Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: TRE1709009902 R/C.....: 67455

FCC ID.....: 2AFEE-E-H09

Applicant's name.....: Nanjing Xijian Information Technology Co., Ltd.

Jiangning District, Nanjing, China

Manufacturer...... Nanjing Xijian Information Technology Co., Ltd.

Jiangning District, Nanjing, China

Test item description: ECG recorder

Trade Mark SnapECG

Model/Type reference..... E-H09

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........... Sept. 14, 2017

Date of testing...... Sept. 15, 2017 – Jan. 11, 2018

Date of issue...... Jan. 11, 2018

Result.....: PASS

Compiled by

(Position+Printed name+Signature): File administrators Shayne Zhu

Supervised by

(Position+Printed name+Signature): Project Engineer Jerry Wang

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shayne Zhu Jerry Wong

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 58

Report No.: TRE1709009902 Page: 2 of 58 Issued: 2018-01-11

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	<u> </u>
1.1.	Test Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.1. 3.2.	Product Description	5
3.2. 3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
		_
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	20 dB Bandwidth	19
5.5.	Carrier Frequencies Separation	23
5.6.	Hopping Channel Number	25
5.7.	Dwell Time	27
5.8.	Pseudorandom Frequency Hopping Sequence	34
5.9.	Restricted band (radiated)	35
5.10.	Band edge and Spurious Émissions (conducted)	37
5.11.	Spurious Emissions (radiated)	53
<u>6.</u>	TEST SETUP PHOTOS	58
7.	EXTERANAL AND INTERNAL PHOTOS	58
1.	EXILIANAL AND INILINAL FIIDIOS	30

Report No.: TRE1709009902 Page: 3 of 58 Issued: 2018-01-11

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devicese

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2018-01-11	Original

Report No.: TRE1709009902 Page: 4 of 58 Issued: 2018-01-11

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Antenna Requirement	15.203/15.247 (c)	PASS	Baozhu.hu
AC Power Line Conducted Emissions	15.207	PASS	JACK.WANG
Conducted Peak Output Power	15.247 (b)(1)	PASS	Baozhu.hu
20 dB Bandwidth	15.247 (a)(1)	PASS	Baozhu.hu
Carrier Frequencies Separation	15.247 (a)(1)	FAIL	Baozhu.hu
Hopping Channel Number	15.247 (a)(1)	PASS	Baozhu.hu
Dwell Time	15.247 (a)(1)	PASS	Baozhu.hu
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	PASS	Baozhu.hu
Restricted band	15.247(d)/15.205	PASS	Baozhu.hu
Radiated Emissions	15.247(d)/15.209	PASS	Baozhu.hu

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1709009902 Page: 5 of 58 Issued: 2018-01-11

3. **SUMMARY**

3.1. Client Information

Applicant:	Nanjing Xijian Information Technology Co., Ltd.
Address: (BDA, Jiangning) 3/F, No.4 Jinjulong Building, 9 Gaohu Road, Jiangning District, Nanjing, China	
Manufacturer:	Nanjing Xijian Information Technology Co., Ltd.
Address:	(BDA,Jiangning) 3/F, No.4 Jinjulong Building,9 Gaohu Road, Jiangning District,Nanjing,China

3.2. Product Description

Name of EUT:	ECG recorder
Trade Mark:	SnapECG
Model No.:	E-H09
Listed Model(s):	-
IMEI:	-
Power supply:	DC 3.7V
Adapter information:	-
Hardware version:	-
Software version: -	
Bluetooth	
Version:	Supported BT4.0+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Integral
Antenna gain:	1.63 dBi

Report No.: TRE1709009902 Page: 6 of 58 Issued: 2018-01-11

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2403
i i	i i
39	2441
i.	÷
77	2479
78	2480

> TEST MODE

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

Multiparameter Simulator	Multiparameter Simulator	Manufacturer:	FLUKE
	indiciparameter Simulator	Model No.:	MPS450
	 Adaptor 	Manufacturer :	HUAWEI
0		Model No. :	HW-050100C2W

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1709009902 Page: 7 of 58 Issued: 2018-01-11

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1709009902 Page: 8 of 58 Issued: 2018-01-11

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1709009902 Page: 9 of 58 Issued: 2018-01-11

4.5. Equipments Used during the Test

Conduc	Conducted Emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)	
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018	
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018	
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018	
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018	
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018	
6	Test Software	R&S	ES-K1	N/A	N/A	N/A	

Radiate	Radiated Emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)	
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018	
2	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2018	
3	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2018	
4	Preamplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018	
5	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	11/21/2017	11/20/2018	
6	EMI Test Software	R&S	ESK1	N/A	N/A	N/A	
7	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018	
8	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2018	
9	Horn Antenna	SCHWARZBECK	BBHA9170	25841	3/27/2017	3/26/2018	
10	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018	
11	High pass filter	Compliance Direction systems	BSU-6	34202	11/11/2017	11/10/2018	
12	RF Connection Cable	HUBER+SUHNE R	RE-7-FH	N/A	11/21/2017	11/20/2018	
13	EMI Test Software	Audix	E3	N/A	N/A	N/A	
14	Turntable	MATURO	TT2.0	/	N/A	N/A	
15	Antenna Mast	MATURO	TAM-4.0-P	/	N/A	N/A	

Report No.: TRE1709009902 Page: 10 of 58 Issued: 2018-01-11

RF Con	RF Conducted Test							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)		
1	Spectrum Analyzer	R&S	FSV40	100048	11/11/2017	11/10/2018		
2	EXA Signal Analyzer	Agilent	N9020A	184247	9/22/2017	9/21/2018		
3	Power Meter	Agilent	U2021XA	178231	9/22/2017	9/21/2018		
4	OSP	R&S	OSP120	101317	N/A	N/A		

The Cal.Interval was one year.

