FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10:2013 TEST REPORT

For

Kinsa Smart Ear Thermometer

Model: A-10240 (TS36B)

Issued for

Kinsa Inc

85 Broad Street 17th Floor New York, NY 10004

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.)

TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail : service@ccsrf.com

Issued Date: September 16, 2015

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	09/04/2015	Initial Issue	All Page 44	Michelle Chiu
01	09/08/2015	9/08/2015 Revised		Michelle Chiu
02	09/16/2015	Revised	Page 5	Michelle Chiu

TABLE OF CONTENTS

TITLE PAGE NO. 1. TEST REPORT CERTIFICATION4 2. EUT DESCRIPTION5 4. TEST METHODOLOGY7 5. FACILITIES AND ACCREDITATION......7 5.3 MEASUREMENT UNCERTAINTY8 6. SETUP OF EQUIPMENT UNDER TEST......9 7. FCC PART 15.247 REQUIREMENTS......10 7.5 CONDUCTED SPURIOUS EMISSION22 APPENDIX SETUP PHOTOS42

1. TEST REPORT CERTIFICATION

Applicant : Kinsa Inc

Address : 85 Broad Street 17th Floor New York, NY 10004

Equipment Under Test: Kinsa Smart Ear Thermometer

Model : A-10240 (TS36B)

Tested Date : August 18 ~ 27, 2015

APPLICABLE STANDARD			
Standard Test Result			
FCC Part 15 Subpart C AND ANSI C63.10:2013 & ANSI C63.4:2014	PASS		

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sb. Lu

Sr. Engineer

Reviewed by:

Gundam Lin

Sr. Engineer

2. EUT DESCRIPTION

Product Name	Kinsa Smart Ear Thermometer		
Model Number	A-10240 (TS36B)		
Identify Number	T150818L06		
Received Date	August 18, 2015		
Frequency Range	2402 MHz ~ 2480 MHz		
Transmit Power	0.29dBm (0.0011W)		
Channel Spacing	2 MHz		
Channel Number	40 Channels		
Transmit Data Rate	1 Mbps		
Type of Modulation	GFSK		
Antenna Type	PCB Antenna, Antenna Gain : -1.5532dBi		
Power Rating	3Vdc (For Battery)		
Test Voltage	3Vdc		

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. Antenna requirement comply with Section 15.203 Rules.
- 4. This submittal(s) (test report) is intended for FCC ID: 2AFEOE1 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

The EUT (A-10240 (TS36B)) had been tested under operating condition.

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test Mode
1	TX Mode

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode				
Emission	Radiated Emission	Mode 1		
EIIIISSIOII	Conducted Emission	N/A		

RemaRemark: Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Conducted / Radiated Emission Test (Above 1 GHz)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2402	
Middle	2440	
High	2480	

Remark: The field strength of spurious emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X, Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and ANSI C63.4: 2014 and FCC CFR 47, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.10: 2013 and ANSI C63.4: 2014 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada INDUSTRY CANADA
Japan VCCI
Taiwan BSMI
USA FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Remark: FCC Designation Number TW1027.

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.
1	DC Power Supply	Agilent	E3631A	MY40007576

No.	Signal Cable Description	
1	Non-shielded DC cable, 1.5m × 1	
2	Non-shielded DC cable, 1m × 1	

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. TX Mode:
 - ⇒ Power control

Channel Low (2402MHz) Power set Default.

Channel Mid (2440MHz) Power set Default.

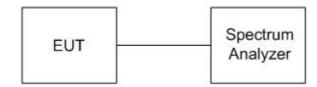
Channel High (2480MHz) Power set Default.

- 3. All of the functions are under run.
- 4. Start test.

