Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART CTEST REPORT

FCC PART 15.236

Compiled by

(position+printedname+signature)...: File administrators Kevin Liu

Supervised by

(position+printedname+signature)....: Project Engineer Kevin Liu

Approved by

(position+printedname+signature)....: RF Manager Eric Wang

Date of issue...... Jun. 02, 2022

Testing Laboratory Name: Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTIN

Applicant's name...... Adam Hall GmbH

Address Adam-Hall-Str.1, Neu-Anspach, 61267, Germany

Test specification:

Standard FCC Part 15.236

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Wireless microphone system(handheld Microphone)

Trade Mark LD SYSTEMS

Manufacturer Enping Pasgao Electronic Company Limited

Model/Type reference...... LDU 305.1 HT

Listed Models LDU 304.7 HT

Modulation Type FM

Operation Frequency...... 470.25MHz-541.80MHz

Rating DC 3.0V From Battery

Result..... PASS

Report No.: CTA22052501301 Page 2 of 29

TEST REPORT

Wireless microphone system(handheld Microphone) Equipment under Test

LDU 305.1 HT Model /Type

Series Model LDU 304.7 HT

Model Declaration PCB board, structure and internal of these model(s) are the

same, So no additional models were tested.

Adam Hall GmbH Applicant

Address Adam-Hall-Str.1, Neu-Anspach, 61267, Germany

Enping Pasgao Electronic Company Limited Manufacturer

V1 2nd District Industrial Transfer Park, Enping, Jiangmen, Address

Guangdong, China

73 244	C/L
Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test ..aci laboratory

Page 3 of 29 Report No.: CTA22052501301

Contents

		TESTING	Contents		
	1	TEST STANDARDS	LESTING		4
	The state of the s	CTA	172	ING	
	<u>2</u>	SUMMARY		<u> </u>	<u>5</u>
	2.1	General Remarks			5
	2.2	Product Description			5
	2.3	Equipment Under Test			5 5
	2.4	Short description of the Equipmen	t under Test (EUT)		
	2.5	EUT operation mode			6
	2.6	Block Diagram of Test Setup			6
CIL	2.7	Related Submittal(s) / Grant (s)			6
	2.8	Modifications			6
	^	TECT ENVIRONMENT			-
	<u>3</u>	TEST ENVIRONMENT			··· /
	3.1	Address of the test laboratory			7
	3.2	Test Facility		CTA	7
	3.3	Environmental conditions		CTATES	7
	3.4	Summary of measurement results			7
	3.5	Statement of the measurement und	certainty		8
	3.6	Equipments Used during the Test			9
	0.0	Equipments sood during the root			Ū
	4	TEST CONDITIONS AND F	RESULTS		. 10
			ESTIT		
	4.1	AC Power Conducted Emission	72		10
	4.1 4.2				11
		Maximum Output Power		LES.	
	4.3	Occupied Bandwidth			13
	4.4	Necessary Bandwidth			15
	4.5	Transmitter spurious emissions		TESTING	17
	4.6	Frequency Stability			19
	5	TEST SETUP PHOTOS OF	THE EUT		. 21
	3				
CTA					
CTATE	<u>6</u>	PHOTOS OF THE EUT			. 22
			C.T.A.		
			CTATESTING	CTATES	1 11
				STATE	

Report No.: CTA22052501301 Page 4 of 29

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.236: Operation of wireless Wireless microphone system(bodypack transmitter)s in the bands 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-698 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: CTA22052501301 Page 5 of 29

SUMMARY

General Remarks

Date of receipt of test sample	(16)	May 15, 2022
Testing commenced on	• dans	May 15, 2022
Testing concluded on	:	Jun. 02, 2022

Product Name:	Wireless microphone system(bodypack transmitter)
Model/Type reference:	LDU 305.1 BP
Power supply:	DC 3V From Battery
Hardware version:	N/A
Software version:	N/A
Testing sample ID:	CTA220525013-1# (Engineer sample), CTA220525013-2#(Normal sample)
Wireless microphone sys	stem(bodypack transmitter)
Frequency:	470.25MHz-541.80MHz
Nominal channel bandwidth	200KHz
Modulation Type:	FM CTA
Antenna type:	Internal Antenna
Antenna gain:	0.00 dBi