Report No.: TRE1709009902 Page: 11 of 58 Issued: 2018-01-11

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

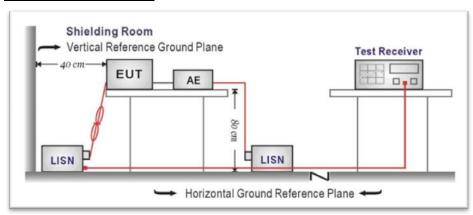
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Test Result:

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: TRE1709009902 Page: 12 of 58 Issued: 2018-01-11

5.2. Conducted Emissions (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguesov ranga (MILIT)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Note:

- 1) Transd= Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit Level

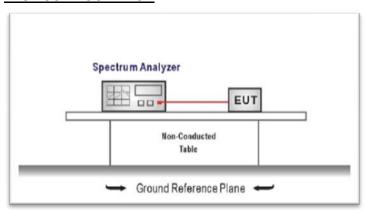
Report No.: TRE1709009902 Page: 13 of 58 Issued: 2018-01-11

ne:			L				
Level [dBµV]							
80 [<u>-</u>	
70						<u>-</u>	
60			· ·		1 1 1 1	1	
50			· 		<u> </u>	i	
40							- I
30	~					<u>-</u>	₩ *
20	~~~\~\~\~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\[\frac{1}{h} \rangle \frac{1}{h} \rangle \fra	<u> </u>	<u> </u>	Part Commence	hadan mill	The Marie
10		<u>~~</u> \^\\	<u> </u>	manni			
0 1501	1001 0001	0001 414				1	
150k 300k	400k 600k	800k 1M	2M Frequency [H		I 6M 8M 10M	20N	1 30M
x x x MES GM1710125	5052 fin						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.208500	32.70	10.3	63	30.6	QP	L1	GNI
		10.3					
0.217500	32.50	10.5	63	30.4	OP	L1	GNI
0.217500 0.222000	32.50 32.40	10.3	63 63	30.4	QP QP	$^{ m L1}$	
							GNI
0.222000	32.40	10.3	63	30.3	QP	L1	GNI GNI
0.222000 0.519000 23.064000 23.127000	32.40 30.90	10.3 10.2 10.7 10.7	63 56	30.3 25.1 26.5 22.5	QP QP	L1 L1	GNI GNI GNI
0.222000 0.519000 23.064000 23.127000 24.346500	32.40 30.90 33.50 37.50 34.40	10.3 10.2 10.7 10.7	63 56 60 60	30.3 25.1 26.5 22.5 25.6	QP QP QP QP QP	L1 L1 L1 L1 L1	GNI GNI GNI GNI GNI
0.222000 0.519000 23.064000 23.127000 24.346500 Frequency	32.40 30.90 33.50 37.50 34.40 Level	10.3 10.2 10.7 10.7 10.7 Transd	63 56 60 60 Limit	30.3 25.1 26.5 22.5 25.6 Margin	QP QP QP QP	L1 L1 L1 L1	GNI GNI GNI GNI GNI
0.222000 0.519000 23.064000 23.127000 24.346500	32.40 30.90 33.50 37.50 34.40	10.3 10.2 10.7 10.7	63 56 60 60	30.3 25.1 26.5 22.5 25.6	QP QP QP QP QP	L1 L1 L1 L1 L1	GNI GNI GNI GNI GNI
0.222000 0.519000 23.064000 23.127000 24.346500 Frequency MHz	32.40 30.90 33.50 37.50 34.40 Level dBµV	10.3 10.2 10.7 10.7 10.7 Transd dB	63 56 60 60 60 Limit dBµV	30.3 25.1 26.5 22.5 25.6 Margin dB	QP QP QP QP QP Detector	L1 L1 L1 L1 L1 Line	GNI GNI GNI GNI GNI PE
0.222000 0.519000 23.064000 23.127000 24.346500 Frequency MHz	32.40 30.90 33.50 37.50 34.40 Level dBµV	10.3 10.2 10.7 10.7 10.7 Transd dB	63 56 60 60 60 Limit dBµV	30.3 25.1 26.5 22.5 25.6 Margin dB	QP QP QP QP QP Detector	L1 L1 L1 L1 Line	GNI GNI GNI GNI FE
0.222000 0.519000 23.064000 23.127000 24.346500 Frequency MHz 0.514500 19.707000	32.40 30.90 33.50 37.50 34.40 Level dBµV 23.30 26.50	10.3 10.2 10.7 10.7 10.7 Transd dB	63 56 60 60 60 Limit dBµV 46 50	30.3 25.1 26.5 22.5 25.6 Margin dB 22.7 23.5	QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 Line Line	GNI GNI GNI GNI PE GND
0.222000 0.519000 23.064000 23.127000 24.346500 Frequency MHz 0.514500 19.707000 23.064000	32.40 30.90 33.50 37.50 34.40 Level dBµV 23.30 26.50 26.30	10.3 10.2 10.7 10.7 10.7 Transd dB 10.2 10.5 10.7	63 56 60 60 Limit dBµV 46 50	30.3 25.1 26.5 22.5 25.6 Margin dB 22.7 23.5 23.7	QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 Line L1 L1 L1	GNI GNI GNI GNI PE GND GND
0.222000 0.519000 23.064000 23.127000 24.346500 Frequency MHz 0.514500 19.707000 23.064000 23.127000	32.40 30.90 33.50 37.50 34.40 Level dBµV 23.30 26.50 26.30 30.60	10.3 10.2 10.7 10.7 10.7 Transd dB 10.2 10.5 10.7	63 56 60 60 Limit dBµV 46 50 50	30.3 25.1 26.5 22.5 25.6 Margin dB 22.7 23.5 23.7 19.4	QP QP QP QP QP Detector AV AV AV	L1 L1 L1 L1 Line L1 L1 L1	GNI GNI GNI GNI GNI GNI GNI GNI GND GND GND GND
0.222000 0.519000 23.064000 23.127000 24.346500 Frequency MHz 0.514500 19.707000 23.064000	32.40 30.90 33.50 37.50 34.40 Level dBµV 23.30 26.50 26.30	10.3 10.2 10.7 10.7 10.7 Transd dB 10.2 10.5 10.7	63 56 60 60 Limit dBµV 46 50	30.3 25.1 26.5 22.5 25.6 Margin dB 22.7 23.5 23.7	QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 Line L1 L1 L1	GNI GNI GNI GNI PE GND GND