7. FCC PART 15.247 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMITS

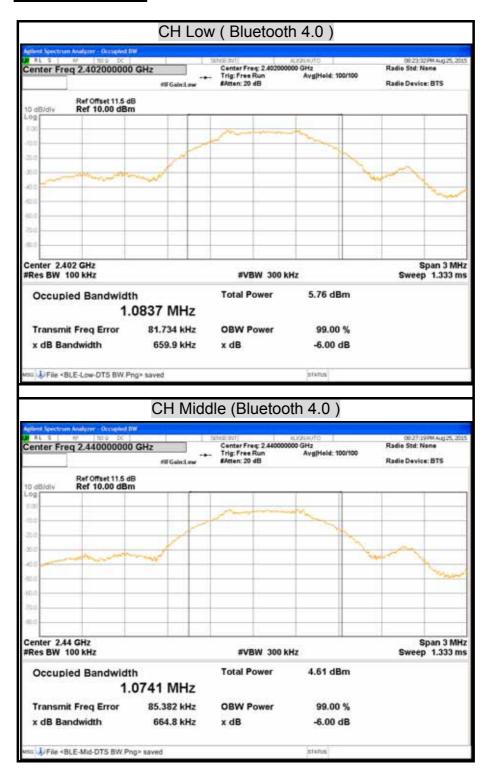

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

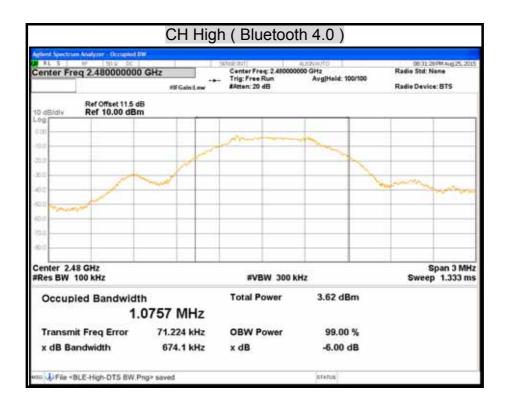
TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/19/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP


TEST PROCEDURE


- 1. The transmitter output was connected to a spectrum analyzer.
- 2. Set RBW = 100 kHz.
- 3. Set the video bandwidth (VBW) \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST RESULTS

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	0.6599	500	PASS
Middle	2440	0.6648	500	PASS
High	2480	0.6741	500	PASS

6dB BANDWIDTH

7.2 MAXIMUM PEAK OUTPUT POWER

LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§ KDB 662911 : For power measurements on IEEE 802.11 devices

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2495A	1149001	12/11/2015
Power Sensor	Anritsu	MA2411B	1126148	12/11/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the power meter. The power meter is set to the peak power detection.

TEST RESULTS

Channel	Channel Frequency	Peak Power Limit		Peak Power		Pass / Fail
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2402	0.29	0.0011	30	1	PASS
Middle	2440	-0.77	0.0008	30	1	PASS
High	2480	-1.07	0.0008	30	1	PASS

Remark: The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

7.3 AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2495A	1149001	12/11/2015
Power Sensor	Anritsu	MA2411B	1126148	12/11/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the power meter. The power meter is set to the average power detection.

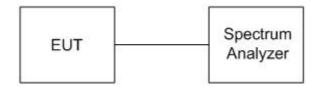
TEST RESULTS

Channel	Channel Frequency (MHz)	Average Power (dBm)		
Low	2402	-0.47		
Middle	2440	-1.56		
High	2480	-2.45		

