 5.47 dBm Occupied Bandwidth Total Power 2.0179 MHz Freq Offse 16.311 kHz 99.00 % Transmit Freq Error % of OBW Power BLE_2M_Ant1_2480

12.3. Appendix C: Maximum conducted output power 12.3.1. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
BLE_1M		2402	1.72	≤30	PASS
	Ant1	2440	-0.03	≤30	PASS
		2480	1.69	≤30	PASS
BLE_2M		2402	0.02	≤30	PASS
	Ant1	2440	0.98	≤30	PASS
		2480	1.29	≤30	PASS

Note:

Page 84 of 98


12.4. Appendix D: Maximum power spectral density 12.4.1. Test Result

Test Mode	Antenna	Antenna Channel Result[dBm/3kHz]		Limit[dBm/3kHz]	Verdict
		2402	-17.17	≤8.00	PASS
BLE_1M	Ant1	2440	-18.96	≤8.00	PASS
		2480	-17.32	≤8.00	PASS
BLE_2M		2402	-20.85	≤8.00	PASS
	Ant1	2440	-20.04	≤8.00	PASS
		2480	-20.03	≤8.00	PASS

Note:

12.4.2. Test Graphs

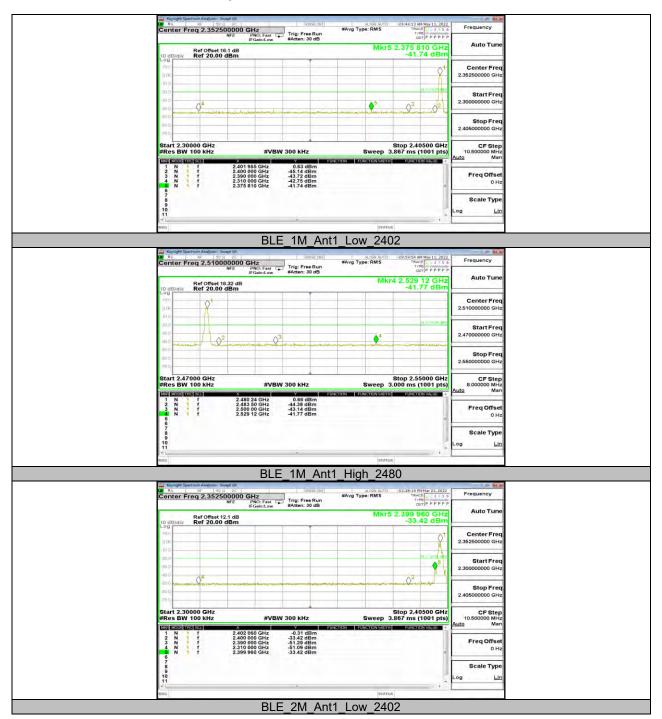
RE PRO UNITED STATE OF THE PRO: Wide Content Freq 2.402000000 GHz

Center Freq 2.402000000 GHz

NFE PRO: Wide Content on Pattern 30 dB Ref Offset 12.1 dB Ref 20.00 dBm Center Fre Stop Fre 2.402624000 GH Span 1.248 MHz Sweep 40.00 ms (30000 pts #VBW 10 kHz BLE_2M_Ant1_2402 Center Freq 2.440000000 GHz

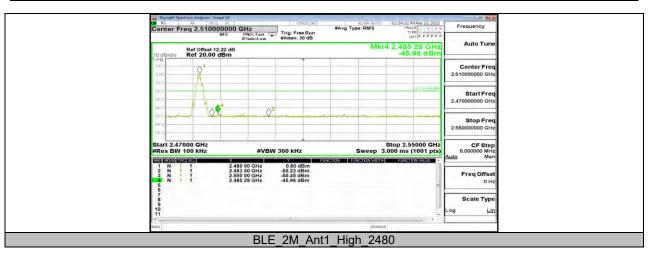
NFE PNO: Wide Carter Street S TRACE 23, 2022
TRACE 23 4 5
TYPE M VMM MAN Mkr1 2.439 994 53 GHz -20.04 dBm Ref Offset 12.2 dB Ref 20.00 dBm Center Fre Start Fre 2.439367000 GH **#VBW 10 kHz** BLE 2M Ant1 2440 RE REPORT OF THE Stop Fre CF Step 126,000 kHz Freq Offse Scale Typ BLE 2M Ant1 2480

