

FCC REPORT

Certification

Applicant Name:

FRTEK CO., LTD.

Address: 11-25, Simin-daero 327beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Republic of Korea

Date of Issue: December 20, 2018

Location of test lab: HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-RF-1810-FC032-R2

FCC ID:	2AFEG-2500-37		
APPLICANT:	FRTEK CO., LTD.		
Model:	ISO2500-195FRT		
EUT Type:	INOVA 5W	INOVA 5W	
Frequency Range:	Band Name BRS/EBS		
Output Power:	37 dBm		
Date of Test:	September 27, 2018 ~ October 10, 2018		
FCC Rule Parts:	CFR 47 Part 2, Part 27		

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

A.

Report prepared by : A Ram Han Engineer of telecommunication testing center Approved by : Jong Seok Lee Manager of telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-1810-FC032	October 19, 2018	- First Approval Report
HCT-RF-1810-FC032-R1	December 13, 2018	- Change applicant address information
HCT-RF-1810-FC032-R2	December 20, 2018	- Correct reference standard of radiation test diagram

Table of Contents

1. GENERAL INFORMATION
1.1. APPLICANT INFORMATION
1.2. PRODUCT INFORMATION
1.3. TEST INFORMATION
2. FACILITIES AND ACCREDITATIONS
2.1. FACILITIES
2.2. EQUIPMENT
3. TEST SPECIFICATIONS
3.1. STANDARDS
3.2. ADDITIONAL DESCRIPTIONS ABOUT TEST
3.3. MEASUREMENTUNCERTAINTY
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS 9 3.5. TEST DIAGRAMS 10
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS 9 3.5. TEST DIAGRAMS 10 4. TEST EQUIPMENTS 11
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS 9 3.5. TEST DIAGRAMS 10 4. TEST EQUIPMENTS 11 5. TEST RESULT 12
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS 9 3.5. TEST DIAGRAMS 10 4. TEST EQUIPMENTS 11 5. TEST RESULT 12 5.1. AGC THRESHOLD 12
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS93.5. TEST DIAGRAMS104. TEST EQUIPMENTS115. TEST RESULT125.1. AGC THRESHOLD125.2. OUT-OF-BAND REJECTION14
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS93.5. TEST DIAGRAMS104. TEST EQUIPMENTS115. TEST RESULT125.1. AGC THRESHOLD125.2. OUT-OF-BAND REJECTION145.3. INPUT-VERSUS-OUTPUT SIGNAL COMPARISON16
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS93.5. TEST DIAGRAMS104. TEST EQUIPMENTS115. TEST RESULT125.1. AGC THRESHOLD125.2. OUT-OF-BAND REJECTION145.3. INPUT-VERSUS-OUTPUT SIGNAL COMPARISON165.4. MEAN OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN22

1. GENERAL INFORMATION

1.1. APPLICANT INFORMATION

Company Name	FRTEK CO., LTD.
Company Address	1001, Doosan Venture Digm, 415, Heungandaero, Dongan-Gu, Anyang-Si, Gyenggi-do, 431-755 Korea

1.2. PRODUCT INFORMATION

EUT Type	INOVA 5W	
Power Supply	AC 88 ~ 132 V	
Frequency Range	Band Name BRS/EBS	Downlink (MHz) 2 496 ~ 2 690
Tx Output Power	37 dBm	
Antenna Specification	Manufacturer does not provide an antenna.	

1.3. TEST INFORMATION

FCC Rule Parts	CFR 47 Part 2, Part 27
Measurement Standards	KDB 935210 D05 v01r02, ANSI C63.26-2015
Test Location	HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

2. FACILITIES AND ACCREDITATIONS

2.1. FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4 (Version: 2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

2.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

3. TEST SPECIFICATIONS

3.1. STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 2 and Par 27.

Description	Reference	Results
AGC threshold	KDB 935210 D05 v01r02 3.2	Compliant
Out-of-band rejection	KDB 935210 D05 v01r02 3.3	Compliant
Input-versus-output signal comparison	§2.1049	Compliant
Mean output power and amplifier/booster gain	§2.1046, §27.50(h)	Compliant
Out-of-band/out-of-block and spurious emissions	§2.1051, §27.53(m)	Compliant
Spurious emissions radiated	§2.1053	Compliant

3.2. ADDITIONAL DESCRIPTIONS ABOUT TEST

Except for the following cases, EUT was tested under normal operating conditions.

: Out-of-band rejection test requires maximum gain condition without AGC

The test was generally based on the method of KDB 935210 D05 v01r02 and only followed ANSI C63.26-2015 if there was no test method in KDB standard.

EUT was tested with following modulated signals provide by applicant.

Band Name	Tested signals
BRS/EBS	LTE 10 MHz (TDD), LTE 20 MHz (TDD)

The frequency stability measurement has been omitted in accordance with section 3.7 of KDB 935210 D05 v01r02.

: It can be confirmed through input-versus-output signal comparison test that EUT does not alter the input signal.

The tests results included actual loss value for attenuator and cable combination as shown in the table below. : Input Path

Correction factor table			
Frequency (MHz)	Factor (dB)	Frequency (MHz)	Factor (dB)
1 500	1.793	2 250	2.205
1 550	1.899	2 300	2.215
1 600	1.946	2 350	2.305
1 650	1.907	2 400	2.317
1 700	1.829	2 450	2.247
1 750	1.878	2 500	2.384
1 800	1.865	2 550	2.442
1 850	1.923	2 600	2.496
1 900	1.886	2 650	2.483
1 950	2.031	2 700	2.287
2 000	2.033	2 750	2.427
2 050	1.996	2 800	2.307
2 100	2.100	2 850	2.504
2 150	2.072	2 900	2.466
2 200	2.193		

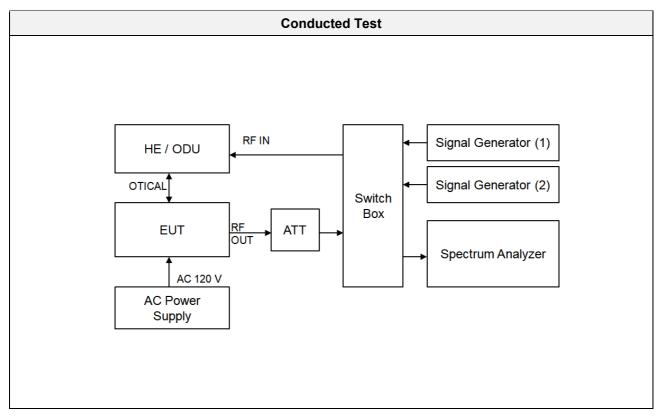
Report No.: HCT-RF-1810-FC032-R2

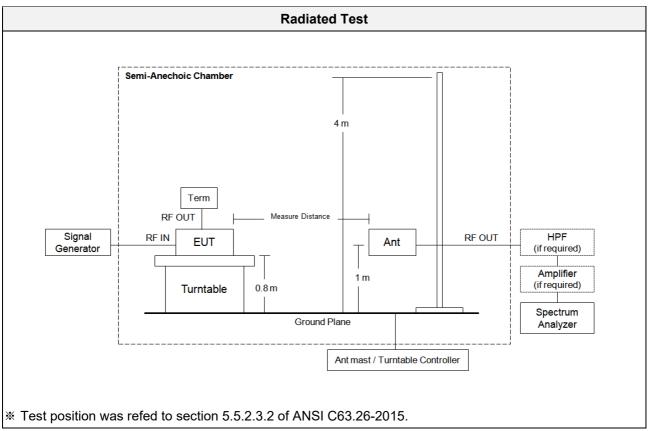
: Output Path

Correction factor table			
Frequency (MHz)	Factor (dB)	Frequency (MHz)	Factor (dB)
2	31.154	4 000	33.844
10	30.706	5 000	33.971
30	30.632	6 000	34.270
50	30.615	7 000	34.290
100	30.698	8 000	34.165
200	30.848	9 000	34.791
300	31.205	10 000	37.064
400	31.388	11 000	36.286
500	31.497	12 000	35.465
600	31.613	13 000	35.388
700	31.747	14 000	37.352
800	31.764	15 000	36.335
900	31.792	16 000	36.429
1 000	31.843	17 000	36.201
1 500	32.321	18 000	37.106
1 900	32.458	19 000	38.137
2 000	32.621	20 000	39.472
2 100	32.655	21 000	42.846
2 200	32.741	22 000	45.727
2 300	32.771	23 000	40.024
2 400	32.917	24 000	42.947
2 500	33.016	25 000	43.045
2 600	33.069	26 000	43.172
2 700	32.887	26 500	43.650
3 000	33.301		

3.3. MEASUREMENTUNCERTAINTY

Description	Reference	Results
AGC threshold	-	±0.87 dB
Out-of-band rejection	-	±0.58 MHz
Input-versus-output signal comparison	OBW > 5 MHz	±0.58 MHz
Mean output power and amplifier/booster gain	-	±0.87 dB
Out-of-band/out-of-block and spurious emissions	-	±1.08 dB
Spurious emissions radiated	f ≤ 1 GHz	±4.80 dB
	f > 1 GHz	±6.07 dB


* Coverage factor k = 2, Confidence levels of 95 %


3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS

Temperature	+15 ℃ to +35 ℃
Relative humidity	30 % to 60 %
Air pressure	860 mbar to 1 060 mbar

3.5. TEST DIAGRAMS

4. TEST EQUIPMENTS

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Agilent	N9020A / Spectrum Analyzer	09/05/2018	Annual	MY46471250
Agilent	N5182A / Signal Generator	08/09/2018	Annual	MY50140312
Agilent	N5182A / Signal Generator	08/30/2018	Annual	MY46240523
Agilent	8498A / Attenuator	09/06/2018	Annual	51162
KEITHLEY	S46 / Switch	N/A	N/A	1088024
Deayoung ENT	DFSS60 / AC Power Supply	04/05/2018	Annual	1003030-1
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Emco	2090 / Controller	N/A	N/A	060520
Ets	- / Turn Table	N/A	N/A	N/A
Rohde&Schwarz	- / Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	06/30/2017	Biennial	9120D-1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/25/2017	Biennial	BBHA9170124
Rohde&Schwarz	FSP / Spectrum Analyzer	09/19/2018	Annual	836650/016
Wainwright Instruments	WHKX10-900-1000-15000-40SS / High Pass Filter	07/20/2018	Annual	5
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	07/20/2018	Annual	3
CERNEX	CBLU1183540 / Power Amplifier	01/03/2018	Annual	24613
CERNEX	CBL06185030 / Power Amplifier	01/03/2018	Annual	24615
CERNEX	CBL18265035 / Power Amplifier	01/10/2018	Annual	22966

5. TEST RESULT

5.1. AGC THRESHOLD

Test Requirement:

KDB 935210 D05 v01r02

Testing at and above the AGC threshold is required.