Remark: The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

7.4 POWER SPECTRAL DENSITY

LIMITS


§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

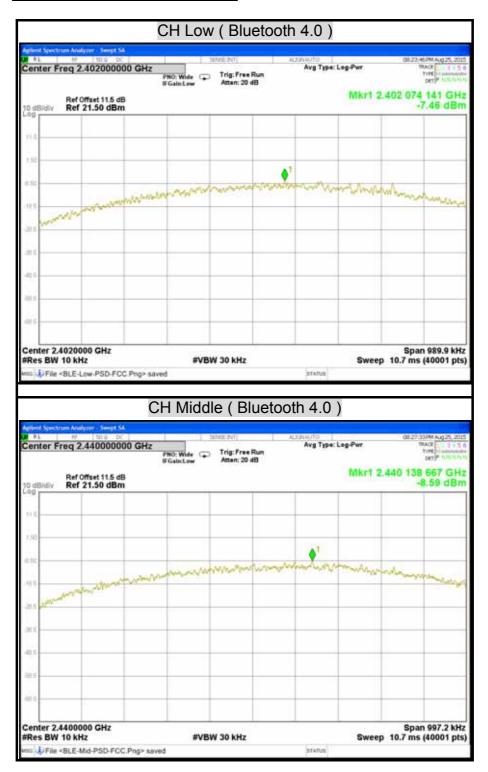
TEST EQUIPMENT

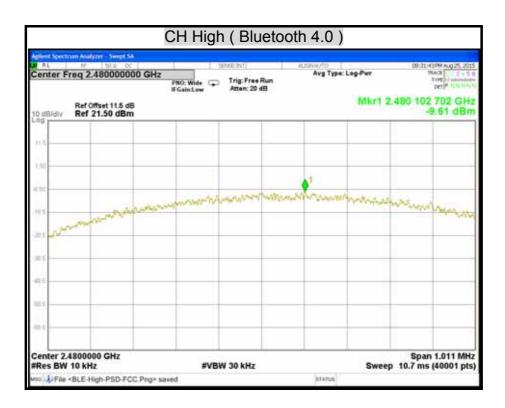
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/19/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE


- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set analyzer center frequency to DTS channel center frequency.
- 3. Set the span to 1.5 times the DTS channel bandwidth.
- 4. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 5. Set the VBW \geq 3 x RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


TEST RESULTS

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2402	-7.46	8	PASS
Middle	2440	-8.59	8	PASS
High	2480	-9.61	8	PASS