Report No.: TRE1709009902 Page: 14 of 58 Issued: 2018-01-11

ne:			N				
Level [dBµ∀]							
80 [<u></u>
70							¦
60							
50						<u> </u>	
40						 -	
30 F A # F A A MANA	L-X-X-X-X-Y					· <u> </u>	<u>. </u>
20	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ _ \ _ \ \ _ \ \ _ \ \ \ \ \ \ \ \	Market Market Market		A PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO		1
10	/ <u></u>	King kundryddor-wage	manual	~~~~			-
0 150k 300k	400k 600k	800k 1M	2M	3M 4M 5M	6M 8M 10M	20N	1 30M
			Frequency [l	Hz]			
x x x MES GM171012	25051_fin						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.400500	00 80	400		0.0			~
0.199500	33.70	10.3	64	29.9	QP	N	GNI
0.204000 0.208500	33.70	10.3 10.3	63 63	29.7 29.9	QP	N	GNI GNI
	33.40			29.9	QP	N	
0 213000	2 2 2 1	1() 2	63	20.8	$\cap \mathbb{D}$	NT	CNIT
0.213000	33.30	10.3	63 58	29.8	QP OP	N N	GNI
0.384000	29.90	10.2	58	28.3	QP	N	GNI
0.384000 0.469500	29.90 29.50		58 57	28.3 27.0	QP QP		GNI GNI GNI PE
0.384000 0.469500	29.90	10.2 10.2	58	28.3	QP	N N	GNI GNI
0.384000 0.469500 Frequency MHz	29.90 29.50 Level dBµV	10.2 10.2 Transd dB	58 57 Limit dBµV	28.3 27.0 Margin dB	QP QP Detector	N N Line	GNI GNI PE
0.384000 0.469500 Frequency MHz 0.519000	29.90 29.50 Level dBµV 24.90	10.2 10.2 Transd dB	58 57 Limit dBµV	28.3 27.0 Margin dB	QP QP Detector	N N Line N	GNI GNI PE GND
0.384000 0.469500 Frequency MHz 0.519000 19.707000	29.90 29.50 Level dBµV 24.90 26.50	10.2 10.2 Transd dB 10.2 10.5	58 57 Limit dBμV 46 50	28.3 27.0 Margin dB 21.1 23.5	QP QP Detector AV AV	N N Line N N	GNI GNI PE GND GND
0.384000 0.469500 Frequency MHz 0.519000 19.707000 23.127000	29.90 29.50 Level dBµV 24.90 26.50 30.70	10.2 10.2 Transd dB 10.2 10.5 10.7	58 57 Limit dBμV 46 50	28.3 27.0 Margin dB 21.1 23.5 19.3	QP QP Detector AV AV AV	N N Line N N	GNI GNI PE GND GND GND
0.384000 0.469500 Frequency MHz 0.519000 19.707000 23.127000 24.040500	29.90 29.50 Level dBµV 24.90 26.50 30.70 27.70	10.2 10.2 Transd dB 10.2 10.5 10.7	58 57 Limit dBµV 46 50 50	28.3 27.0 Margin dB 21.1 23.5 19.3 22.3	QP QP Detector AV AV AV AV	N N Line N N N	GNI GNI PE GND GND GND GND
0.384000 0.469500 Frequency MHz 0.519000 19.707000 23.127000 24.040500 24.103500	29.90 29.50 Level dBµV 24.90 26.50 30.70 27.70 25.10	10.2 10.2 Transd dB 10.2 10.5 10.7 10.7	58 57 Limit dBµV 46 50 50 50	28.3 27.0 Margin dB 21.1 23.5 19.3 22.3 24.9	QP QP Detector AV AV AV AV	N N Line N N N N	GNI GNI PE GND GND GND GND GND
0.384000 0.469500 Frequency MHz	29.90 29.50 Level dBµV 24.90 26.50 30.70 27.70	10.2 10.2 Transd dB 10.2 10.5 10.7	58 57 Limit dBµV 46 50 50	28.3 27.0 Margin dB 21.1 23.5 19.3 22.3	QP QP Detector AV AV AV AV	N N Line N N N	GNI GNI PE GND GND GND GND

Report No.: TRE1709009902 Page: 15 of 58 Issued: 2018-01-11


5.3. Conducted Peak Output Power

LIMIT

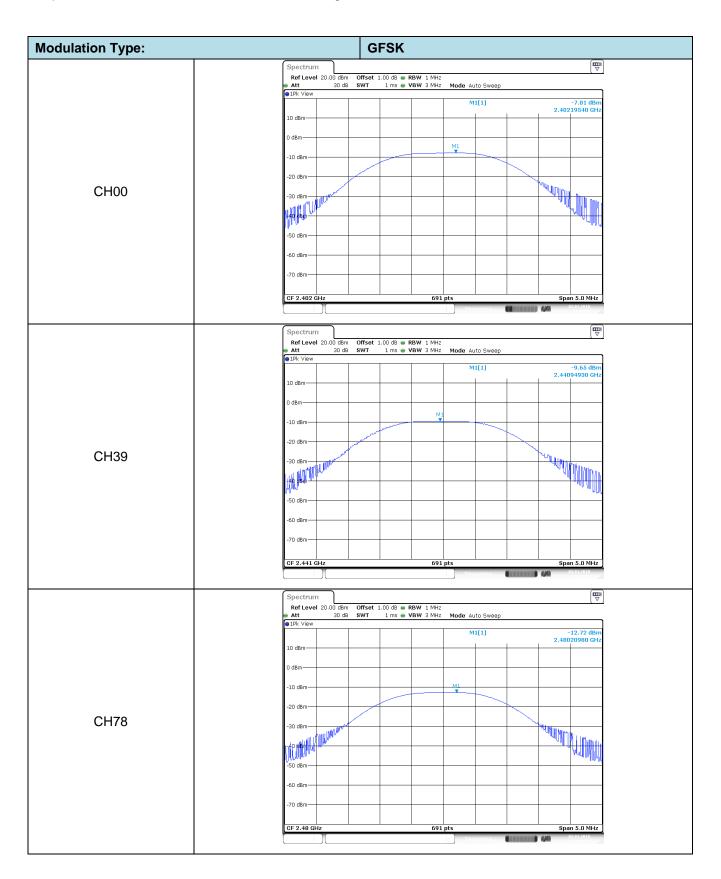
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1):