Test Procedures:

Measurements were in accordance with the test methods section 3.2 of KDB 935210 D05 v01r02.

In the case of fiber-optic distribution systems, the RF input port of the equipment under test (EUT) refers to the RF input of the supporting equipment RF to optical convertor; see also descriptions and diagrams for typical DAS booster systems in KDB Publication 935210 D02

Devices intended to be directly connected to an RF source (donor port) only need to be evaluated for any over-the-air transmit paths.

a) Connect a signal generator to the input of the EUT.

b) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.

- c) The signal generator should initially be configured to produce either of the required test signals.
- d) Set the signal generator frequency to the center frequency of the EUT operating band.

e) While monitoring the output power of the EUT, measured using the methods of ANSI C63.26-2015 subclause 5.2.4.4.1, increase the input level until a 1 dB increase in the input signal power no longer causes a 1 dB increase in the output signal power.

f) Record this level as the AGC threshold level.

g) Repeat the procedure with the remaining test signal.

Output power measurement in subclause 5.2.4.4.1 of ANSI C63.26

a) Set span to 2 × to 3 × the OBW.

b) Set RBW = 1% to 5% of the OBW.

c) Set VBW \ge 3 × RBW.

d) Set number of measurement points in sweep $\ge 2 \times \text{span} / \text{RBW}$.

e) Sweep time: auto-couple

f) Detector = power averaging (rms).

g) If the EUT can be configured to transmit continuously, then set the trigger to free run.

h) Omit

i) Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To

Report No.: HCT-RF-1810-FC032-R2

accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Test Results:

Test Band	Link	Signal	Center Frequency (MHz)	AGC Threshold Level (dBm)	Output Level (dBm)
BRS/EBS	Downlink	LTE 10 MHz (TDD)	2 593.00	-20	37.23
BR3/EB3	DOWININK	LTE 20 MHz (TDD)	2 593.00	-20	36.50

5.2. OUT-OF-BAND REJECTION

Test Requirement:

KDB 935210 D05 v01r02

Out-of-band rejection required.

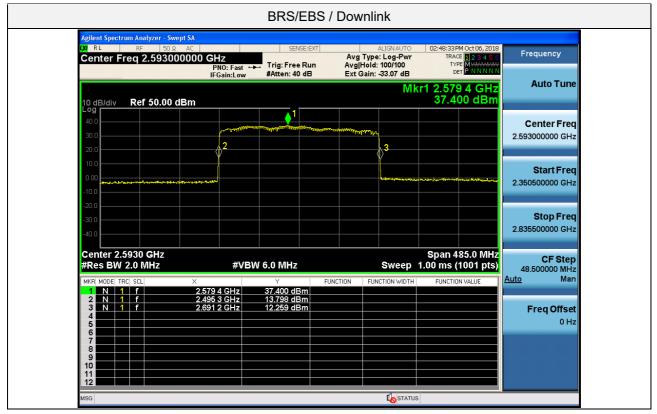
Test Procedures:

Measurements were in accordance with the test methods section 3.3 of KDB 935210 D05 v01r02.

Adjust the internal gain control of the EUT to the maximum gain for which equipment certification is sought.

- a) Connect a signal generator to the input of the EUT.
- b) Configure a swept CW signal with the following parameters:
 - 1) Frequency range = ± 250 % of the passband, for each applicable CMRS band.

2) Level = a sufficient level to affirm that the out-of-band rejection is > 20 dB above the noise floor and will not engage the AGC during the entire sweep.


- 3) Dwell time = approximately 10 ms.
- 4) Number of points = SPAN/(RBW/2).
- c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- d) Set the span of the spectrum analyzer to the same as the frequency range of the signal generator.
- e) Set the resolution bandwidth (RBW) of the spectrum analyzer to be 1 % to 5 % of the EUT passband, and the video bandwidth (VBW) shall be set to \ge 3 × RBW.
- f) Set the detector to Peak Max-Hold and wait for the spectrum analyzer's spectral display to fill.
- g) Place a marker to the peak of the frequency response and record this frequency as f_0 .
- h) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the

spectral display, such that each marker is at or slightly below the -20 dB down amplitude, to determine the 20 dB bandwidth.

- i) Capture the frequency response of the EUT.
- j) Repeat for all frequency bands applicable for use by the EUT.

Test Results:

5.3. INPUT-VERSUS-OUTPUT SIGNAL COMPARISON

Test Requirement:

§2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the specified conditions of § 2.1049 (a) through (i) as applicable.

Test Procedures:

Measurements were in accordance with the test methods section 3.4 of KDB 935210 D05 v01r02.

a) Connect a signal generator to the input of the EUT.

b) Configure the signal generator to transmit the AWGN signal.

c) Configure the signal amplitude to be just below the AGC threshold level (see 3.2), but not more than 0.5 dB below.

d) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.

e) Set the spectrum analyzer center frequency to the center frequency of the operational band under test.

The span range of the spectrum analyzer shall be between 2 times to 5 times the emission bandwidth (EBW) or alternatively, the OBW.

f) The nominal RBW shall be in the range of 1 % to 5 % of the anticipated OBW, and the VBW shall be \ge 3 × RBW.

g) Set the reference level of the instrument as required to preclude the signal from exceeding the maximum spectrum analyzer input mixer level for linear operation. In general, the peak of the spectral envelope must be more than [10 log (OBW / RBW)] below the reference level.

Steps f) and g) may require iteration to enable adjustments within the specified tolerances.

h) The noise floor of the spectrum analyzer at the selected RBW shall be at least 36 dB below the reference level.

i) Set spectrum analyzer detection function to positive peak.

j) Set the trace mode to max hold.

k) Determine the reference value: Allow the trace to stabilize. Set the spectrum analyzer marker to the highest amplitude level of the displayed trace (this is the reference value) and record the associated frequency as f_0 .

I) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the -26 dB down amplitude. The 26 dB EBW (alternatively OBW) is the positive frequency difference between the two markers. If the spectral envelope crosses the -26 dB down amplitude at multiple points, the lowest or highest frequency shall be selected as the frequencies that are the furthest removed from the center frequency at which the spectral envelope crosses the -26 dB down amplitude point.

Report No.: HCT-RF-1810-FC032-R2

m) Repeat steps e) to I) with the input signal connected directly to the spectrum analyzer (i.e., input signal measurement).

n) Compare the spectral plot of the input signal (determined from step m) to the output signal (determined from step I) to affirm that they are similar (in passband and rolloff characteristic features and relative spectral locations), and include plot(s) and descriptions in test report.

o) Repeat the procedure [steps e) to n)] with the input signal amplitude set to 3 dB above the AGC threshold.

- p) Repeat steps e) to o) with the signal generator set to the narrowband signal.
- q) Repeat steps e) to p) for all frequency bands authorized for use by the EUT.

Test Results:

Tabular data of Output Occupied Bandwidth

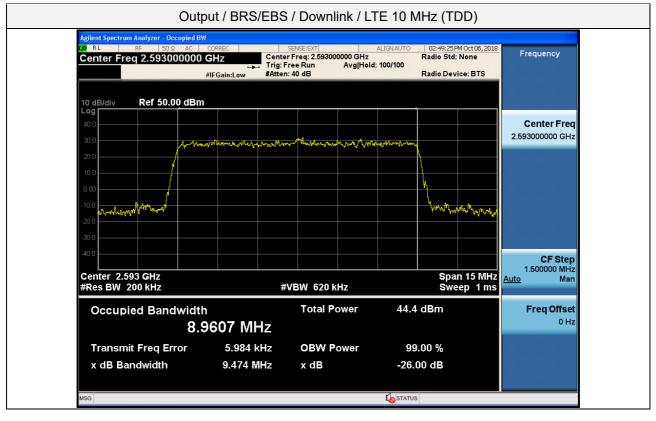
Test Band	Link	Signal	Center Frequency (MHz)	99 % OBW (MHz)	26 dB OBW (MHz)
BRS/EBS	Downlink	LTE 10 MHz (TDD)	2 593.00	8.960 7	9.474
DRO/EBO	DOWNIINK	LTE 20 MHz (TDD)	2 593.00	17.831	18.84

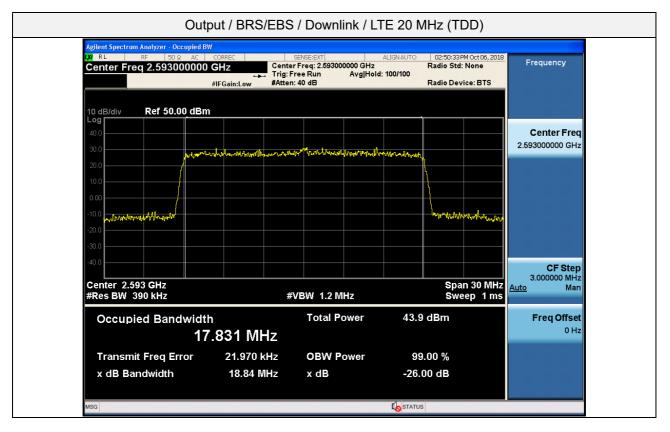
Tabular data of Input Occupied Bandwidth

Test Band	Link	Signal	Center Frequency (MHz)	99 % OBW (MHz)	26 dB OBW (MHz)
BRS/EBS	Downlink	LTE 10 MHz (TDD)	2 593.00	8.966 5	9.933
BR3/EB3	DOWININK	LTE 20 MHz (TDD)	2 593.00	17.932	19.63

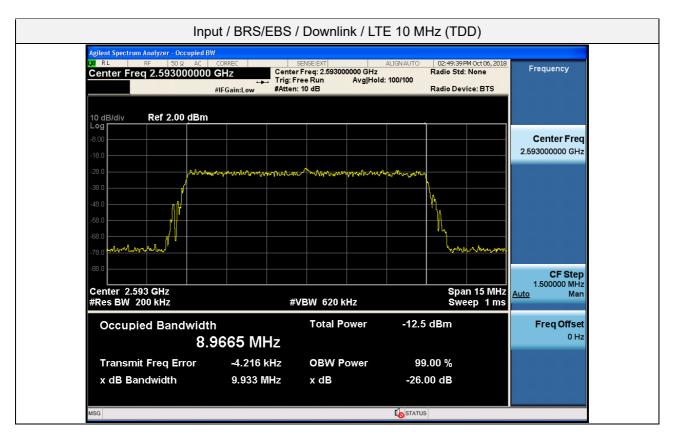
Tabular data of 3 dB above the AGC threshold Output Occupied Bandwidth