Remark: The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

POWER SPECTRAL DENSITY

7.5 CONDUCTED SPURIOUS EMISSION

LIMITS

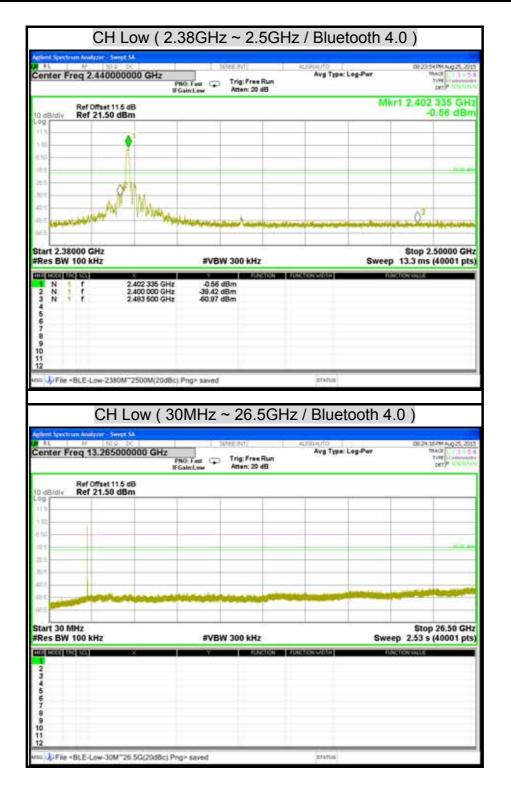

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

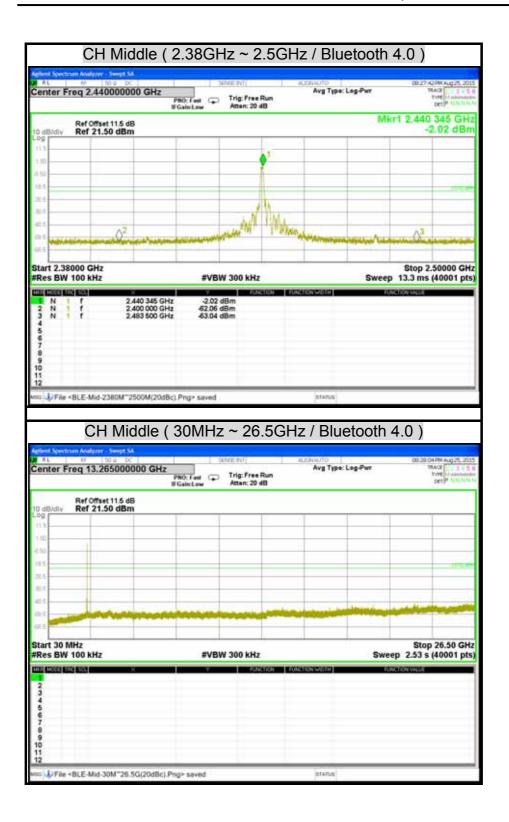
TEST EQUIPMENT

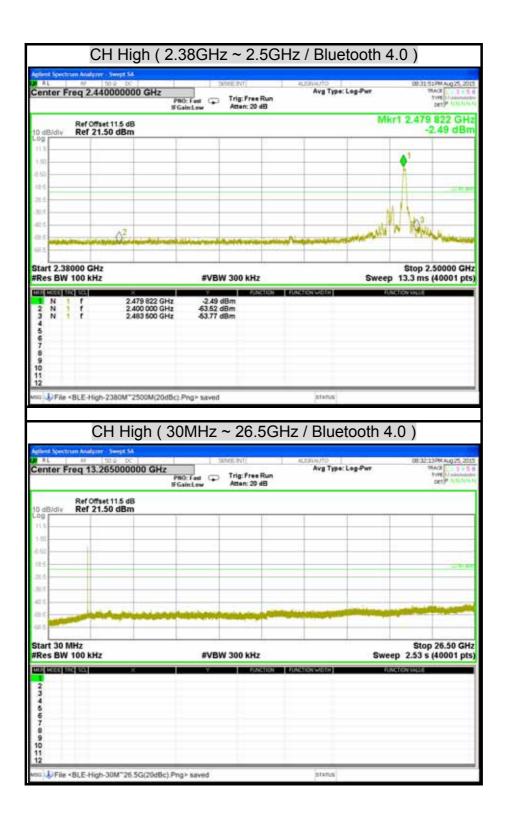
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/19/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST RESULTS

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

7.6 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

^{1. 1} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{2. &}lt;sup>2</sup> Above 38.6

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 - 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

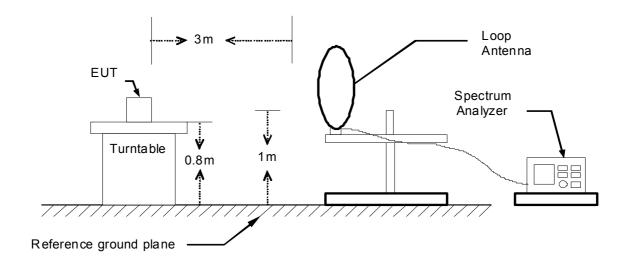
Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