Note: For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.3 Equipment Under Test

Power supply system utilised

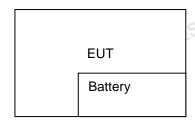
Power supply voltage	:	0	230V/ 50 Hz	0	120V/60Hz	
		0	12 V DC	0	24 V DC	ING
		•	Other (specified in blank bel	ow)	-159	
			DC 3.0V From Battery		CTA LE	_

Short description of the Equipment under Test (EUT)

This is a Wireless microphone system(bodypack transmitter).

For more details, refer to the user's manual of the EUT. CTATES

Page 6 of 29 Report No.: CTA22052501301


2.5 **EUT** operation mode

The EUT has been tested under typical operating condition. The EUT will staying in continuous transmitting when switch to the specific test frequency.

Operation Frequency:

1	o por a con 1110	<u> </u>	10.000				
	Channe	el .	Frequency(MHz)	Channel	Frequency(MHz)		
	1		470.250	13	514.275		
	2		473.550	14	515.850		
	3		474.075	15	518.700		
	TING 4		475.200	16	523.350		
TE	5		476.550	17	524 250		
CTATE	6		481.050	18	525.750		
	7		483.375	19	529.350		
,	8	Could	485.100	20	533 625		
	9		486.000	21	536.700		
	10	To water the	486.450	22	539. 100	ATESTING	
	11		487.325	23	540 750		
	12		488.925	24	541.800	P.	
G					CIN -		

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended forthe devicefiling to comply with Section 15.236 of the FCC Part 15, Subpart C Rules.

No modifications were implemented to meet testing criteria.

Report No.: CTA22052501301 Page 7 of 29

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:		15-35 ° C
and the second		CIP
Humidity:	(-E-17)	30-60 %
	10 Mary Williams	
Atmospheric pressure:		950-1050mbar

	3.4 Summary of measurement	results	
CTATE	Test Specification clause	Test case	Test result
	§15.236(d)	RF Power Output	Compliant
	§15.236(f)(2)	Occupied Bandwidth	Compliant
	§15.236(g)	Necessary Bandwidth	Compliant
G	§15.236(g)	Spurious emissions	Compliant
	§15.236(f)(3)	Frequency Stability	Compliant
	§15.207	Conducted Emissions	N/A

Remark:

- The measurement uncertainty is not included in the test result. CTA TESTING
- We tested all test mode and recorded worst case in report

Page 8 of 29 Report No.: CTA22052501301

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

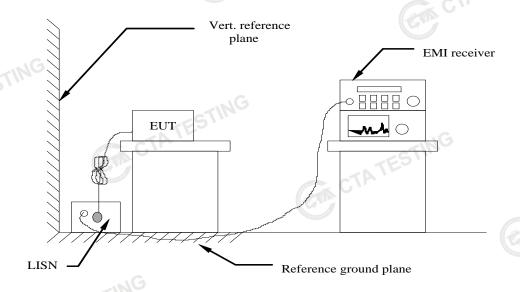
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k-2

Page 9 of 29 Report No.: CTA22052501301

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/0
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/0
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/0
TE	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/0
(b)	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/0
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/0
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/0
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/0
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/0
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/0
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/0
9	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/0
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/0
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/0
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/0
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/0
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/
-56	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/0
7,11	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/0
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/0
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/0
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/0

Report No.: CTA22052501301 Page 10 of 29

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC12V power from adapter, the adapter received AC120V/60Hzand AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. TATESTING
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (WHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	G 56	46			
5-30	60	50			
* Decreases with the logarithm of the frequ	iency.	ING			