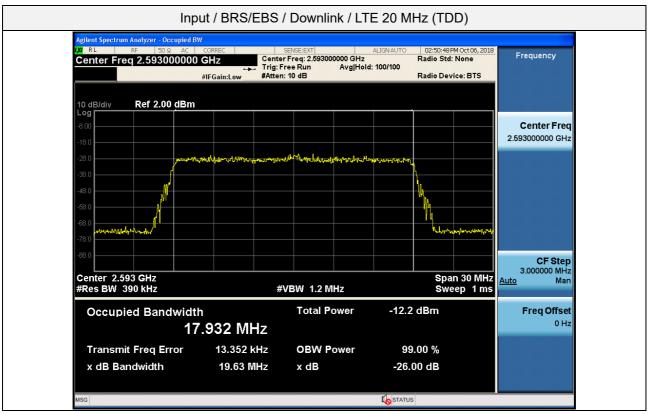
Test Band	Link	Signal	Center Frequency (MHz)	99 % OBW (MHz)	26 dB OBW (MHz)
BRS/EBS	Downlink	LTE 10 MHz (TDD)	2 593.00	8.976 9	9.532
BN3/EB3	DOWININK	LTE 20 MHz (TDD)	2 593.00	17.856	18.86

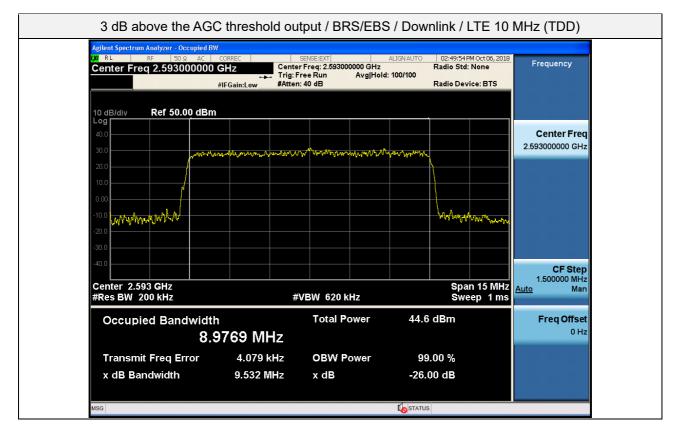

Measured Occupied Bandwidth Comparison

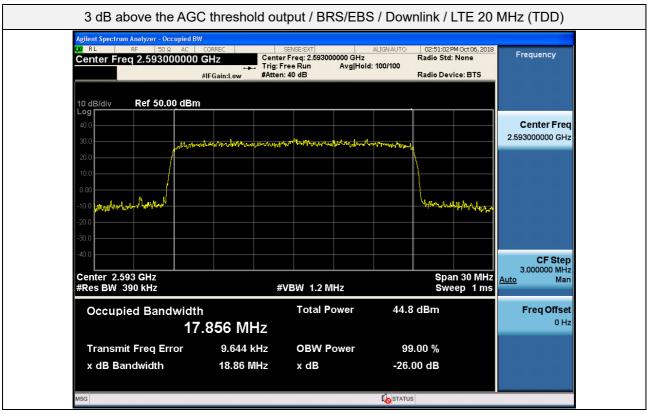

Test Band	Link	Signal	Variant of Input and output Occupied Bandwidth (%)	Variant of Input and 3 dB above the AGC threshold output Occupied Bandwidth (%)
BRS/EBS	Downlink	LTE 10 MHz (TDD)	-4.621	-4.037
DRO/EBO	DOWNIINK	LTE 20 MHz (TDD)	-4.024	-3.923

* Change in input-output OBW is less than ± 5 %.




Plot data of Occupied Bandwidth





5.4. MEAN OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN

Test Requirement:

§2.1046 Measurements required: RF power output.

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

(b) For single sideband, independent sideband, and single channel, controlled carrier radiotelephone transmitters the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.

(c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

§27.50 Power limits and duty cycle.

(h) The following power limits shall apply in the BRS and EBS:

(1) Main, booster and base stations.

(i) The maximum EIRP of a main, booster or base station shall not exceed 33 dBW + $10\log(X/Y)$ dBW, where X is the actual channel width in MHz and Y is either 6 MHz if prior to transition or the station is in the MBS following transition or 5.5 MHz if the station is in the LBS and UBS following transition, except as provided in paragraph (h)(1)(ii) of this section.

(ii) If a main or booster station sectorizes or otherwise uses one or more transmitting antennas with a non-omnidirectional horizontal plane radiation pattern, the maximum EIRP in dBW in a given direction shall be determined by the following formula: EIRP = $33 \text{ dBW} + 10 \log(X/Y) \text{ dBW} + 10 \log(360/\text{beamwidth}) \text{ dBW}$, where X is the actual channel width in MHz, Y is either (i) 6 MHz if prior to transition or the station is in the MBS following transition or (ii) 5.5 MHz if the station is in the LBS and UBS following transition, and beamwidth is the total horizontal plane beamwidth of the individual transmitting antenna for the station or any sector measured at the half-power points.

Test Procedures:

Measurements were in accordance with the test methods section 3.5 of KDB 935210 D05 v01r02.

Adjust the internal gain control of the EUT to the maximum gain for which the equipment certification is being sought. Any EUT attenuation settings shall be set to their minimum value.

Input power levels (uplink and downlink) should be set to maximum input ratings while confirming that the device is not capable of operating in saturation (non-linear mode) at the rated input levels, including during the performance of the input/output power measurements.

3.5.2 Measuring the EUT mean input and output power

- a) Connect a signal generator to the input of the EUT.
- b) Configure to generate the test signal.

c) The frequency of the signal generator shall be set to the frequency f_0 as determined from out-of-band rejection test.

d) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.

e) Set the signal generator output power to a level that produces an EUT output level that is just below the AGC threshold, but not more than 0.5 dB below.

f) Measure and record the output power of the EUT; use ANSI C63.26-2015 subclause 5.2.4.4.1, for power measurement.

g) Remove the EUT from the measurement setup. Using the same signal generator settings, repeat the power measurement at the signal generator port, which was used as the input signal to the EUT, and record as the input power. EUT gain may be calculated as described in 3.5.5.

h) Repeat steps f) and g) with input signal amplitude set to 3 dB above the AGC threshold level.

i) Repeat steps e) to h) with the narrowband test signal.

j) Repeat steps e) to i) for all frequency bands authorized for use by the EUT.

3.5.5 Calculating amplifier, repeater, or industrial booster gain

After the input and output power levels have been measured as described in the preceding subclauses, the gain of the EUT can be determined from:

Gain (dB) = output power (dBm) – input power (dBm).

Report the gain for each authorized operating frequency band, and each test signal stimulus.

Note1. If f₀ that determined from out-of-band test is smaller or greater than difference of test signal's center frequency and operation band block, test is performed at the lowest or the highest frequency that test signals can be passed.

Test Results:

Tabular data of Input / Output Power and Gain

Test Band	Link	Signal	f ₀ Frequency (MHz)	Input Power (dBm)	Output Power (dBm)	Gain (dB)
BRS/EBS	(TDD)	LTE 10 MHz (TDD)	2 579.42	-19.99	36.73	56.72
DRO/EDO	Downlink	LTE 20 MHz (TDD)	2 593.00	-20.53	35.61	56.14

Tabular data of Input / 3 dB above AGC threshold Output Power and Gain

Test Band	Link	Signal	f ₀ Frequency (MHz)	Input Power (dBm)	+3 dB Output Power (dBm)	Gain (dB)
BRS/EBS	(TE	LTE 10 MHz (TDD)	2 579.42	-19.99	36.44	56.43
DR3/EB3	Downlink	LTE 20 MHz (TDD)	2 593.00	-20.53	35.97	56.50

5.5. OUT-OF-BAND/OUT-OF-BLOCK EMISSIONS AND SPURIOUS EMISSIONS

Test Requirements:

§2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§27.53 Emission limits.

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(2) For digital base stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Provided that a documented interference complaint cannot be mutually resolved between the parties prior to the applicable deadline, then the following additional attenuation requirements shall apply:

(i) If a pre-existing base station suffers harmful interference from emissions caused by a new or modified base station located 1.5 km or more away, within 24 hours of the receipt of a documented interference complaint the licensee of the new or modified base station must attenuate its emissions by at least 67 +10 log (P) dB measured at 3 megahertz, above or below, from the channel edge of its frequency block and shall immediately notify the complaining licensee upon implementation of the additional attenuation. No later than 60 days after the implementation of such additional attenuation, the licensee of the complaining base station must attenuate its base station emissions by at least 67 +10 log (P) dB measured at 3 megahertz, above or below, from the channel edge of the additional attenuation.

(ii) If a pre-existing base station suffers harmful interference from emissions caused by a new or modified base station located less than 1.5 km away, within 24 hours of receipt of a documented interference complaint the licensee of the new or modified base station must attenuate its emissions by at least 67 +10 log (P)-20 log (Dkm/1.5) dB measured at 3 megahertz, above or below, from the channel edge of its frequency block of the complaining licensee, or if both base stations are co-located, limit its undesired signal level at the pre-existing base station receiver(s) to no more than -107 dBm

Report No.: HCT-RF-1810-FC032-R2

measured in a 5.5 megahertz bandwidth and shall immediately notify the complaining licensee upon such reduction in the undesired signal level. No later than 60 days after such reduction in the undesired signal level, the complaining licensee must attenuate its base station emissions by at least 67 +10 log (P) dB measured at 3 megahertz, above or below, from the channel edge of its frequency block of the new or modified base station.

(iii) If a new or modified base station suffers harmful interference from emissions caused by a preexisting base station located 1.5 km or more away, within 60 days of receipt of a documented interference complaint the licensee of each base station must attenuate its base station emissions by at least 67 +10 log (P) dB measured at 3 megahertz, above or below, from the channel edge of its frequency block of the other licensee.