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

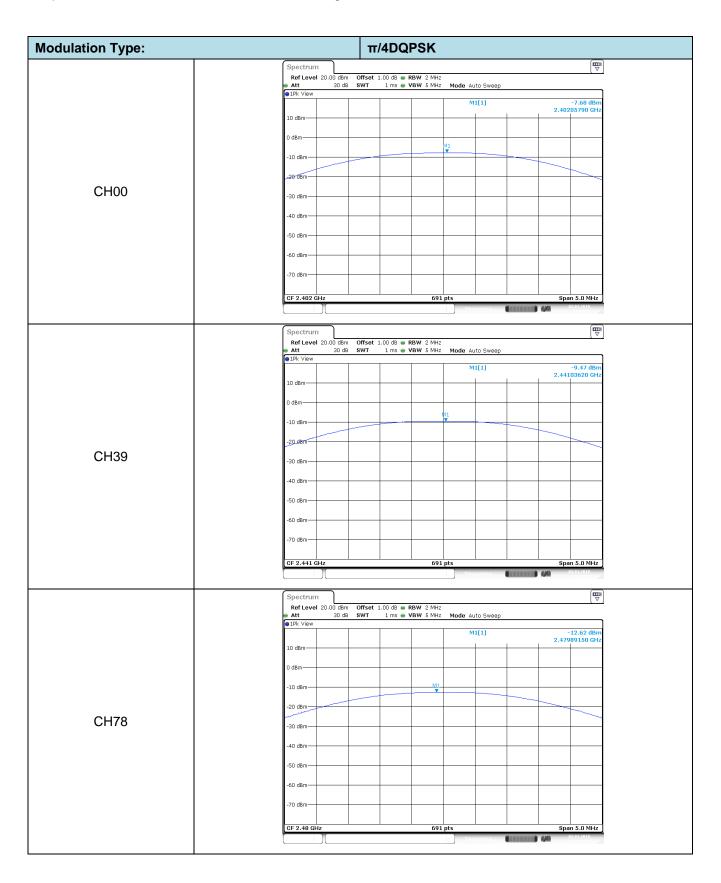
TEST CONFIGURATION

TEST PROCEDURE

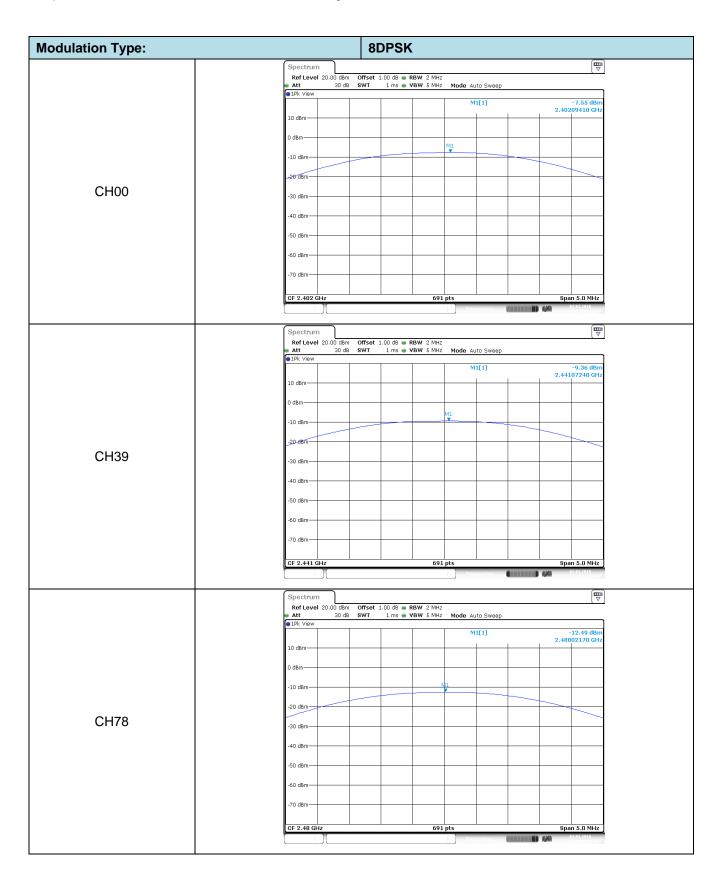
- The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

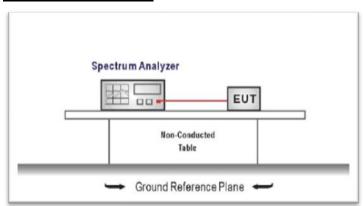

TEST RESULTS

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result	
	00	-7.81			
GFSK	39	-9.65	≤ 30.00	Pass	
	78	-12.72			
	00	-7.68			
π/4DQPSK	39	-9.47	≤ 21.00	Pass	
	78	-12.62			
	00	-7.55			
8DPSK	39	-9.36	≤ 21.00	Pass	
	78	-12.49			


Report No.: TRE1709009902 Page: 16 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 17 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 18 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 19 of 58 Issued: 2018-01-11