TEST RESULTS

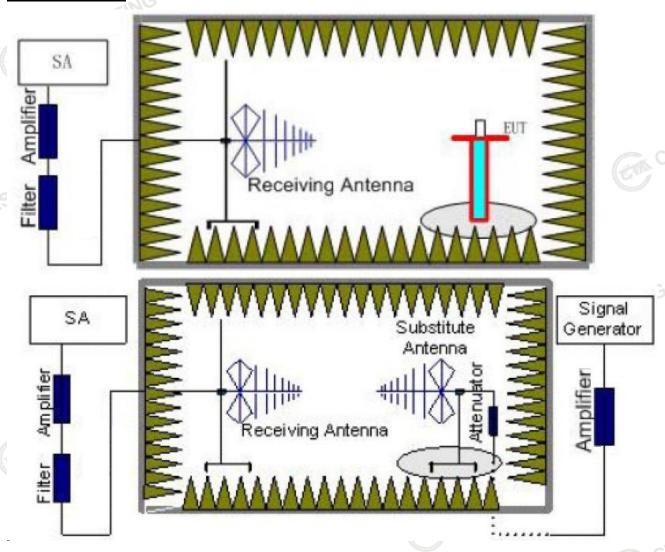
Page 11 of 29 Report No.: CTA22052501301

Maximum Output Power

Limit

The maximum radiated power shall not exceed the following values:

(1) In the bands allocated and assigned for broadcast television and in the 600 MHz service band: 50 mW **EIRP**


(2) In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.

Test Procedure

- 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
- A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- An amplifier may be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=PMea+PAg - Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi. GA CTATESTING

Report No.: CTA22052501301 Page 12 of 29

Test Configuration

Test Results

Remark:

The field strength of radiation emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of H axis and receiver antenna at vertical polarization was reported.

Test Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Ga Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	EIRP (mW)	FCC Limit (mW)	Polarization
470.250	-28.73	1.55	9.64	26.8	6.16	4.13	50	Н
514.275	-27.89	1.57	9.64	26.8	6.98	4.99	50	Н
541.800	-28.54	1.57	9.65	26.8	6.34	4.31	50	Н

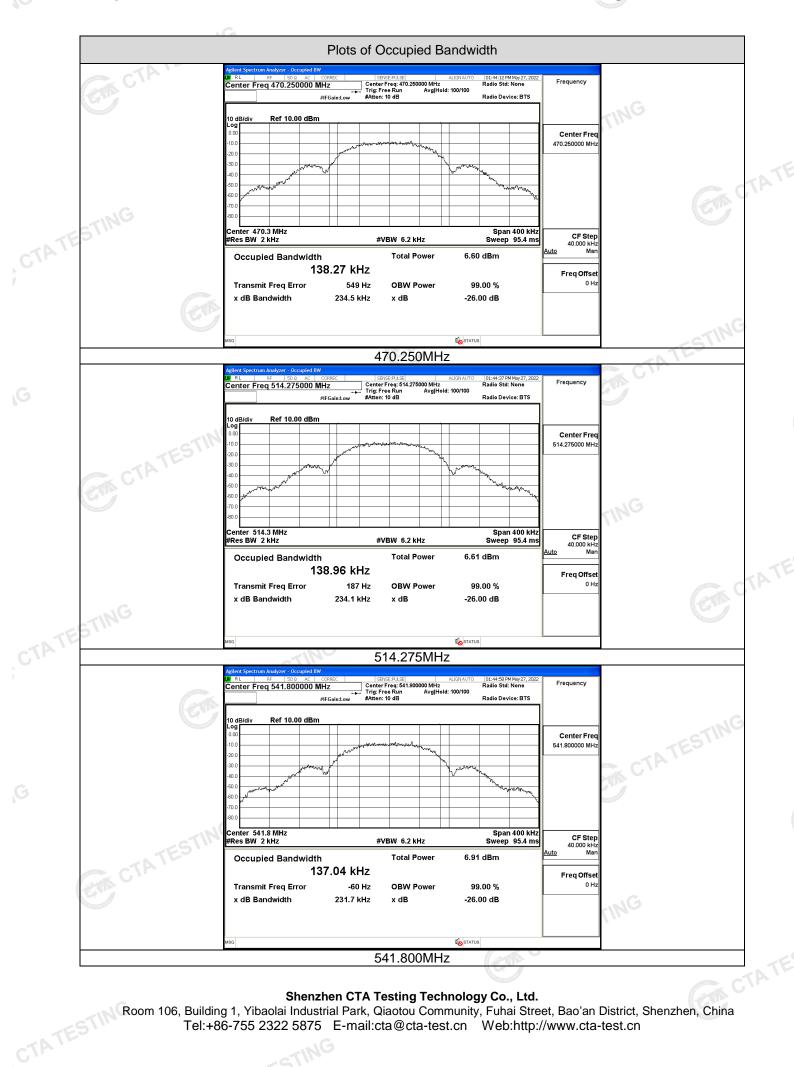
Remark: $EIRP=P_{Mea}(dBm) + P_{Ag}(dB) - P_{cl}(dB) + G_a(dBi)$ CTA TESTING Report No.: CTA22052501301 Page 13 of 29