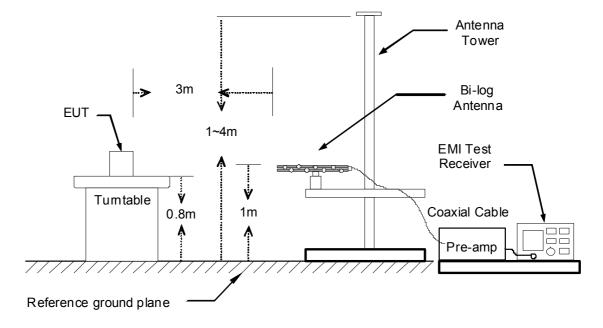
TEST EQUIPMENT

Radiated Emission / 966Chamber_B

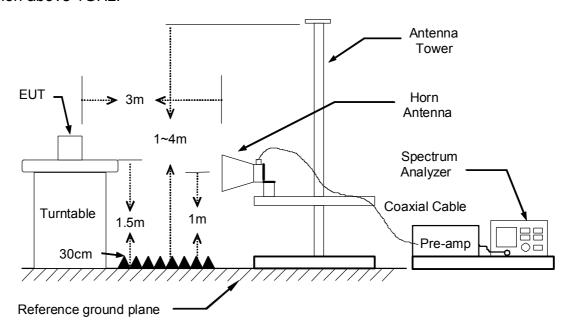
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY46180323	04/14/2016
EMI Test Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/14/2015
Bi-log Antenna	TESEQ	CBL 6112D	35403	08/04/2016
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078733	12/02/2015
Horn Antenna	COM-POWER	AH-840	03077	12/17/2015
Pre-Amplifier	Agilent	8447D	2944A10052	07/14/2016
Pre-Amplifier	Agilent	8449B	3008A01916	07/14/2016
LOOP Antenna	COM-POWER	AL-130	121060	05/24/2016
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R


Remark: 1. Each piece of equipment is scheduled for calibration once a year.

^{2.} N.C.R = No Calibration Request.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission below 1GHz.


9kHz ~ 30MHz

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 and 1.5 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name Kinsa Smart Ear Thermometer		Test By	Waternil Guan
Test Model	A-10240 (TS36B)	Test Date	2015/08/20
Test Mode	Mode 1	Temp. & Humidity	26°C, 51%

966 Chamber B at 3Meter / Horizontal

Freq.	Reading	C.F.	Result	Limit	Margin	Azimuth	Height	Remark
MHz	dBu∀	dB/m	dBu∀/m	dBu\∕/m	dB	deg	cm	
======	========	=======				=======		=======
44.55	49.10	-16.81	32.29	40.00	-7.71	287	300	Peak
60.07	54.41	-21.27	33.14	40.00	-6.86	275	300	Peak
126.03	52.90	-14.98	37.92	43.50	-5.58	85	300	Peak
149.31	52.93	-15.83	37.10	43.50	-6.40	85	200	Peak
176.47	53.74	-17.17	36.57	43.50	-6.93	282	200	Peak
197.81	53.79	-16.56	37.23	43.50	-6.27	100	200	Peak
292.87	46.23	-12.40	33.83	46.00	-12.17	195	200	Peak
538.28	41.84	-8.27	33.57	46.00	-12.43	273	200	Peak

966 Chamber B at 3Meter / Vertical

Freq. MHz	Reading dBu∨	C.F. dB/m	Result dBu∀/m	Limit dBu∀/m	Margin dB	Azimuth deg	Height cm	Remark
44.55	53.46	-16.81	36.65	40.00	-3.35	35	100	Peak
57.16	56.72	-20.67	36.05	40.00	-3.95	332	100	Peak
60.07	57.27	-21.27	36.00	40.00	-4.00	320	100	Peak
149.31	55.57	-15.83	39.74	43.50	-3.76	28	100	Peak
176.47	54.64	-17.17	37.47	43.50	-6.03	274	100	Peak
197.81	55.09	-16.56	38.53	43.50	-4.97	254	100	Peak
344.28	53.27	-11.26	42.01	46.00	-3.99	274	100	Peak
538.28	43.25	-8.27	34.98	46.00	-11.02	252	100	Peak

Remark:

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 3. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 4. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m)

Above 1 GHz

Product Name	Kinsa Smart Ear Thermometer	Test By	Waternil Guan
Test Model	A-10240 (TS36B)	Test Date	2015/08/20
Test Mode	Bluetooth 4.0 / TX Mode / CH Low	Temp. & Humidity	26°C, 51%

966 Chamber B at 3Meter / Horizontal

Freq.	Reading	C.F.	Result	Limit	Margin	Azimuth	Height	Remark
MHz	dBu∀	dB/m	dBu\∕/m	dBu\⁄/m	dB	deg	cm	
	.======							
1354.00	44.59	-3.01	41.58	74.00	-32.42	104	200	Peak
2148.00	42.28	2.14	44.42	74.00	-29.58	158	100	Peak
2802.00	40.62	3.63	44.25	74.00	-29.75	234	200	Peak
1800.00	43.57	7.98	51.55	54.00	-2.45	210	100	Average
1800.00	49.53	7.98	57.51	74.00	-16.49	210	100	Peak
5465.00	37.21	11.64	48.85	74.00	-25.15	286	200	Peak
7020.00	37.21	12.26	49.47	74.00	-24.53	90	200	Peak