(iv) If a new or modified base station suffers harmful interference from emissions caused by a preexisting base station located less than 1.5 km away, within 60 days of receipt of a documented interference complaint: (a) The licensee of the new or modified base station must attenuate its OOBE by at least 67 +10 log (P)-20 log (Dkm/1.5) measured 3 megahertz above or below, from the channel edge of its frequency block of the other licensee, or if the base stations are co-located, limit its undesired signal level at the other base station receiver(s) to no more than -107 dBm measured in a 5.5megahertz bandwidth; and (b) the licensee causing the interference must attenuate its emissions by at least 67 +10 log (P) dB measured at 3 megahertz, above or below, from the channel edge of its frequency block of the new or modified base station.

(v) For all fixed digital user stations, the attenuation factor shall be not less than 43 +10 log (P) dB at the channel edge.

Test Procedures:

Measurements were in accordance with the test methods section 3.6 of KDB 935210 D05 v01r02.

Spurious emissions shall be measured using a single test signal sequentially tuned to the low, middle, and high channels or frequencies within each authorized frequency band of operation.

Out-of-band/out-of-block emissions (including intermodulation products) shall be measured under each of the following two stimulus conditions:

a) two adjacent test signals sequentially tuned to the lower and upper frequency band/block edges;

b) a single test signal, sequentially tuned to the lowest and highest frequencies or channels within the frequency band/block under examination.

NOTE—Single-channel boosters that cannot accommodate two simultaneous signals within the passband may be excluded from the test stipulated in step a).

3.6.2 Out-of-band/out-of-block emissions conducted measurements

a) Connect a signal generator to the input of the EUT.

If the signal generator is not capable of generating two modulated carriers simultaneously, then two discrete signal generators can be connected with an appropriate combining network to support this two-

Report No.: HCT-RF-1810-FC032-R2

signal test.

b) Set the signal generator to produce two AWGN signals as previously described.

c) Set the center frequencies such that the AWGN signals occupy adjacent channels, as defined by industry standards such as 3GPP or 3GPP2, at the upper edge of the frequency band or block under test.
d) Set the composite power levels such that the input signal is just below the AGC threshold, but not more than 0.5 dB below. The composite power can be measured using the procedures provided in KDB Publication 971168, but it will be necessary to expand the power integration bandwidth so as to include both of the transmit channels.

e) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation as necessary.

f) Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band.

g) Set the VBW = $3 \times RBW$.

h) Set the detector to power averaging (rms) detector.

i) Set the Sweep time = auto-couple.

j) Set the spectrum analyzer start frequency to the upper block edge frequency, and the stop frequency to the upper block edge frequency plus 300 kHz or 3 MHz, for frequencies below and above 1 GHz, respectively.

k) Trace average at least 100 traces in power averaging (rms) mode.

I) Use the marker function to find the maximum power level.

m) Capture the spectrum analyzer trace of the power level for inclusion in the test report.

n) Repeat steps k) to m) with the composite input power level set to 3 dB above the AGC threshold.

o) Reset the frequencies of the input signals to the lower edge of the frequency block or band under test.

p) Reset the spectrum analyzer start frequency to the lower block edge frequency minus 300 kHz or 3

MHz, for frequencies below and above 1 GHz, respectively, and the stop frequency to the lower band or block edge frequency.

q) Repeat steps k) to n).

r) Repeat steps a) to q) with the signal generator configured for a single test signal tuned as close as possible to the block edges.

s) Repeat steps a) to r) with the narrowband test signal.

t) Repeat steps a) to s) for all authorized frequency bands or blocks used by the EUT.

3.6.3 Spurious emissions conducted measurements

a) Connect a signal generator to the input of the EUT.

b) Set the signal generator to produce the broadband test signal as previously described.

c) Set the center frequency of the test signal to the lowest available channel within the frequency band or block.

d) Set the EUT input power to a level that is just below the AGC threshold, but not more than 0.5 dB below.

e) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation as necessary.

f) Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band of

operation.

g) Set the VBW \geq 3 × RBW.

h) Set the Sweep time = auto-couple.

i) Set the spectrum analyzer start frequency to the lowest RF signal generated in the equipment, without going below 9 kHz, and the stop frequency to the lower band/block edge frequency minus 100 kHz or 1 MHz, as specified in the applicable rule part.

The number of measurement points in each sweep must be \geq (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer.

j) Select the power averaging (rms) detector function.

k) Trace average at least 10 traces in power averaging (rms) mode.

I) Use the peak marker function to identify the highest amplitude level over each measured frequency range. Record the frequency and amplitude and capture a plot for inclusion in the test report.

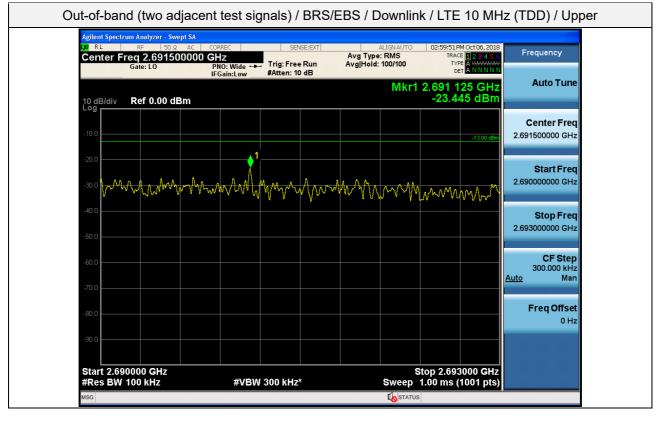
m) Reset the spectrum analyzer start frequency to the upper band/block edge frequency plus 100 kHz or 1 MHz, as specified in the applicable rule part, and the spectrum analyzer stop frequency to 10 times the highest frequency of the fundamental emission. The number of measurement points in each sweep must be \geq (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer.

n) Trace average at least 10 traces in power averaging (rms) mode.

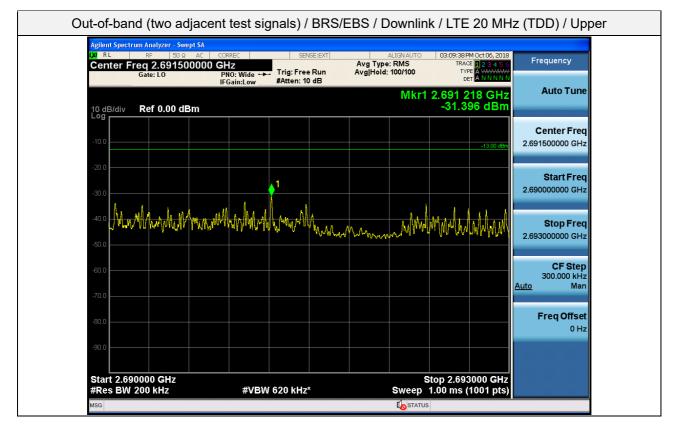
 o) Use the peak marker function to identify the highest amplitude level over each of the measured frequency ranges. Record the frequency and amplitude and capture a plot for inclusion in the test report; also provide tabular data, if required.

p) Repeat steps i) to o) with the input test signals firstly tuned to a middle band/block frequency/channel, and then tuned to a high band/block frequency/channel.

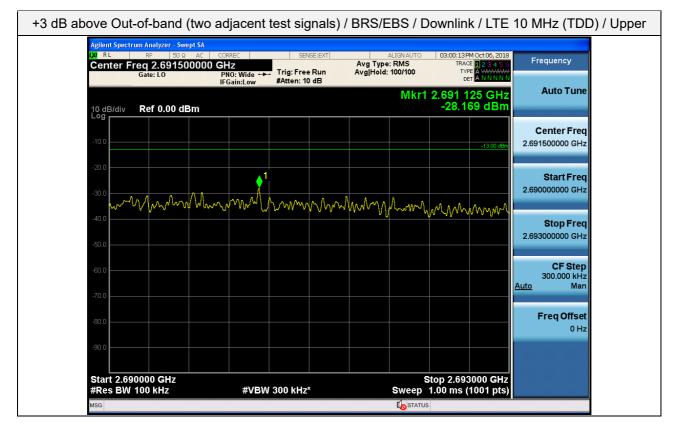
q) Repeat steps b) to p) with the narrowband test signal.

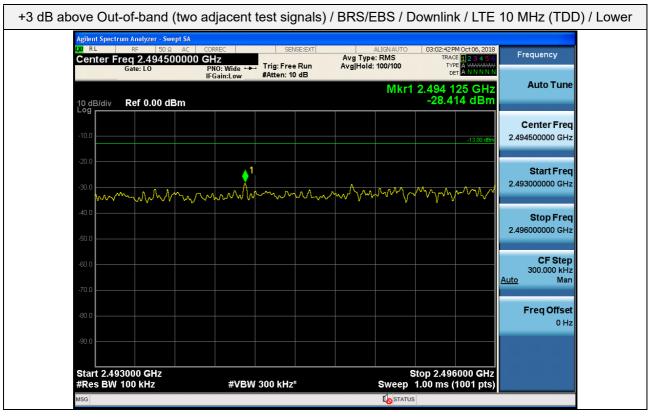

r) Repeat steps b) to q) for all authorized frequency bands/blocks used by the EUT.