5.4. 20 dB Bandwidth

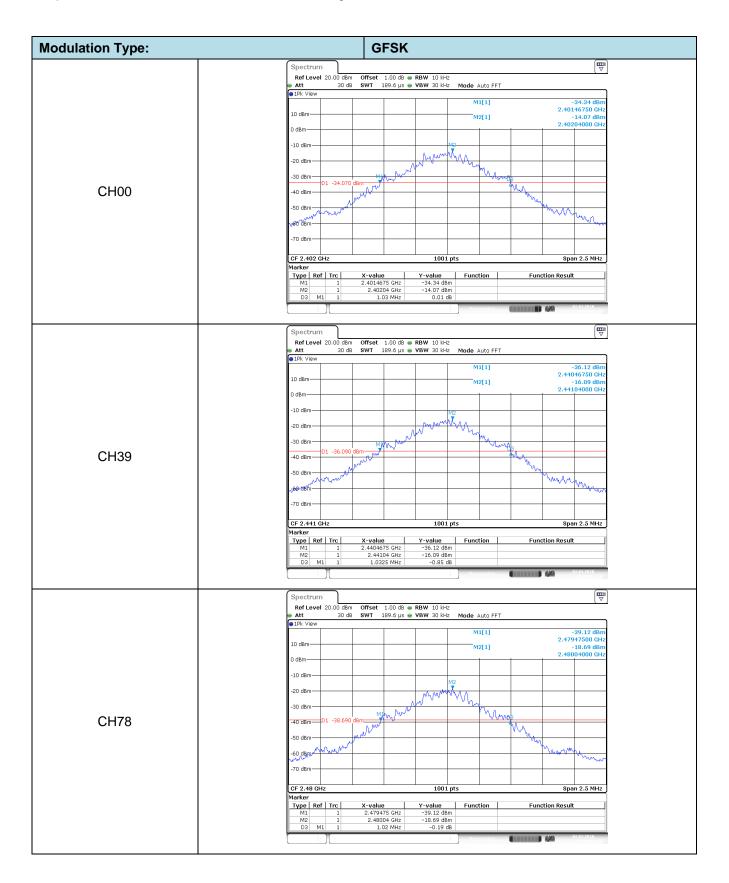
LIMIT

N/A

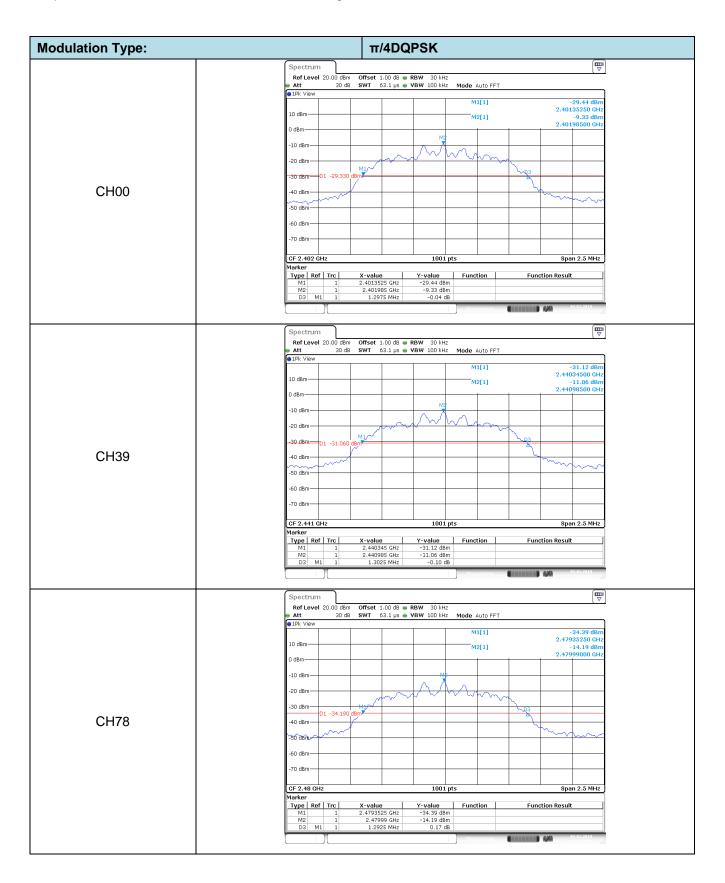
TEST CONFIGURATION

TEST PROCEDURE

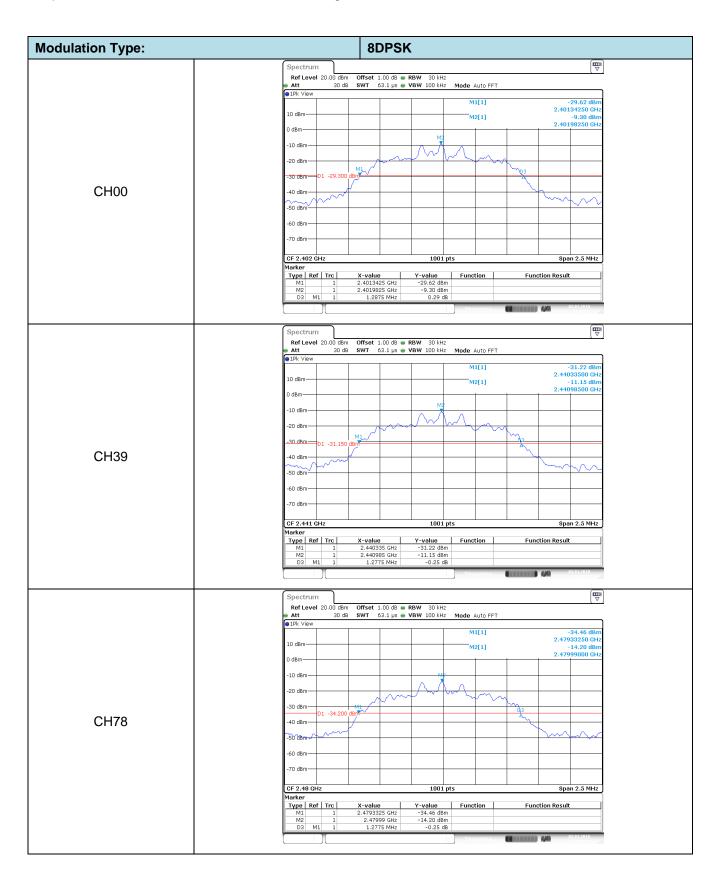
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

Modulation type	Channel	20 dB Bandwidth (MHz)	Limit (MHz)	Result
	00	1.03		
GFSK	39	1.03	-	Pass
	78	1.02		
	00	1.30		
π/4DQPSK	39	1.30	-	Pass
	78	1.29		
	00	1.29		
8DPSK	39	1.28	-	Pass
	78	1.28		

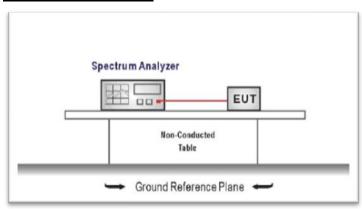

Report No.: TRE1709009902 Page: 20 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 21 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 22 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 23 of 58 Issued: 2018-01-11

5.5. Carrier Frequencies Separation


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively,

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

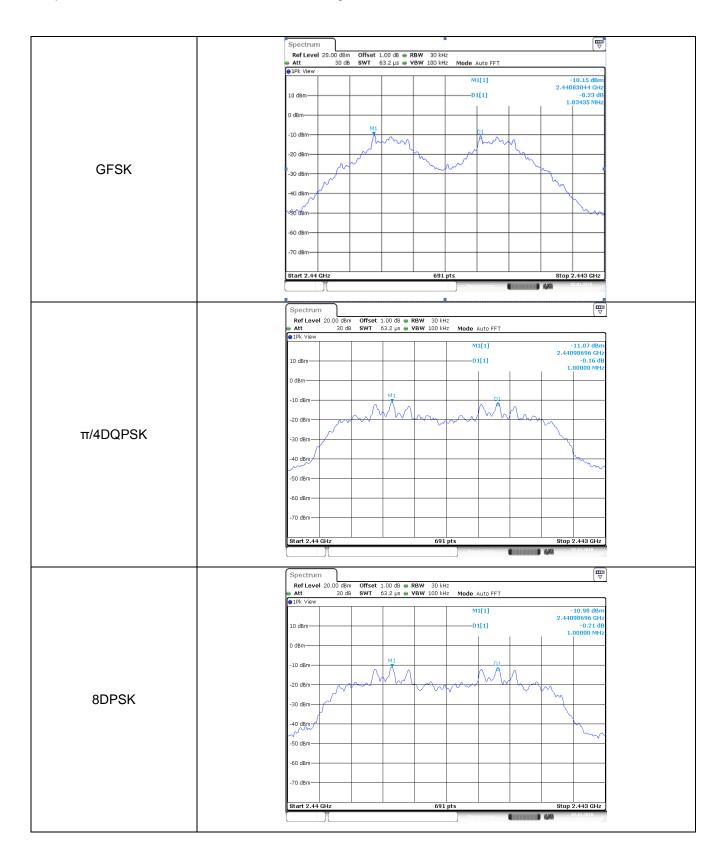
TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels
 - RBW ≥ 1% of the span, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

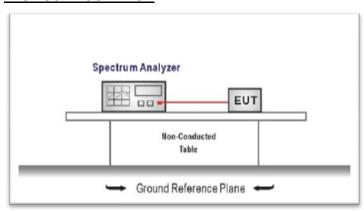

TEST RESULTS

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz) *	Result
GFSK	39	1.034	≥1.033	Pass
π/4DQPSK	39	1.000	≥0.867	Pass
8DPSK	39	1.000	≥0.859	Pass