966 Chamber B at 3Meter / Vertical

Freq.	Reading	C.F.	Result	Limit	Margin	Azimuth	Height	Remark
MHz	dBu∀	dB/m	dBu\⁄/m	dBu\⁄/m	dB	deg	cm	
=======		======			=======	=======	=======	:=======
1834.00	41.81	0.24	42.05	74.00	-31.95	79	200	Peak
2020.00	42.16	1.83	43.99	74.00	-30.01	65	100	Peak
2674.00	41.66	3.36	45.02	74.00	-28.98	204	100	Peak
4800.00	42.00	7.98	49.98	74.00	-24.02	99	100	Peak
6255.00	38.25	11.60	49.85	74.00	-24.15	48	100	Peak
7215.00	37.92	11.82	49.74	74.00	-24.26	272	100	Peak

Remark

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor
 Margin = Result Limit

Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product NameKinsa Smart Ear ThermometerTest ByWaternil GuanTest ModelA-10240 (TS36B)Test Date2015/08/20Test ModeBluetooth 4.0 / TX Mode / CH MiddleTemp. & Humidity26°C, 51%

Report No.: T150818L06-RP1

966 Chamber B at 3Meter / Horizontal

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBu∀/m	Margin dB	Azimuth deg	Height cm	Remark
=======		=======		=======	=======	=======		
1468.00	43.36	-2.89	40.47	74.00	-33.53	153	100	Peak
1876.00	42.47	0.63	43.10	74.00	-30.90	310	100	Peak
2116.00	42.72	2.07	44.79	74.00	-29.21	293	200	Peak
3255.00	40.74	4.54	45.28	74.00	-28.72	162	100	Peak
4875.00	44.82	8.04	52.86	74.00	-21.14	275	100	Peak
5070.00	39.28	8.41	47.69	74.00	-26.31	346	200	Peak

966 Chamber B at 3Meter / Vertical

Freq. MHz	Reading dBu∨	C.F. dB/m	Result dBuV/m	Limit dBu∀/m	Margin dB	Azimuth deg	Height cm	Remark
						=======		
1654.00	42.62	-1.43	41.19	74.00	-32.81	279	100	Peak
1912.00	42.78	0.96	43.74	74.00	-30.26	165	100	Peak
2092.00	42.18	2.01	44.19	74.00	-29.81	70	200	Peak
4155.00	39.28	6.52	45.80	74.00	-28.20	9	200	Peak
4875.00	43.65	8.04	51.69	74.00	-22.31	346	100	Peak
6315.00	38.05	11.61	49.66	74.00	-24.34	56	100	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(PK)$

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name Kinsa Smart Ear Thermometer **Test By** Waternil Guan **Test Model** A-10240 (TS36B) **Test Date** 2015/08/20 Bluetooth 4.0 / TX Mode / 26°C, 51% **Test Mode** Temp. & Humidity CH High