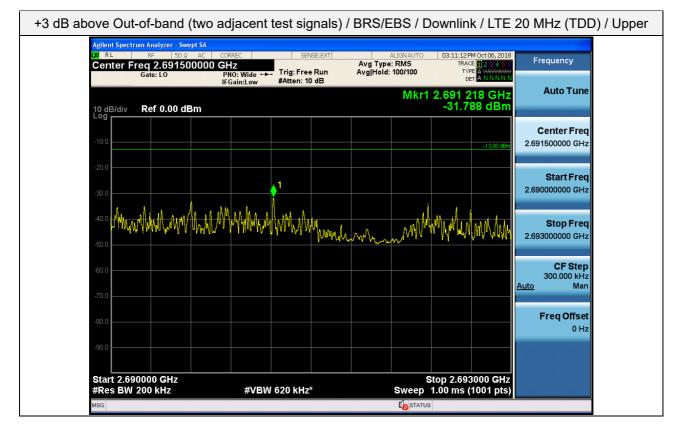
Note1. In 9 kHz-150 kHz and 150 kHz-30 MHz bands, RBW was reduced to 0.1 % and 1 % of the reference bandwidth for measuring unwanted emission level (typically, 1 MHz if the authorized frequency band is above 1 GHz) and power was integrated.(1% = +30 dB, 10% = +20 dB)

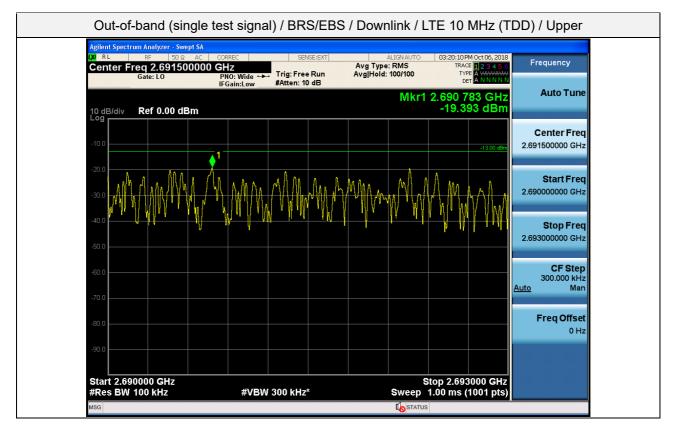

Test Results:

Plot data of Out-of-band/out-of-block emissions

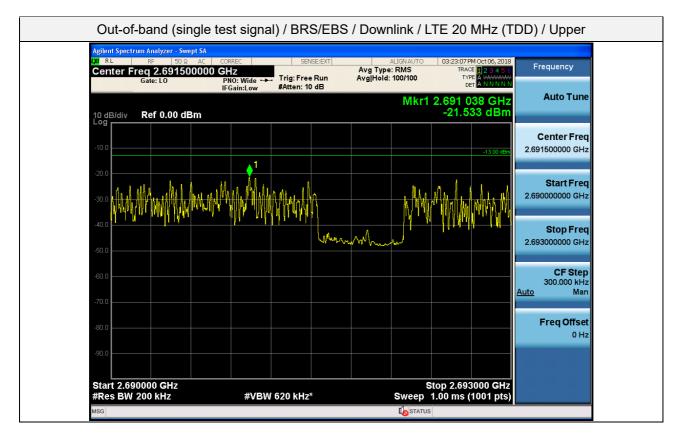

Agilent Spectrum Analyzer - Swept S		SENSE:EXT	ALIGN AUTO	03:02:19PM Oct 06, 2018	
Center Freq 2.4945000 Gate: L0			Avg Type: RMS Avg Hold: 100/100	TRACE 123456 TYPE A WWWWW DET A N N N N N	Frequency
10 dB/div Ref 0.00 dBm			Mkr1	2.494 779 GHz -26.817 dBm	Auto Tune
-10.0				-13.00 dBm	Center Freq 2.494500000 GHz
-20.0			1		
-30.0	Amm	www.	Ammon	Mm MM	Start Freq 2.493000000 GHz
-40.0					Stop Freq 2.49600000 GHz
-60.0					CF Step
-70.0					300.000 kHz <u>Auto</u> Man
-80.0					Freq Offset 0 Hz
-90.0					
Start 2.493000 GHz #Res BW 100 kHz	#VBW	300 kHz*		Stop 2.496000 GHz 1.00 ms (1001 pts)	



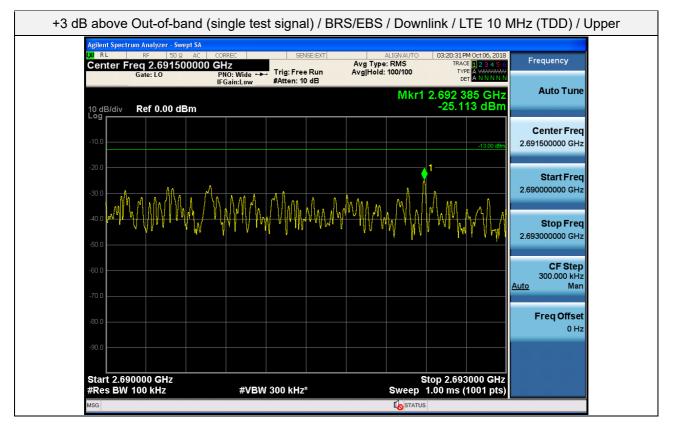

Agilent Spectrum Analyzer - Swept SA LXI RL RF 50 Ω AC	CORREC SENSE:E	T ALIGN AUTO	03:12:32 PM Oct 06, 2018	
Center Freq 2.49450000 Gate: L0	O GHZ PNO: Wide ↔→ IFGain:Low #Atten: 10 dB	Avg Type: RMS n Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
	IFGain:Low #Attent to db		495 892 GHz	Auto Tune
10 dB/div Ref 0.00 dBm			-26.227 dBm	
-10.0				Center Freq 194500000 GHz
			-13.00 dBm 2.4	194500000 GHZ
-20.0			↓1 [−]	Start Freq
-30.0 LIA LAA JAA MA	and to My many tale a white	1 Aan Mild		193000000 GHz
	u a MVAU Analis I Ant/MANNED WA	hand have the second	ha di AMANI A di	Stop Freq
-50.0		Mappy how we have the	2.4	196000000 GHz
				CF Step
-60.0			Auto	300.000 kHz
-70.0				Man
-80.0				Freq Offset
-90.0				0 Hz
Start 2.493000 GHz #Res BW 200 kHz		Sto	p 2.496000 GHz 0 ms (1001 pts)	

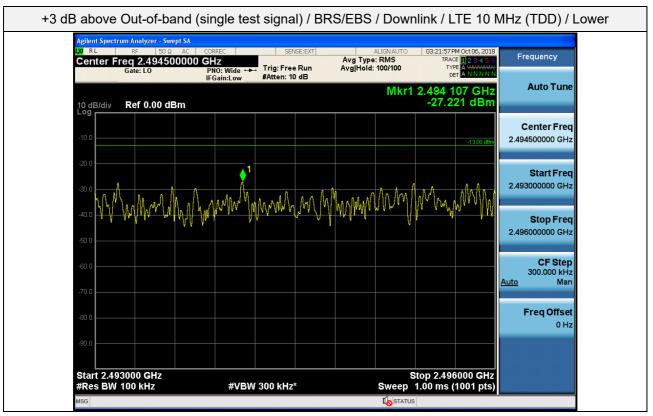


Center Freq 2.49	50 Q AC CORI 4500000 GH	z	SEN	ISE:EXT	Avg Type Avg Hold:		TRACE	Oct 06, 2018	Frequency
Gate: LO			#Atten: 10		Avginoia:		DET	ANNNN	Auto Tune
10 dB/div Ref 0.0	0 dBm					MKr1	2.495 55 -27.66	6 GHZ 7 dBm	Auto Func
Log									Center Freq
-10.0								-13.00 dBm	2.494500000 GHz
-20.0							↓ ¹		Start Freq 2.493000000 GHz
-30.0	AL R. MALALI	M.M.M.M	\	d		1 ALA		uMM	2.49300000 GH2
	ALK AND D. PA	L MUL MI	hud. di	THE MAN	٨	- W . M	halu . t.alt	<u>ר ון אזרי</u> ק ו	Stop Freq
-50.0				(ham	w			2.496000000 GHz
~									CF Step
-60.0									300.000 kHz Auto Man
-70.0									
-80.0									Freq Offset
00.0									0 Hz
-90.0									
Start 2.493000 GH	 Z					S	top 2.4960)00 GHz	

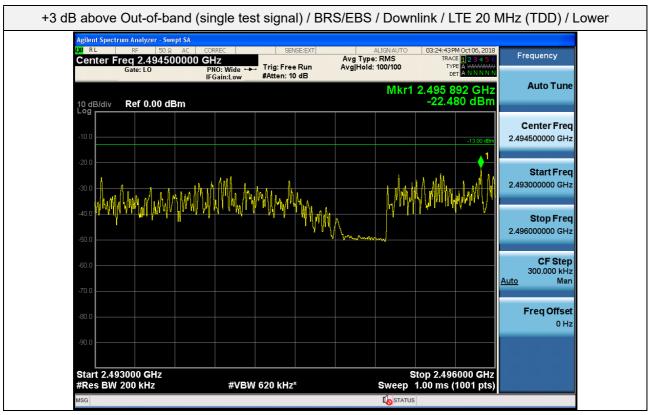


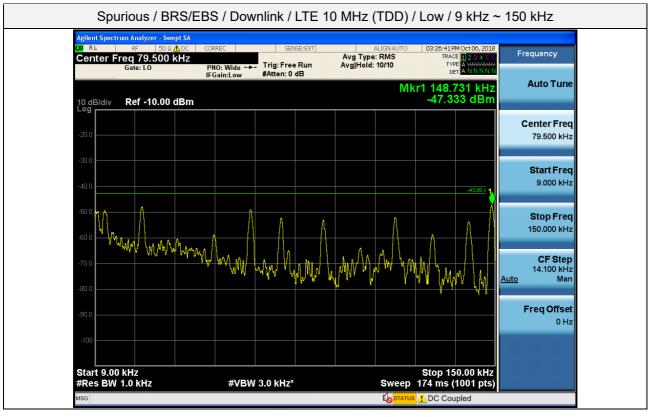
Agilent Spectrum Analyzer - Swept SA LXI RL RF 50Ω AC CO	DRREC SENSE:EXT		21:37 PM Oct 06, 2018	-
	NO: Wide 🔸 Trig: Free Run	Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
	FGain:Low #Atten: 10 dB	Mkr1 2.4	95 871 GHz	Auto Tune
10 dB/div Ref 0.00 dBm			25.828 dBm	
				Center Freq
-10.0			-13.00 dBm	2.494500000 GHz
-20.0			1-	Start Freq
-30.0				2.493000000 GHz
n Alman Mr. M. M. M. Mark	MAMMANN MAMM		MANYVW	
	<u> </u>		¥	Stop Freq 2.496000000 GHz
-50.0				2.496000000 GHZ
-60.0				CF Step
				300.000 kHz <u>Auto</u> Man
-70.0				
-80.0				Freq Offset 0 Hz
-90.0				
Start 2.493000 GHz #Res BW 100 kHz	#VBW 300 kHz*	Stop :	2.496000 GHz ms (1001 pts)	