Page 87 of 98


12.5. Appendix E: Band edge measurements **Test Result**

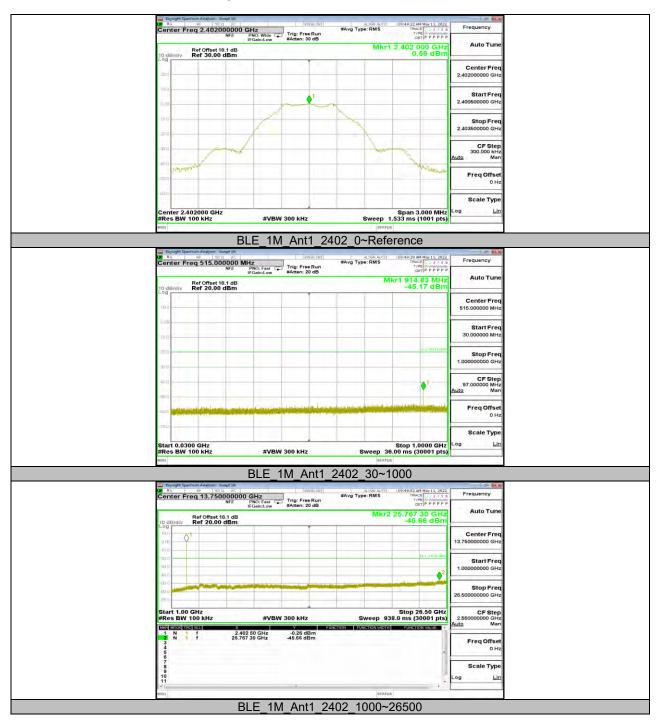
Test Mode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	Low	2402	0.63	-41.74	≤-19.37	PASS
	Anti	High	2480	0.66	-41.77	≤-19.34	PASS
BLE_2M	Ant1	Low	2402	-0.31	-33.42	≤-20.31	PASS
		High	2480	0.80	-45.96	≤-19.2	PASS

Note:



12.5.2. Test Graphs

Page 89 of 98


12.6. Appendix F: Conducted Spurious Emission 12.6.1. Test Result

Test Mode	Antenna	Channel	FreqRange [MHz]	Result[dBm]	Limit[dBm]	Verdict
			Reference	0.59		PASS
		2402	30~1000	-45.17	≤-19.41	PASS
			1000~26500	-45.66	≤-19.41	PASS
			Reference	-1.10		PASS
BLE_1M	Ant1	2440	30~1000	-53.91		PASS
			1000~26500	-44.77	≤-21.1	PASS
			Reference	0.61 P	PASS	
		2480	30~1000	-53.09	≤-19.39	PASS PASS PASS
			1000~26500	-45.32	≤-19.39	PASS
			Reference	-0.38		PASS
		2402	30~1000	-58.98	≤-20.38	PASS PASS PASS PASS PASS PASS PASS PASS
			1000~26500	-51.87	≤-20.38	PASS
			Reference	0.64		PASS 1 PASS 9 PASS 9 PASS 9 PASS 9 PASS 8 PASS 8 PASS 8 PASS 6 PASS 6 PASS 6 PASS 6 PASS
BLE_2M	Ant1	2440	30~1000	-59.19	≤-19.36	
_			1000~26500	-51.96	≤-19.36	PASS
			Reference	0.84		PASS
		2480	30~1000	-60.32	≤-19.16	PASS
			1000~26500	-51.64	≤-19.16	PASS

Note:

12.6.2. Test Graphs

Rate of Section Advances of the Section Advances of th TRACE 3 - 5 TYPE DET P P P P P P #Avg Type: RMS Mkr1 2,440 000 GH: -1.10 dBn Ref Offset 18.2 dB Ref 30.00 dBm Center Free 2.440000000 GH Span 3.000 MHz Sweep 1.533 ms (1001 pts) **#VBW 300 kHz** BLE_1M_Ant1_2440_0~Reference Republished Analyse

R. L. Br. So C. DC

Center Freq 515.000000 MHz

NFE PNO: Fast
FGaint.cow

SAtten: 20 dB #Avg Type: RMS 27 AM May 11, 202 TRACE 3 4 5 TYPE M MANAGEMENT P P P P P P Frequency Auto Tu Mkr1 854.92 MH: -53.91 dBn Ref Offset 18.2 dB Ref 20.00 dBm Center Fre Start Fre •1 Scale Typ Start 0.0300 GHz Res BW 100 kHz **#VBW** 300 kHz BLE 1M Ant1 2440 30~1000 Ryggin Spermer Brights DC Senter Freq 13.75000000 GHz

Center Freq 13.75000000 GHz

Frig: Free Run

Aften: 20 dB TRACE 1 2 3 4 3 TYPE M WWW.MW DET P P P P P Auto Tur Mkr2 26,288 35 GH: -44,77 dBn Ref Offset 18.2 dB Ref 20.00 dBm Start Fre Stop Fre Stop 26.50 GHz Sweep 938.0 ms (30001 pts CF Step #VBW 300 kHz 2.439 90 GHz 26.288 35 GHz -1.57 dBm -44.77 dBm Freq Offse Scale Typ BLE 1M Ant1 2440 1000~26500

Recommendation of the second s TRACE 23 + 5 #Avg Type: RMS Mkr1 2,480 249 GHz 0.61 dBm Ref Offset 18.32 dB Ref 30.00 dBm Center Fre Span 3.000 MHz Sweep 1.533 ms (1001 pts) **#VBW 300 kHz** BLE_1M_Ant1_2480_0~Reference Republished Analyse

R. L. Br. So C. DC

Center Freq 515.000000 MHz

NFE PNO: Fast Foliability

Figalish.com

SAtten: 20 dB #Avg Type: RMS 1 AM May 11, 202 RACE 3 9 3 TYPE M P P P P P Frequency Auto Tu Mkr1 845,71 MH: -53.09 dBn Ref Offset 18.32 dB Ref 20.00 dBm Center Fre Start Fre **♦**1 Scale Typ Start 0.0300 GHz Res BW 100 kHz **#VBW** 300 kHz BLE 1M Ant1 2480 30~1000 Rt of Special Annual Content Freq 13.75000000 GHz

Center Freq 13.750000000 GHz

NFE PNO: Fast Annual Content TYPE IN WANGANGE DET P P P P P Auto Tur Mkr2 26.251 80 GH: -45.32 dBn Ref Offset 18.32 dB Ref 20.00 dBm 0 Start Fre Stop Fre Stop 26.50 GHz Sweep 938.0 ms (30001 pts CF Step #VBW 300 kHz 2.479 85 GHz 26.251 80 GHz -0.41 dBm -45.32 dBm Freq Offse Scale Typ BLE 1M Ant1 2480 1000~26500

Republished to the second of t Mkr1 2,402 000 GH: -0.38 dBn Ref Offset 12.1 dB Ref 30.00 dBm Center Fre Span 3.000 MHz Sweep 1.533 ms (1001 pts) **#VBW 300 kHz** BLE_2M_Ant1_2402_0~Reference Republished Analyse