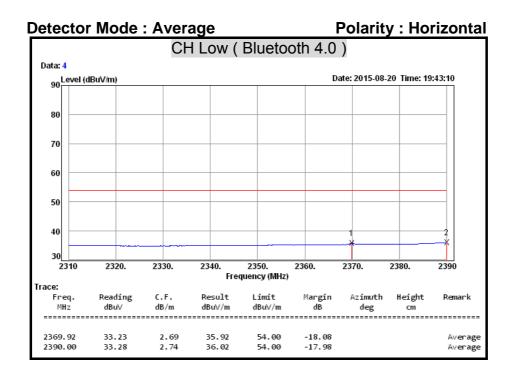
Report No.: T150818L06-RP1

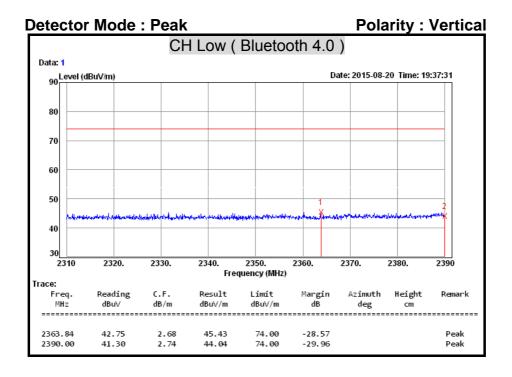
966 Chamber B at 3Meter / Horizontal

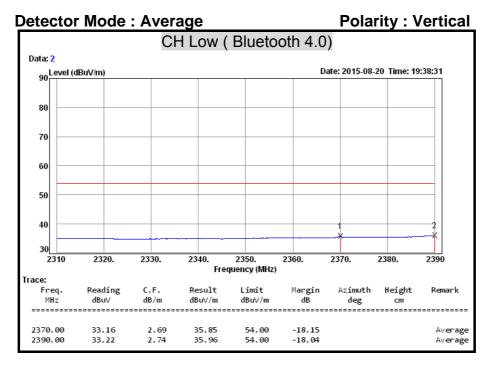
Freq.	Reading	C.F.	Result	Limit	Margin	Azimuth	Height	Remark
MHz	dBu∀	dB/m	dBu\∕/m	dBu\∕/m	dB	deg	cm	
						=======		
1208.00	43.61	-3.17	40.44	74.00	-33.56	66	100	Peak
1392.00	43.55	-2.97	40.58	74.00	-33.42	40	100	Peak
1838.00	42.76	0.28	43.04	74.00	-30.96	169	100	Peak
1110.00	39.26	6.36	45.62	74.00	-28.38	343	100	Peak
1965.00	42.76	8.11	50.87	74.00	-23.13	355	100	Peak
6315.00	37.70	11.61	49.31	74.00	-24.69	116	100	Peak

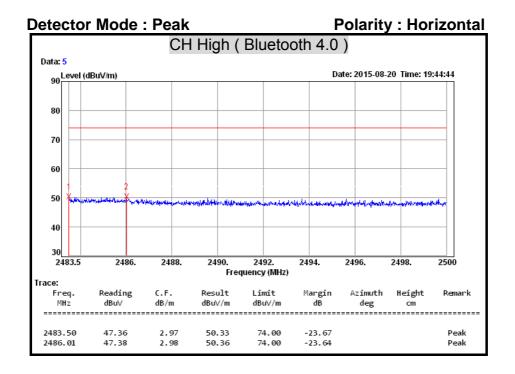
966 Chamber B at 3Meter / Vertical

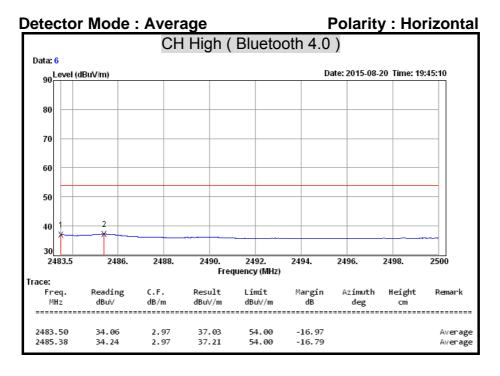
Freq.	Reading	C.F.	Result	Limit	Margin	Azimuth	Height	Remark
MHz	dBu∀	dB/m	dBu\∕/m	dBu\∕/m	dB	deg	cm	
						=======		======
170.00	44.16	-3.21	40.95	74.00	-33.05	290	100	Peak
616.00	41.80	-1.78	40.02	74.00	-33.98	305	200	Peak
038.00	42.08	1.87	43.95	74.00	-30.05	299	100	Peak
660.00	40.39	5.33	45.72	74.00	-28.28	149	200	Peak
965.00	42.26	8.11	50.37	74.00	-23.63	ø	100	Peak
285.00	37.43	11.61	49.04	74.00	-24.96	296	200	Peak