4.3 **Occupied Bandwidth**

Limit

One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

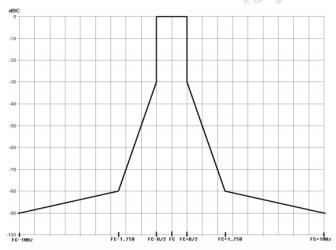
Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 KHz RBW and 10 KHz VBW.

Test Configuration

Test Results

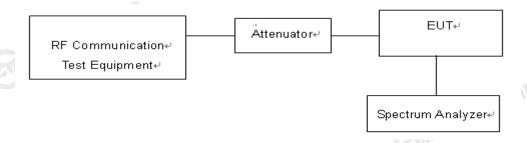
EUT		SPECTRUM ANALYZER		CTATESTING
Test Results				CTATES
Modulation	Frequency (MHz)	99% OBW (KHz)	Limit (KHz)	Result
FM	470.250	138.27	200	Pass
FM	514.275	138.96	200	Pass
FM	541.800	137.04	200	Pass
CIR	CTATI	ESTING	CTATESTIN	G


Report No.: CTA22052501301 Page 15 of 29

Necessary Bandwidth

LIMIT

Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08) as below:


The transmitter output spectrum shall be within the mask defined in figure below where B is the declared CTATE channel bandwidth

TEST PROCEDURE

- 1. With the Low Frequency (LF) audio signal generator set to 500 Hz, the audio input level to the EUT shall be Adjusted to 8 dB below the limiting threshold (-8dB limit) as declared by the manufacturer.
- The corresponding audio output level from the demodulator shall be measured and recorded.
- 3. The input impedance of the noise meter shall be sufficiently high to avoid more than 0.1 dB changes in input level when the meter is switched between input and output.
- The audio input level shall be increased by 20 dB, i.e. to 12 dB (lim), and the corresponding change in output level shall be measured.
- 5. It shall be checked that the audio output level has increased by ≤10 dB.
- 6. If the step 5 is not met, the initial audio input level shall be increased from -8 dB (lim) in 1 dB steps until the above condition is fulfilled, and the input level recorded in the test report. This level replaces the value derived from the manufacturer's declaration and is defined as -8dB (lim).
- Measure the input level at the transmitter required to give +12 dB (lim) and record the EUT output level test plots by the spectrum analyzer.
- 8. The transmitter RF output spectrum shall be measured, using a spectrum analyser with the following settings:
 - centre frequency: fc: Transmitter (Tx) nominal frequency;
 - dispersion (Span): fc 1 MHz to fc + 1 MHz;
 - Resolution BandWidth (RBW): 1 kHz;
 - Video BandWidth (VBW): 1 kHz;
 - detector: Peak hold.