R. L. Br. So C. DC

Center Freq 515.000000 MHz

NFE PNO: Fast Foliability

Figalish.com

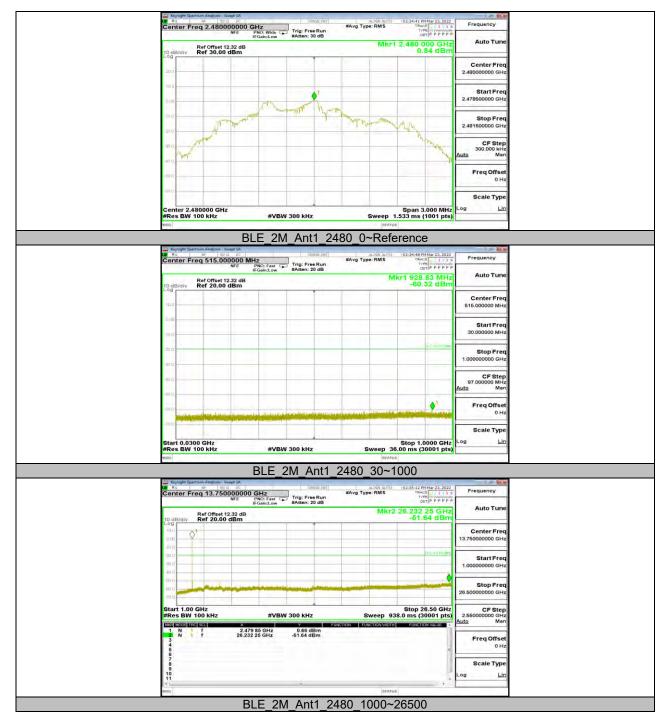
SAtten: 20 dB #Avg Type: RMS 35 PMMar 23, 2022 TRACE 3 4 5 Type In Company DET P P P P P Frequency Auto Tu Mkr1 895.69 MH: -58.98 dBn Ref Offset 12.1 dB Ref 20.00 dBm Center Fre Start Fre Scale Typ BLE 2M Ant1 2402 30~1000 Rt of the property of the prop Auto Tur Mkr2 25.978 95 GH: -51.87 dBn Ref Offset 12.1 dB Ref 20.00 dBm Start Fre Stop 26.50 GHz Sweep 938.0 ms (30001 pts CF Step #VBW 300 kHz 2.401 65 GHz 25.978 95 GHz -1.00 dBm -51.87 dBm Freq Offse Scale Typ BLE 2M Ant1 2402 1000~26500

Republished to the second of t TRACE 23 25 TYPE IN CONTROL DET P P P P P P #Avg Type: RMS Mkr1 2,440 006 GH: 0.64 dBn Ref Offset 12.2 dB Ref 30.00 dBm Center Free Span 3.000 MHz Sweep 1.533 ms (1001 pts) **#VBW 300 kHz** BLE_2M_Ant1_2440_0~Reference Republished Analyse

R. L. Br. So C. DC

Center Freq 515.000000 MHz

NFE PNO: Fast Foliability


Figalish.com

SAtten: 20 dB #Avg Type: RMS 10 PM Mar 23, 2022 TRACE 23 4 5 TYPE IN TOPOLOGICAL DET P P P P P Auto Tu Mkr1 900,90 MH: -59,19 dBn Ref Offset 12.2 dB Ref 20.00 dBm Center Fre Start Fre Scale Typ BLE 2M Ant1 2440 30~1000 Render Spectrum Analysis and DC Conter Freq 13.75000000 GHz

Center Freq 13.750000000 GHz

NFE PNO: Fast PRO: Fast P TYPE IN WARRANT DET P P P P P Auto Tur Mkr2 26,183 80 GH: -51,96 dBn Ref Offset 12.2 dB Ref 20.00 dBm Start Fre Stop 26.50 GHz Sweep 938.0 ms (30001 pts CF Step #VBW 300 kHz 2.439 90 GHz 26.183 80 GHz 0.53 dBm -51.96 dBm Freq Offse Scale Typ BLE 2M Ant1 2440 1000~26500

REPORT NO.: 4790311613-9

Page 97 of 98

12.7. Appendix G: Duty Cycle 12.7.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
BLE_1M	0.096	0.625	0.1536	15.36	8.14	10.42	11
BLE_2M	0.063	0.625	0.1008	10.08	9.97	15.87	16

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

The EUT has two independent RF Modules, each RF module supports one antenna. All the modules and antennas

are identical. When we test one module, another module will be disabled.

12.7.2. Test Graphs

