FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSHA191012008-00A

Applicable Standard

According to subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)				
0.3-1.34	614	1.63	*(100)	30				
1.34-30	824/f	2.19/f	*(180/f²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/		f/1500	30				
1500-100,000	/		1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data (worst case):

Frequency Range			Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm^2)
5182.5~5222.5	2.00	1.58	17.00	50.12	20	0.0158	1.00
5762.5~5822.5	2.00	1.58	16.50	44.67	20	0.0140	1.00

Note:

The Tune-up conducted power was declared by the Manufacturer.

Conclusion: The device meets MPE at distance 20cm.

FCC Part 15.407 Page 14 of 49