TEST CONFIGURATION

Page 16 of 29 Report No.: CTA22052501301

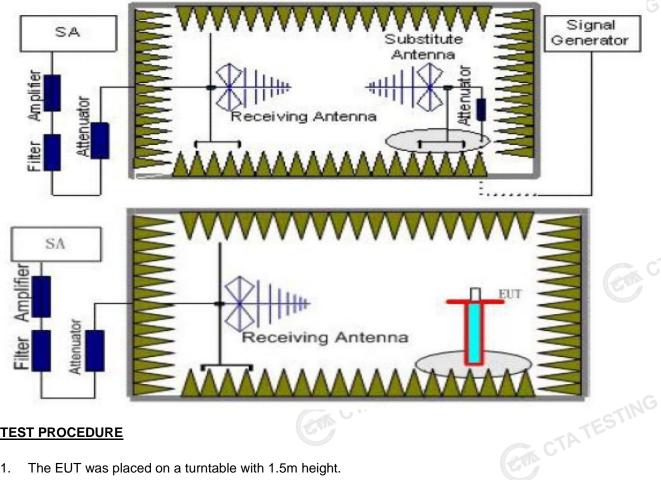
TEST RESULTS

Note:

	Bandwidth(B)	B/2	0.35B	
Manufacturer declare	200 KHz	100KHz	70KHz	

Report No.: CTA22052501301 Page 17 of 29

4.5 **Transmitter spurious emissions**


Limit

Spurious emissions are emissions outside the frequency range(s) of the equipment. The power of the spurious emissions shall not exceed the limits of table as below:

State	Frequency					
	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz			
Operation	4 nW	250 nW	1 μW			
Standby	2 nW	2 nW	20 nW			

CTATES **Test Configuration**

Effective Radiated Power measurement (30 MHz to 12.75 GHz)

TEST PROCEDURE

- The EUT was placed on a turntable with 1.5m height. 1.
- 2. The test distance between the receiving antenna and the EUT is 3 meter, while the receiving (test) antenna is kept at 1.5 meter height.
- 3. Set EUT in continuous transmitting with maximum output power at test frequency.
- 4. The table was rotated from 0 to 360 degree to search the highest radiated emission.
- 5. Repeat step 3 to 4 for each polarization and test channel to find the worst emission level.
- 6. The results obtained are compared to the limits in order to prove compliance with the requirement.

Page 18 of 29 Report No.: CTA22052501301

TEST RESULTS

The test frequency range from 25MHz to 4GHz and recorded worst at below:

	Test mode: Tx (470.250MHz)							
	Frequency (MHz)	Pol./Ant	Measurement EIRP (dBm)	Limit (dBm)	Margin (dB)	Result		
	531.00	V	-51.86	-36	15.86	PASS		
	940.50	V	-38.87	-36	2.87			
	1410.75	V	-39.21	-30	9.21	(o. Ltd		
		V						
	531.00	Н	-52.11	-36	16.11	The state of the s		
	940.50	Н	-40.21	-36	4.21			
CTATE	1410.75	Н	-41.56	-30	11.56			
C.		H _61						
ì		A TES						

	Test mode: Tx (514.275MHz)						
Frequency (MHz)	Pol./Ant	Measurement EIRP (dBm)	Limit (dBm)	Margin (dB)	Result		
955.40	V	-50.89	-36	14.89	PASS		
1028.55	V	-39.21	-30	9.21			
1542.825	V	-40.21	-30	10.21			
	V						
955.40	. С. Н	-51.12	-36	15.12			
1028.55	IN H	-40.12	-30	10.12			
1542.825	Н	-40.98	-30	10.98			
CTA.	Н	11/0					
		-69111					

	Test mode: Tx (541.800MHz)						
Frequency (MHz)	Pol./Ant	Measurement EIRP (dBm)	Limit (dBm)	Margin (dB)	Result		
980.00	V	-50.21	-36	14.21	PASS		
1083.60	V	-39.83	-30	9.83	(5.110		
1625.40	V	-40.76	-30	10.76			
-ING	V				To until the		
980.00	Н	-50.74	-36	14.74			
1083.60	Н	-40.31	-30	10.31			
1625.40	H _GT	-41.92	-30	11.92			
	HTE		6				

Remark:

- The test frequency range from 25MHz to 4GHz, RBW/VBW: 100 KHz/300KHz below 1GHz, RBW/VBW: 1000 KHz/3000KHz above 1GHz.
- "--"Other emission levels were very low against the limit and not reported.