Note:

*: GFSK limit = The maximum 20 dB Bandwidth for GFSK modulation on the section 5.4. $\pi/4DQPSK$ limit = 2/3 * The maximum 20 dB Bandwidth for $\pi/4DQPSK$ modulation on the section 5.4. 8DPSK limit = 2/3 * The maximum 20 dB Bandwidth for 8DPSK modulation on the section 5.4

Report No.: TRE1709009902 Page: 24 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 25 of 58 Issued: 2018-01-11

5.6. Hopping Channel Number

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

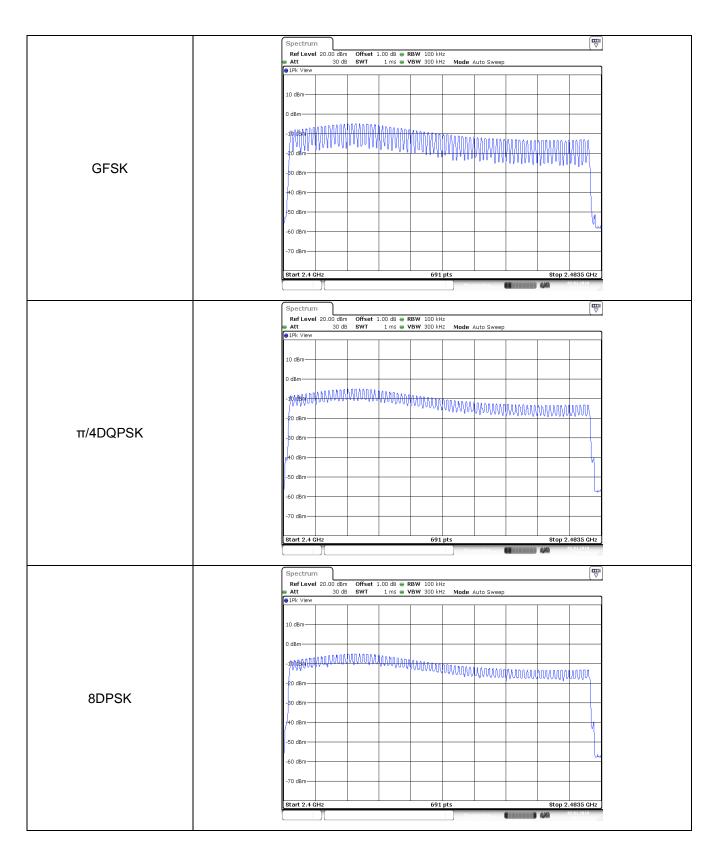
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span, VBW ≥ RBW

Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

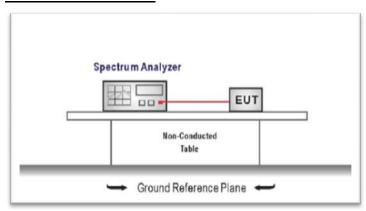

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel number	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15.00	Pass
8DPSK	79		

Report No.: TRE1709009902 Page: 26 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 27 of 58 Issued: 2018-01-11

5.7. Dwell Time

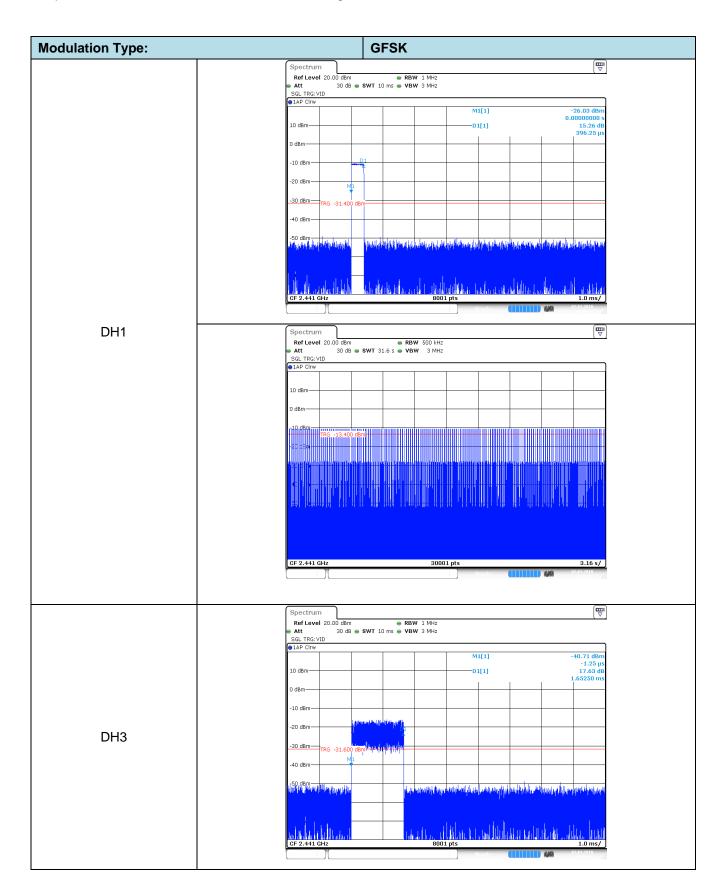
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