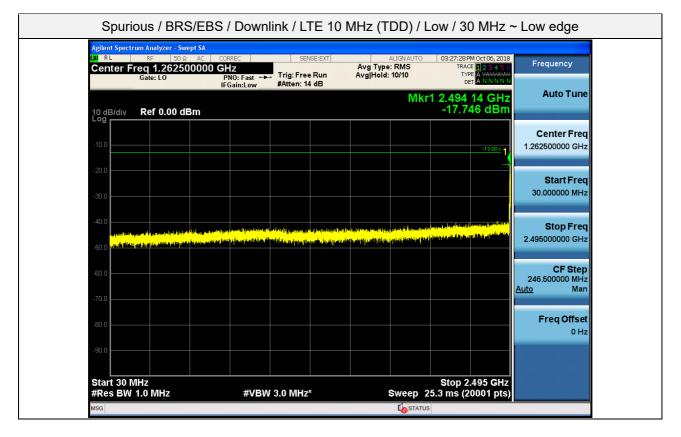




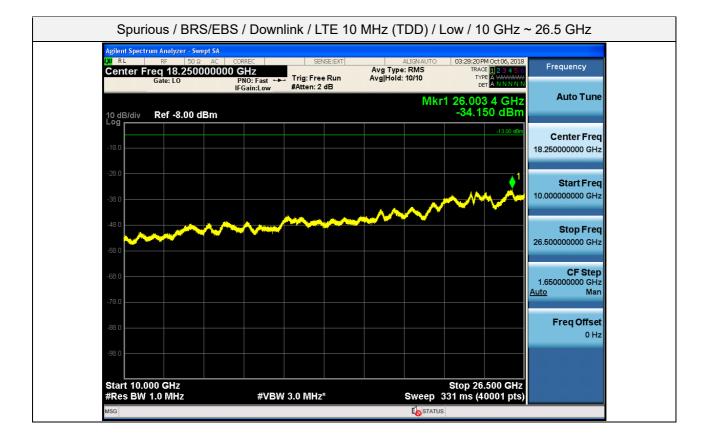

Center Freq	nalyzer - Swept SA F 50 Q AC 2.494500000 e: L0	CORREC GHz PNO: Wide ↔ IFGain:Low			Avg Type Avg Hold:			M Oct 06, 2018 E 1 2 3 4 5 6 E A WWWWW T A N N N N N	Frequency
	f 0.00 dBm	II Gam.cow				Mkr1	2.495 8	92 GHz 94 dBm	Auto Tune
-10.0								-13.00 dBm	Center Freq 2.494500000 GHz
-20.0 -30.0			MAN	1.					Start Freq 2.493000000 GHz
-40.0				"WW.AM	Mum	~~/ ~~/		<u></u>	Stop Freq 2.496000000 GHz
-60.0									CF Step 300.000 kHz <u>Auto</u> Man
-70.0									Freq Offset
									0 Hz

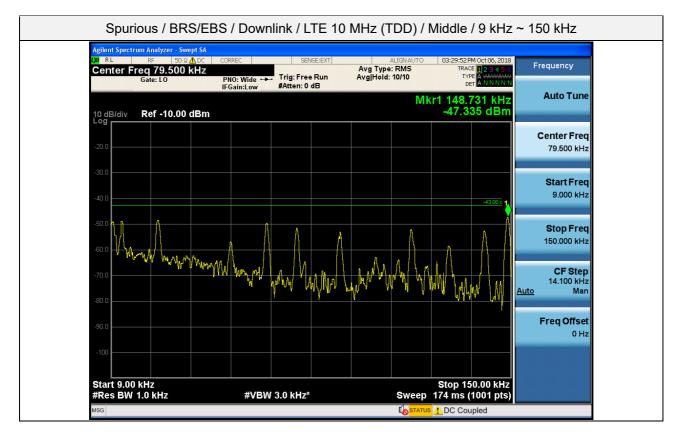




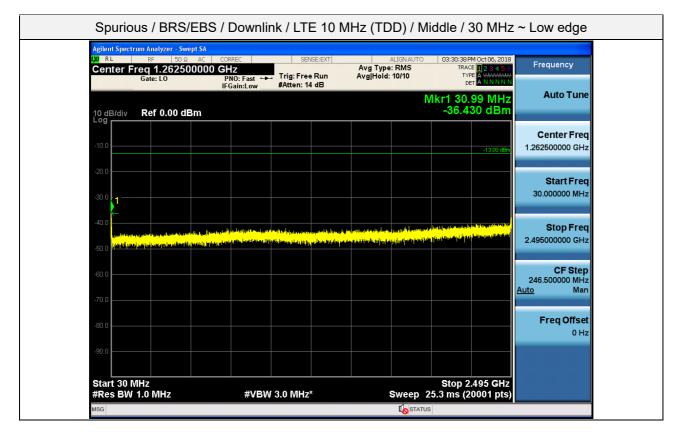


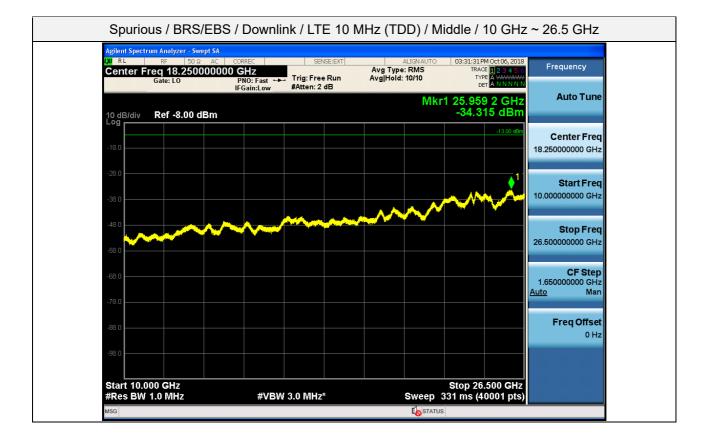
Plot data of Spurious Emissions

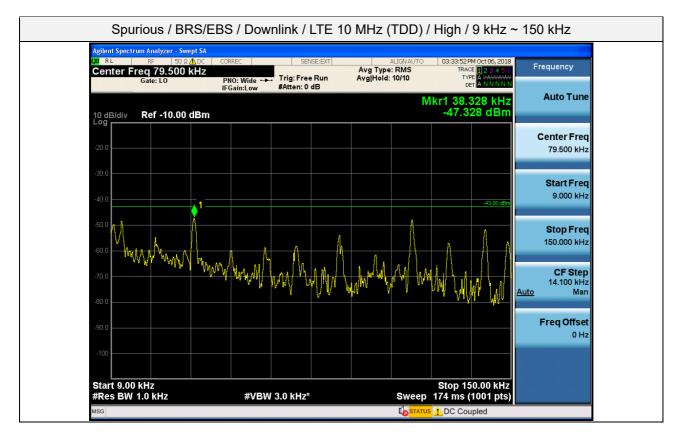

Agilent Spectrum Analyzer - Swept					
R RL RF 50 Ω ▲ C Center Freq 15.075000		SENSE:EXT	ALIGNAUTO Avg Type: RMS	03:27:17 PM Oct 06, 2018 TRACE 1 2 3 4 5 6	Frequency
Gate: LO	PNO: Fast 🔸	. Trig: Free Run #Atten: 10 dB	Avg Hold: 10/10	TYPE A WAMAAW DET A N N N N N	
				Mkr1 598 kHz	Auto Tune
10 dB/div Ref 0.00 dBm	1			-36.521 dBm	
					Center Freq
-10.0					15.075000 MHz
-20.0					
					Start Freq
-30.0				-33.00 dBm	150.000 kHz
-40.0					
					Stop Freq 30.000000 MHz
-50.0					
-60.0					CF Step
-70.0	at Bits of the second				2.985000 MHz <u>Auto</u> Man
-70.0				a la facta a planta fa facta a facal providen a facta da facta da facta da facta da facta da facta da facta da A facta da f	
-80.0					Freq Offset
					0 Hz
-90.0					
Start 150 kHz #Res BW 10 kHz	<i>(</i>) () ()	/ 30 kHz*	-	Stop 30.00 MHz 368 ms (6001 pts)	



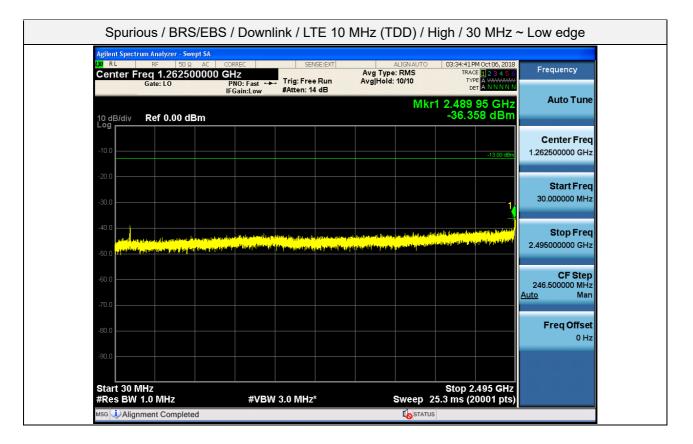
Agilent Spectrum Analyzer - Swept SA (XI) RL RF 50 Ω AC				
Center Freq 6.34550000 Gate: LO		ALIGNAUTO Avg Type: RMS Avg Hold: 10/10	03:27:44 PM Oct 06, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
10 dB/div Ref 0.00 dBm	FOATLEUW FRICELLE VE		2.691 0 GHz -38.151 dBm	Auto Tune
Log				Center Freq
-10.0			-13.00 dBm	6.345500000 GHz
-20.0				
				Start Freq 2.691000000 GHz
-30.0				2.091000000 0112
-40.0				Stop Freq
-50.0				10.000000000 GHz
-60.0				CF Step
-00.0			A	730.900000 MHz . <u>uto</u> Man
-70.0				
-80.0				Freq Offset 0 Hz
-90.0				0112
Start 2.691 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*		top 10.000 GHz ms (20001 pts)	