Report No.: CTA22052501301 Page 19 of 29

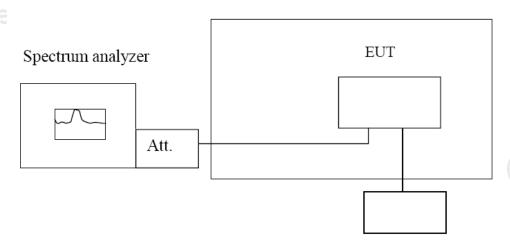
Frequency Stability

Limit

The frequency tolerance of the carrier signal shall be maintained within ±0.005% of the operating frequency over a temperature variation of −20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

Test Procedure

Frequency stability versus environmental temperature


- Setup asTest Configuration for frequencies measured at ambient temperature if it is within 15 °C to 25 °C. Otherwise, an environmental chamber set for a temperature of 20 °C shall be used.
- Turn on EUT and set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 3 kHz, VBW to 10kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- Repeat step 2 with a 10°C decreased per stage until the lowest temperature -20°C is measured, record all 4. measurement frequencies.

Frequency stability versus input voltage b)

- Setup asTest Configuration for frequencies measured at ambient temperature if it is within 15 ℃to 25 ℃. Otherwise, an environmental chamber set for a temperature of 20 °C shall be used. Install new batteries in the EUT.
- 2. Set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 3kHz, VBW to 10kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- For non hand carried, battery operated device, supply the EUT primary voltage with 85 and 115 percent of the nominal value and record the frequency.

Test Configuration

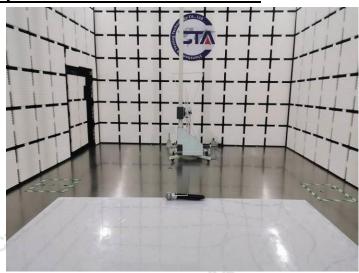
Temperature Chamber

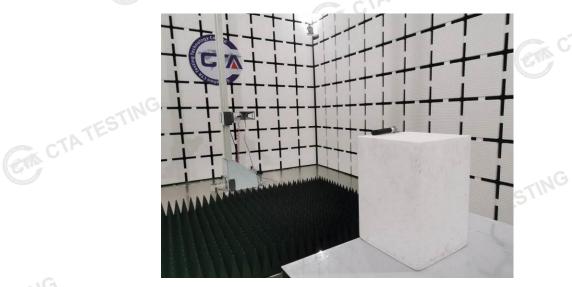
Variable Power Supply

CTA TESTING

Page 20 of 29 Report No.: CTA22052501301

Test Results


		Reference Frequency: 470.250MHz								
	Voltage (\	V)	Temperature (°C)	Frequency error (MHz)	Frequency Tolerance (%)	Limit (%)	Result			
			-20	0.00654	0.001390%	ATE				
			-10	0.00671	0.001426%		- 110			
		0	0.00823	0.001749%						
	C 2 00	2.00	10	0.00299	0.000635%	±0.005				
	3.00		20	0.00168	0.000356%		PASS			
CTATE	9.		30	0.00179	0.000380%		PASS			
CIL			40	-0.00036	-0.000077%					
ÿ			50	-0.00197	-0.000420%					
	3.45		20	-0.00025	-0.000054%					
	2.55	Townstally	20	-0.00534	-0.001136%) Lav			


	Reference Frequency: 514.275MHz							
Voltage (V)	Temperature (°C)	Frequency error (MHz)	Frequency Tolerance (%)	Limit (%)	Result			
-18	G -20	0.00556	0.001082%					
TESTIN	-10	0.00525	0.001022%					
CTATESTIN	0	0.00783	0.001523%					
3.00	10	0.00547	0.001064%					
3.00	20	0.00139	0.000271%	±0.005	PASS			
	30	0.00435	0.000847%	±0.005	PASS			
	40	-0.00134	-0.000260%					
	50	-0.00132	-0.000256%					
3.45	20	-0.00039	-0.000075%					
2.55	20	-0.00429	-0.000833%		To water his			