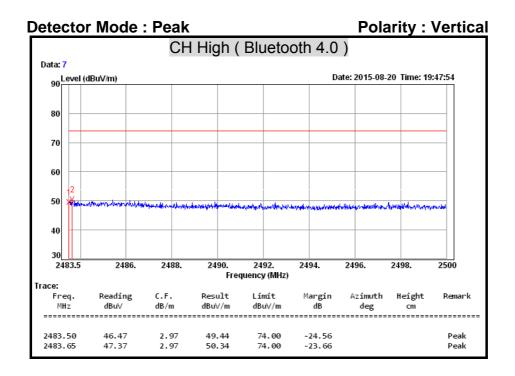

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

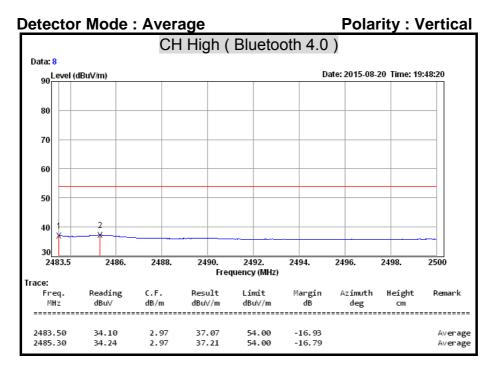

Remark Peak = Result(PK) - Limit(PK)


 $Remark\ AVG = Result(AV) - Limit(AV)$


Restricted Band Edges


Detector Mode: Peak Polarity: Horizontal CH Low (Bluetooth 4.0) Data: 3 90 Level (dBuV/m) Date: 2015-08-20 Time: 19:42:41 20 70 60 40 30 2320. 2330. 2350. 2360. 2340. Frequency (MHz) Trace: Reading Limit Freq. C.F. Result Margin Azimuth Height Remark dBu∀ dBu∀/m dB/m dBu∀/m deg 2390.00 46.40 2.74 49.14 74.00 -24.86 Peak

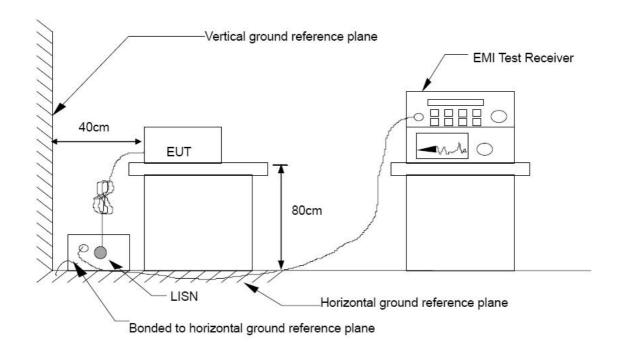


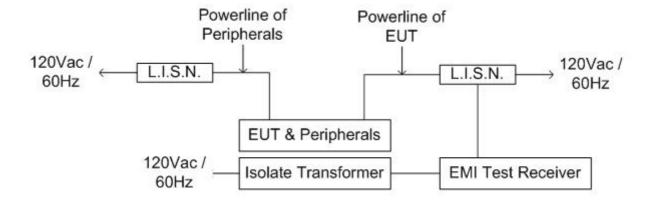


7.7 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.


Frequency Range	Conducted Limit (dBµv)				
(MHz)	Quasi-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			


TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127465	08/05/2016
L.I.S.N	SCHWARZBECK	NSLK 8127	8127473	03/09/2016
EMI Test Receiver	ROHDE & SCHWARZ	ESHS 30	838550/003	11/02/2015
Pulse Limiter	ROHDE & SCHWARZ	ESH3-Z2	100111	06/28/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.10: 2013 and ANSI C63.4: 2014.

The test procedure is performed in a 4m × 3m × 2.4m (L×W×H) shielded room.

The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Since the EUT is powered by Battery Powered, this test item is not applicable.