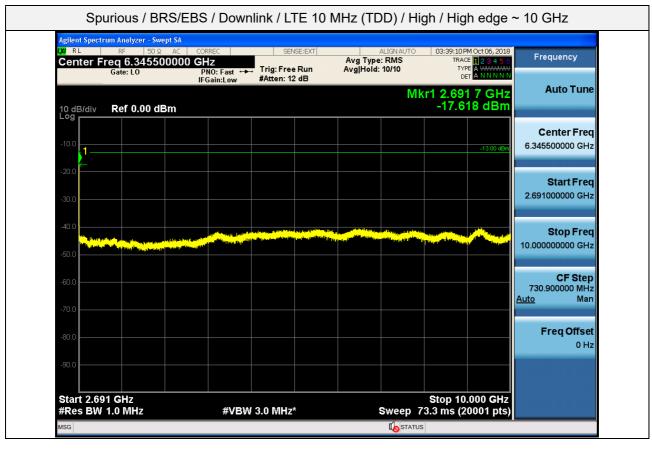



			Frequency
PNO: Fast +++ Trig: Free Ru	un Avg Hold: 10/10	TYPE A WANNAN DET A N N N N N	
		Mkr1 667 kHz	Auto Tune
			Center Freq 15.075000 MHz
			Start Freq 150.000 kHz
		-33.00 dBm	
			Stop Freq
			30.000000 MHz
		, state of the second	CF Step 2.985000 MHz
n Mediti na taka ang ata ang ata ang ata taka ang ata	na karaan maana kata diktorin ah taan diktorin ah	المحاولة المحاولة والمحاولة و	Auto Man
al Willing Plants California, proving products provided by parts	Appendiate of the standard and the sector	A PARTY PARTY PARTY AND A PART	Freq Offset
			0 Hz
		Stop 30.00 MHz	
	HZ PNO: Fast →→ IFGain:Low #Atten: 10 df	Hz Avg Type: RMS PN0: Fast → Trig: Free Run IFGain:Low #Atten: 10 dB Avg]Hold: 10/10	IHz Avg Type: RMS Trace: Free Run PN0: Fast

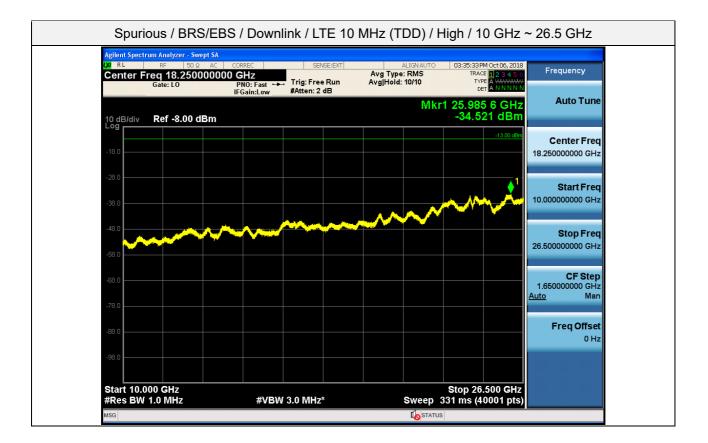


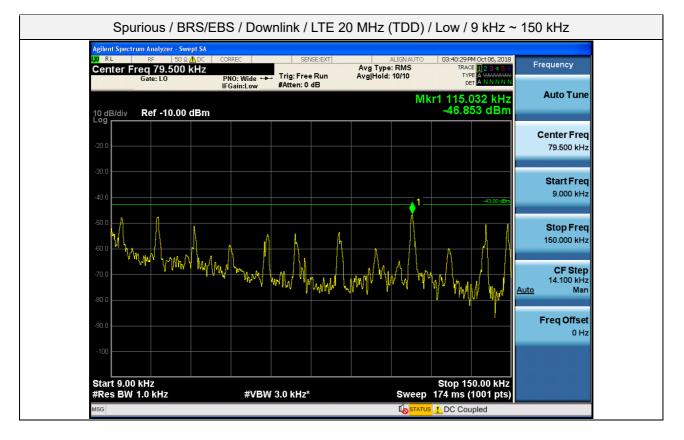
Agilent Spectrum Analyzer - Swept SA	CORREC SENSE:EXT	ALIGN AUTO 0	:30:54PM Oct 06, 2018	_
Center Freq 6.345500000 Gate: L0	PNO: Fast +++ Trig: Free Run	Avg Type: RMS Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	ncy
	IFGain:Low #Atten: 12 dB	Mkr1		o Tune
10 dB/div Ref 0.00 dBm			40.051 dBm	
				er Freq
-10.0			-13.00 dBm 6.3455000	000 GHz
-20.0			Sta	rt Freq
-30.0			2.6910000	000 GHz
-40.0	Lunde a southu			n Erog
			10.000000	p Freq 00 GHz
-50.0				
-60.0			730.9000	
-70.0			Auto	Man
-80.0			Freq	Offset
~				0 Hz
-90.0				
Start 2.691 GHz		St	op 10.000 GHz	

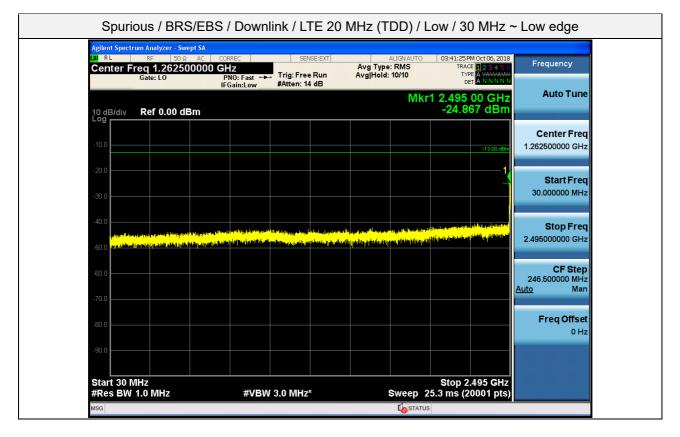


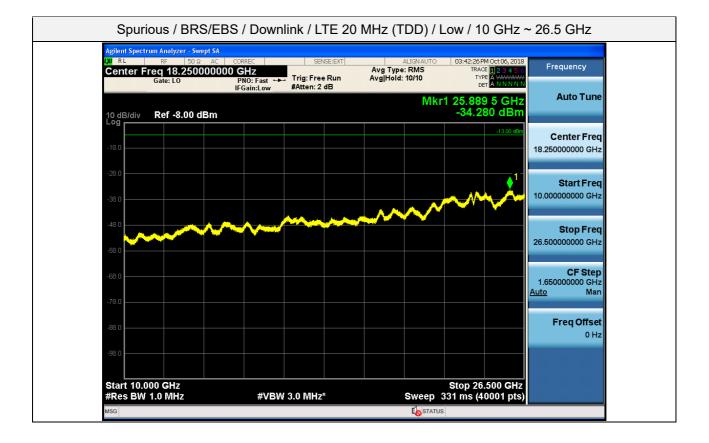


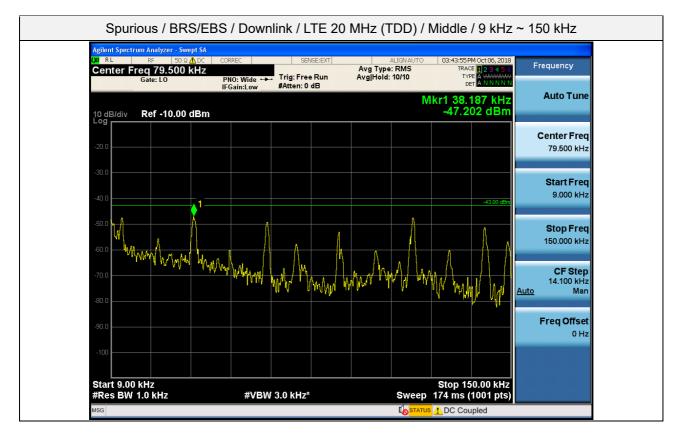
Agilent Spectrum Analyzer - Swe XI RL RF 50 Ω Center Freq 15.0750	🛕 DC 📔 CORREC 📗	SENSE:EXT	ALIGNAUTO Avg Type: RMS	03:34:28 PM Oct 06, 2018	Frequency
Gate: L0	PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold: 10/10	TRACE 123456 TYPE A WWWWW DET A N.N.N.N.N	
10 dB/div Ref 0.00 dB	Rm			Mkr1 667 kHz -37.937 dBm	Auto Tune
-10.0					Center Freq 15.075000 MHz
-20.0				-33.00 dBm	Start Freq 150.000 kHz
-40.0					Stop Freq 30.000000 MHz
A CONTRACT OF A	H <mark>illerin be</mark> rden berden biskenen.				CF Step 2.985000 MHz <u>Auto</u> Man
-70.0	n na hanna an	hard for a find an a data bara ita data na fija ya kati ta ya para na na ta ya bata na fija ya kati ta ya para na na ta ya bata	n in en er det et de line den persone bet Mel en persone de la segue de la segue de la segue de la segue de la Mel en persone de la segue d	i de la forma possi de la della constructiona. De polytica possi de la della constructiona de la della d De polytica della del	Freq Offset
-90.0					0 Hz
Start 150 kHz #Res BW 10 kHz	#\/B}A(30 kHz*	Sweer	Stop 30.00 MHz 368 ms (6001 pts)	