	Refere	nce Frequency: 5	41.800MHz		
Voltage (V)	Temperature (°C)	Frequency error (MHz)	Frequency Tolerance (%)	Limit (%)	Result
The same of the sa	-20	0.00534	0.000986%		-18
	-10	0.00589	0.001088%		TESTI
	0	0.00624	0.001152%		TATESTIN
2.00	10	0.00077	0.000143%		
3.00	20	0.00099	0.000183%	.0.005	DACC
	30	0.00133	0.000246%	±0.005	PASS
	40	-0.00066	-0.000121%		
STATES	50	-0.00142	-0.000261%		
3.45	20	-0.00046	-0.000084%		
2.55	20	-0.00621	-0.001145%		
			CT CT	ATESTI	

Page 21 of 29 Report No.: CTA22052501301

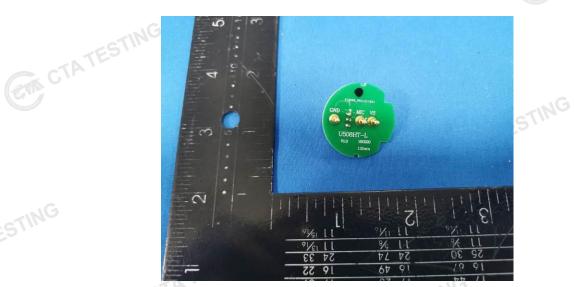
Test Setup Photos of the EUT 5

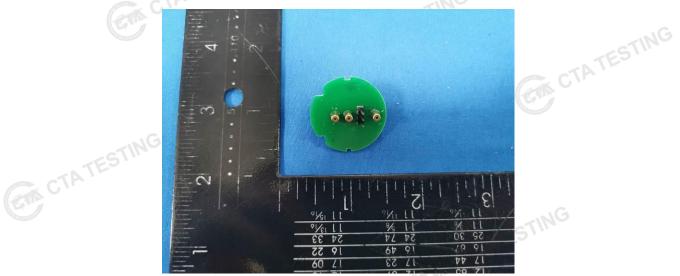
Page 22 of 29 Report No.: CTA22052501301

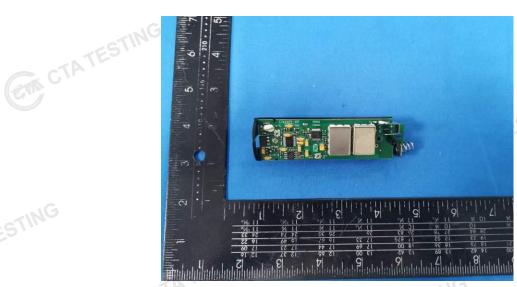
Photos of the EUT 6

Page 23 of 29 Report No.: CTA22052501301

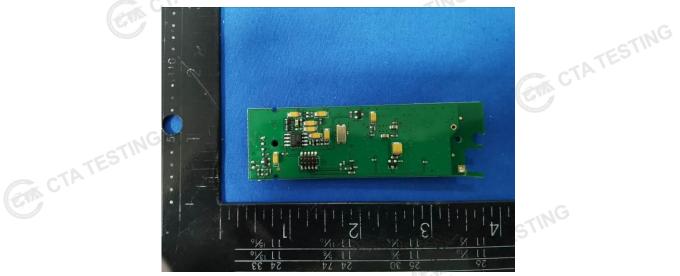
Page 24 of 29 Report No.: CTA22052501301


Page 25 of 29 Report No.: CTA22052501301




Page 26 of 29 Report No.: CTA22052501301

Page 27 of 29 Report No.: CTA22052501301



Page 28 of 29 Report No.: CTA22052501301

Page 29 of 29 Report No.: CTA22052501301