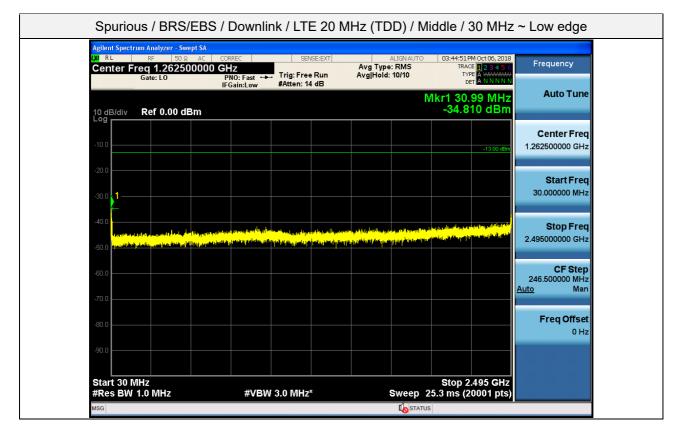


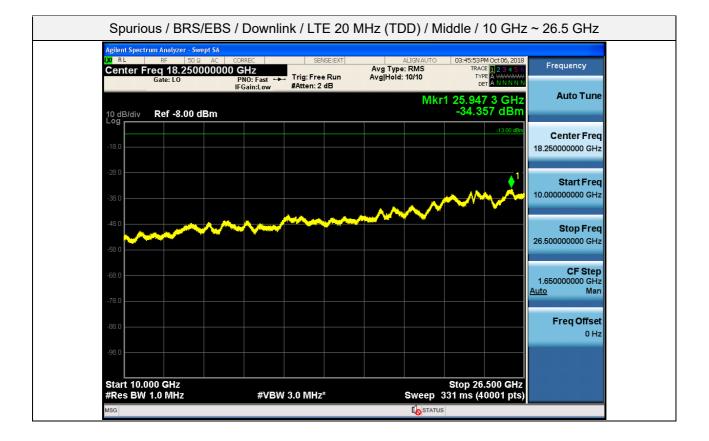


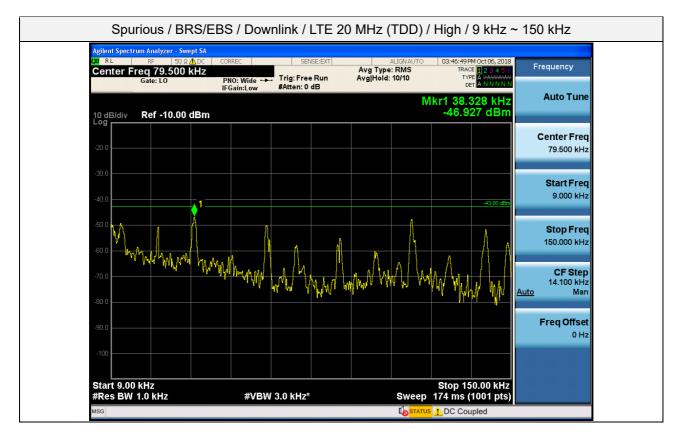

Agilent Spectrum Analyzer - Swept SA LXI RL RF 50 Q ▲ DC	CORREC SEN	SE:EXT	LIGNAUTO	03:41:14 PM Oct 06, 201	8
Center Freq 15.075000 M Gate: L0		Avg Type Run Avg Hold:	RMS	TRACE 1 2 3 4 5 TYPE A WWWW DET A N N N N	
	IFGain:Low #Atten. Io			Mkr1 598 kH -35.655 dBn	Auto Tune
10 dB/div Ref 0.00 dBm				-33.835 0.51	
-10.0					Center Freq 15.075000 MHz
-20.0					
-20.0					Start Freq
-30.0				-33.00 dB	150.000 kHz
-40.0					
-40.0					Stop Freq 30.000000 MHz
-50.0					30.000000 MH2
-60.0					CF Step
	hadeded a first to the second second				2.985000 MHz <u>Auto</u> Man
-70.0	<mark>A deste de la ball esta da en alterna da esta d A deste da esta </mark>	the faile a block of the state	istalista andre site References	i da senta da statut da stila a debita la Persenta da statut da stila da stila da senta d	
-80.0					Freq Offset
					0 Hz
-90.0					
Start 150 kHz #Res BW 10 kHz	#VBW 30 kHz*		Swoon	Stop 30.00 MH 368 ms (6001 pts	



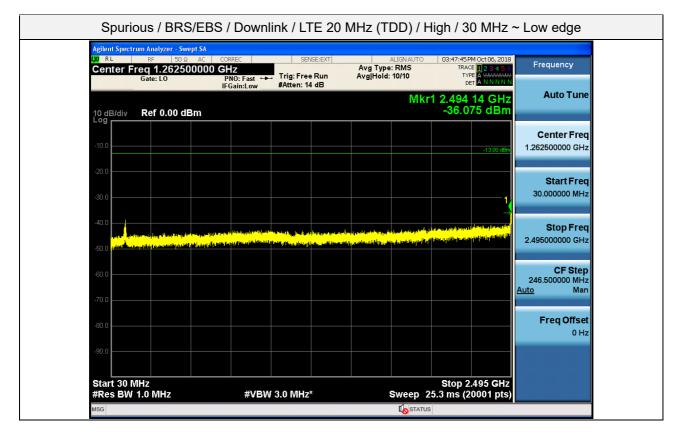
Agilent Spectrum Analyzer - Swept LXI RL RF 50 Ω				
KL RF 50 Ω Center Freq 6.345500 Gate: L0		Avg Type: RMS	03:41:42 PM Oct 06, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div Ref 0.00 dBn	" Guine Gw	M	(r1 2.691 4 GHz -38.401 dBm	Auto Tune
				Conton
-10.0			-13.00 dBm	Center Freq 6.345500000 GHz
-20.0				
-20.0				Start Freq
-30.0				2.691000000 GHz
-40.0		silination in this and a sum of the second		Stop Freq
		and the second		10.000000000 GHz
-50.0				
-60.0				CF Step 730.900000 MHz
-70.0				<u>Auto</u> Man
				Freq Offset
-80.0				0 Hz
-90.0				
Start 2.691 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Swoon 7	Stop 10.000 GHz 3.3 ms (20001 pts)	

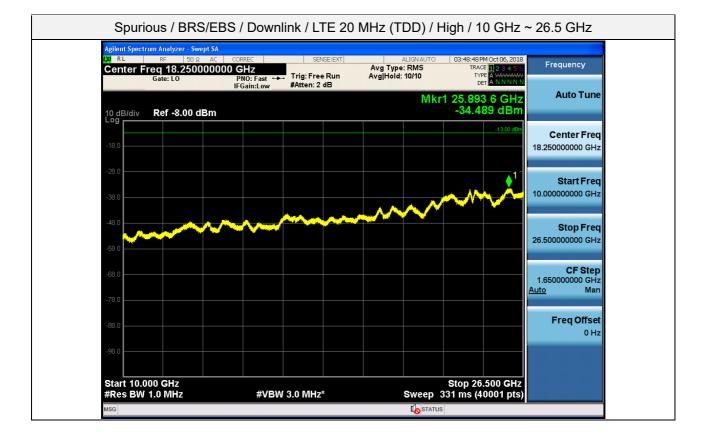



Agilent Spectrum Analyzer - Swept SA LXI RL RF 50 Q ⚠ DC	CORREC SENSE:EXT	ALIGNAUTO	03:44:41 PM Oct 06, 2018	
Center Freq 15.075000 M Gate: L0		Avg Type: RMS Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
10 dB/div Ref 0.00 dBm			Mkr1 667 kHz -38.997 dBm	Auto Tune
-10.0				Center Freq 15.075000 MHz
-20.0			-33.00 dĐm	Start Freq 150.000 kHz
-40.0				Stop Freq 30.000000 MHz
A A A A A A A A A A A A A A A A A A A	Adde Anonada e a			CF Step 2.985000 MHz
-70.0	kilita biadata da tania perata ana ana ang ang ang ang ang ang ang an	and a set of a bin of a set o Set of a set		<u>Auto</u> Man Freq Offset
-80.0				0 Hz
Start 150 kHz #Res BW 10 kHz	#VBW 30 kHz*	Sween	Stop 30.00 MHz 368 ms (6001 pts)	



	C CORREC SEN	SE:EXT ALIGN AUTO		Frequency
Center Freq 6.3455000 Gate: L0	PNO: Fast ↔→ Trig: Free IFGain:Low #Atten: 12	Run Avg Hold: 10/10	TRACE 123456 TYPE A WWWWW DET A N N N N N	
		Ν	/kr1 2.691 4 GHz -39.833 dBm	Auto Tune
10 dB/div Ref 0.00 dBm			-00.000 dBm	
-10.0			-13.00 dBm	Center Freq 6.345500000 GHz
-20.0				Start Freq 2.691000000 GHz
-30.0				2.031000000 0112
				Stop Freq 10.000000000 GHz
-50.0				
-60.0				CF Step 730.900000 MHz
-70.0				<u>Auto</u> Man
-80.0				Freq Offset
				0 Hz
-90.0				
Start 2.691 GHz			Stop 10.000 GHz	




Agilent Spectrum Analyzer - Swept LX RL RF 50 Ω ▲		INSE:EXT	ALIGN AUTO	03:47:35 PM Oct 06, 2018	_
Center Freq 15.07500 Gate: L0		Avg Type e Run Avg Hold:	: RMS	TRACE 123456 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div Ref 0.00 dBn	n			Mkr1 667 kHz -39.757 dBm	Auto Tune
-10.0					Center Freq 15.075000 MHz
-20.0				-33.00 dBm	Start Freq 150.000 kHz
-40.0					Stop Freq 30.000000 MHz
					CF Step 2.985000 MHz Auto Man
-70.0	nin hall hall a hall bei a til på at fördessa store A på at hall av på at ätter omfordet opproversom	a din katalan di ka atawa ta patata Mana pana na banya na atawa ta patata Mana na pana na banya na atawa ta patata	an tan tan talah darih Yunya tangan yunya ta	hand dood putrop dina. Mg Kasa Manaka Mara	<u>Auto</u> Man Freq Offset
-90.0					0 Hz
Start 150 kHz #Res BW 10 kHz	#VBW 30 kHz*	 :	Sween 3	Stop 30.00 MHz 68 ms (6001 pts)	

Agilent Spectrum Analyzer - Swept SA IX RF 50 Ω AC Center Freq 6.34550000		EXT ALIGNAUTO		Frequency
Gate: LO	PNO: Fast Trig: Free R IFGain:Low #Atten: 12 d	un Avg Hold: 10/10	TRACE 123456 TYPE A WWWWWW DET A N N N N N	
10 dB/div Ref 0.00 dBm		Μ	lkr1 2.691 7 GHz -20.670 dBm	Auto Tune
Log				Center Freq
-10.0			-13.00 dBm	6.345500000 GHz
-20.0				
-30.0				Start Freq 2.691000000 GHz
-40.0				Stop Freq 10.000000000 GHz
-50.0				10.00000000 GHz
-60.0				CF Step 730.900000 MHz
-70.0				<u>Auto</u> Man
-70.0				Freq Offset
-80.0				0 Hz
-90.0				
Start 2.691 GHz			Stop 10.000 GHz	

5.6. RADIATED SPURIOUS EMISSIONS

Test Requirements:

§ 2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter.

- (2) All equipment operating on frequencies higher than 25 MHz.
- (3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.
- (4) Other types of equipment as required, when deemed necessary by the Commission.

Test Procedures:

Because KDB 935210 D05 procedure does not provide this requirement, measurements were in accordance with the test methods section 5.5 of ANSI C63.26-2015

a) Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.

b) Each emission under consideration shall be evaluated:

1) Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.

2) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.

3) Return the turntable to the azimuth where the highest emission amplitude level was observed.

4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.

5) Record the measured emission amplitude level and frequency using the appropriate RBW.

c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

Test Result:

Ch.	Frequency (MHz)	Measured Level (dBuV/m)	Measured Power (dBm)	Ant. Factor (dB/m)	C.L (dB)	A.G. (dB)	D.F. (dB)	Pol.	Result (dBm)	
No Critical Peaks Found										

* C.L.: Cable Loss / A.G.: Ant. Gain / D.F.: Distance Factor (3.75 m)

6. Annex A_EUT AND TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-1810-FC032-P