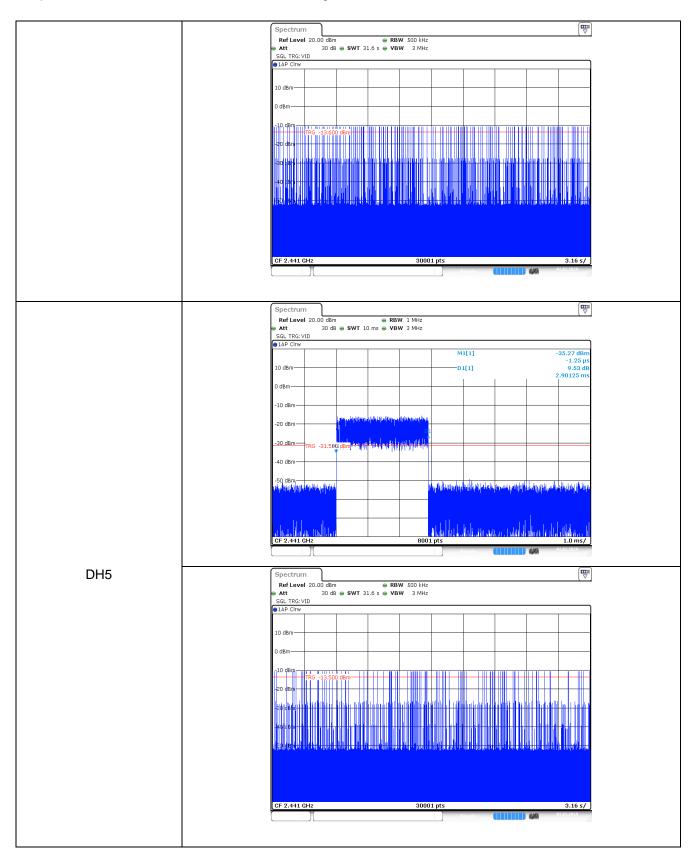
TEST CONFIGURATION

TEST PROCEDURE

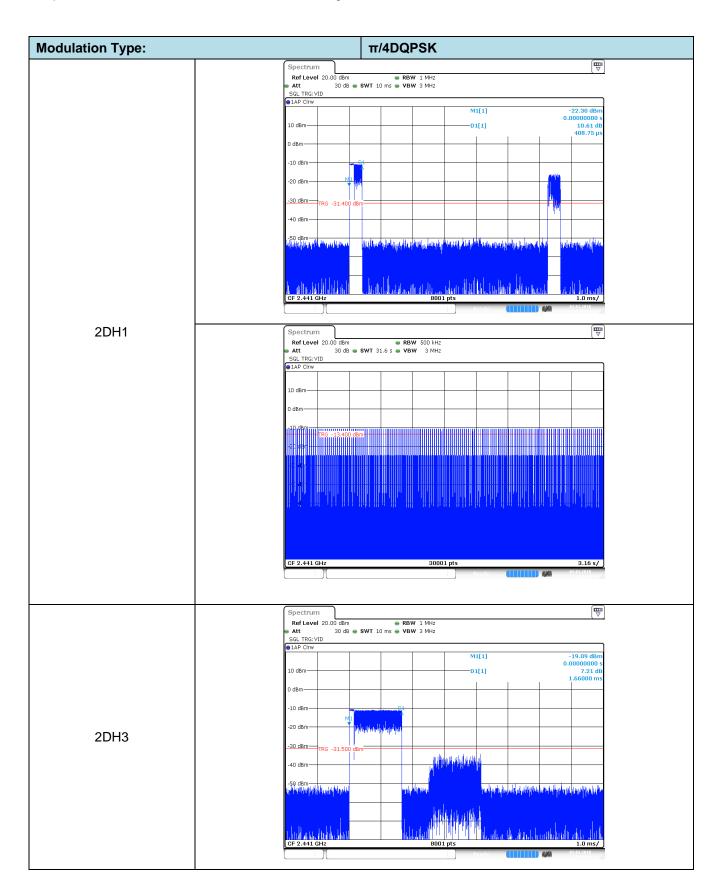
- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW
 - Sweep = as necessary to capture the entire dwell time per hopping channel,
 - Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

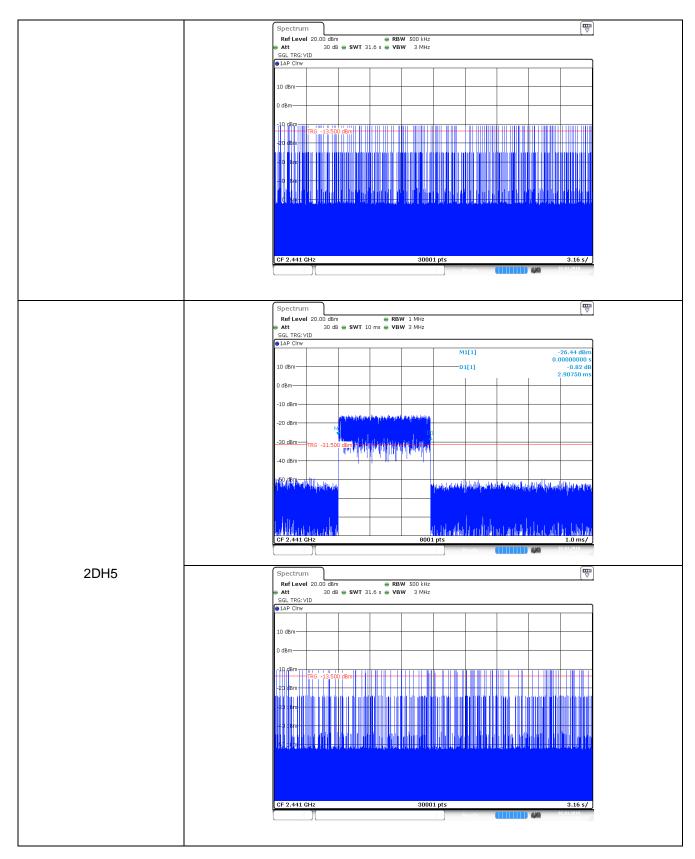

TEST MODE:

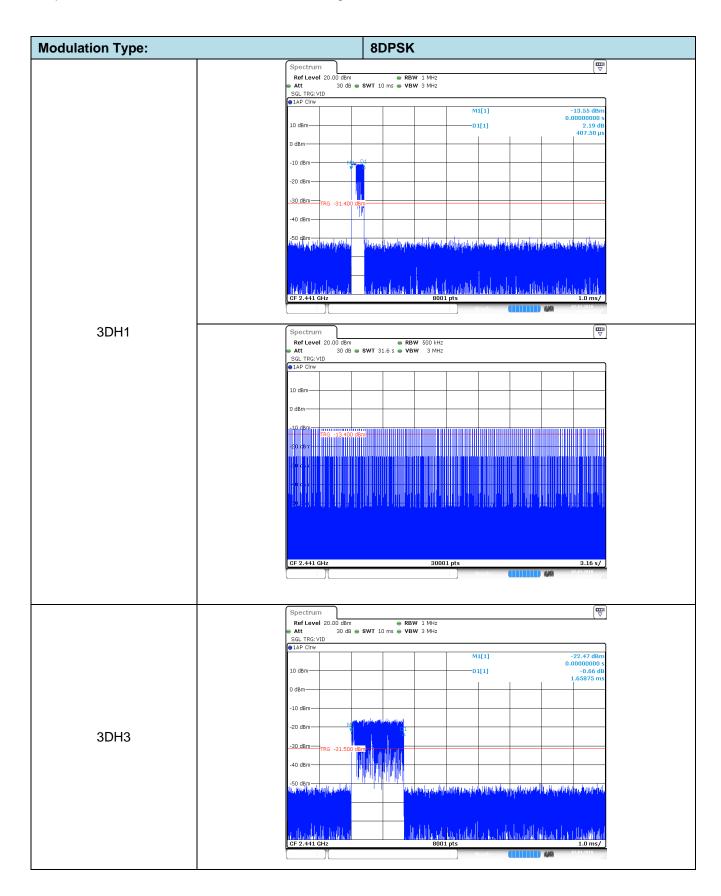
Please refer to the clause 3.3

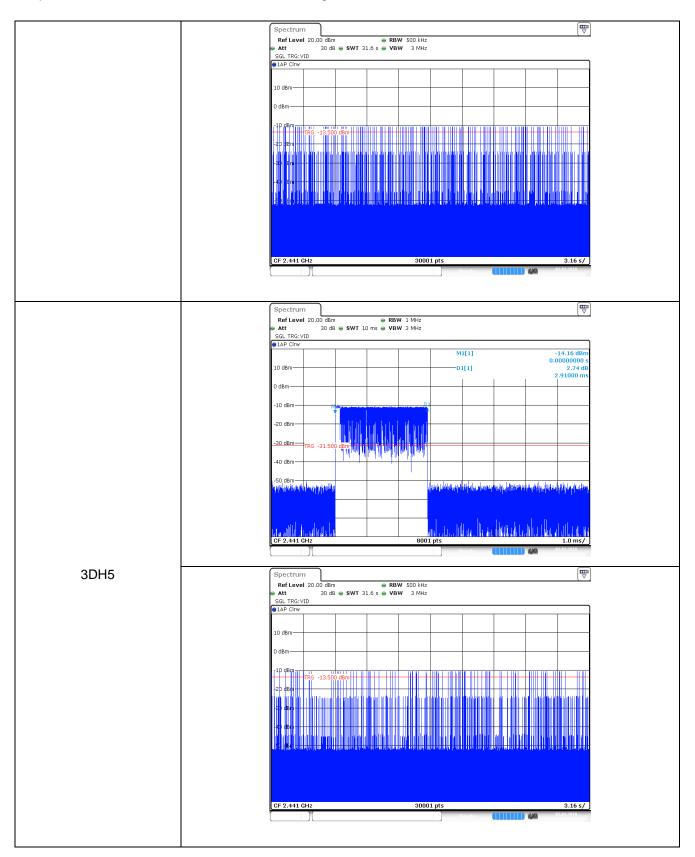

TEST RESULTS

Modulation type	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell time (Second)	Limit (Second)	Result
	DH1	0.40	319.00	0.13		
GFSK	SK DH3	1.65	165.00	0.27	≤ 0.40	Pass
	DH5	2.90	101.00	0.29		
	2DH1	0.41	320.00	0.13		
π/4DQPSK	IDQPSK 2DH3	1.66	166.00	0.28	≤ 0.40	Pass
	2DH5	2.91	109.00	0.32		
	3DH1	0.41	320.00	0.13		
8DPSK	BDPSK 3DH3	1.66	164.00	0.27	≤ 0.40	Pass
	3DH5	2.91	109.00	0.32		


Report No.: TRE1709009902 Page: 28 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 29 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 30 of 58 Issued: 2018-01-11

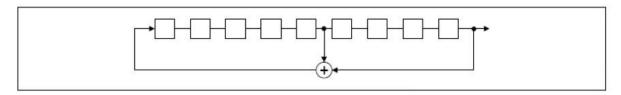

Report No.: TRE1709009902 Page: 31 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 32 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 33 of 58 Issued: 2018-01-11

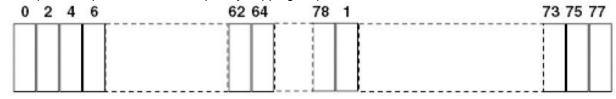
Report No.: TRE1709009902 Page: 34 of 58 Issued: 2018-01-11

5.8. Pseudorandom Frequency Hopping Sequence


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to chan-nel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

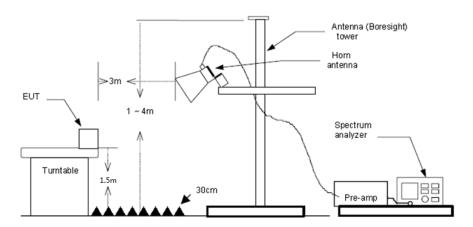
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No.: TRE1709009902 Page: 35 of 58 Issued: 2018-01-11


5.9. Restricted band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1 MHz, VBW=3 MHz Peak detector for Peak value RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

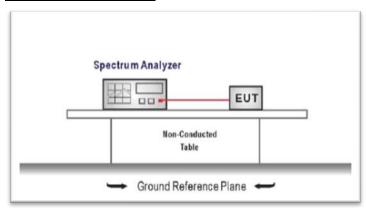
Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.
- 3) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

Report No.: TRE1709009902 Page: 36 of 58 Issued: 2018-01-11

CH00									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	31.37	28.05	6.62	37.65	28.39	74.00	-45.61	Horizontal	Peak
2390.03	30.79	27.65	6.75	37.87	27.32	74.00	-46.68	Horizontal	Peak
2310.00	31.24	28.05	6.62	37.65	28.26	74.00	-45.74	Vertical	Peak
2390.13	36.76	27.65	6.75	37.87	33.29	74.00	-40.71	Vertical	Peak
2310.00	18.53	28.05	6.62	37.65	15.55	54.00	-38.45	Horizontal	Average
2390.13	18.30	27.65	6.75	37.87	14.83	54.00	-39.17	Horizontal	Average
2310.00	20.00	28.05	6.62	37.65	17.02	54.00	-36.98	Vertical	Average
2390.03	19.94	27.65	6.75	37.87	16.47	54.00	-37.53	Vertical	Average

	CH78									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2483.50	48.52	27.26	6.83	37.87	44.74	74.00	-29.26	Horizontal	Peak	
2500.00	31.29	27.20	6.84	37.87	27.46	74.00	-46.54	Horizontal	Peak	
2483.50	41.98	27.26	6.83	37.87	38.20	74.00	-35.80	Vertical	Peak	
2494.68	47.44	27.22	6.84	37.87	43.63	74.00	-30.37	Vertical	Peak	
2500.00	30.96	27.20	6.84	37.87	27.13	74.00	-46.87	Vertical	Peak	
2483.50	27.29	27.26	6.83	37.87	23.51	54.00	-30.49	Horizontal	Average	
2500.00	18.88	27.20	6.84	37.87	15.05	54.00	-38.95	Horizontal	Average	
2483.50	25.17	27.26	6.83	37.87	21.39	54.00	-32.61	Vertical	Average	
2500.00	19.03	27.20	6.84	37.87	15.20	54.00	-38.80	Vertical	Average	


Report No.: TRE1709009902 Page: 37 of 58 Issued: 2018-01-11

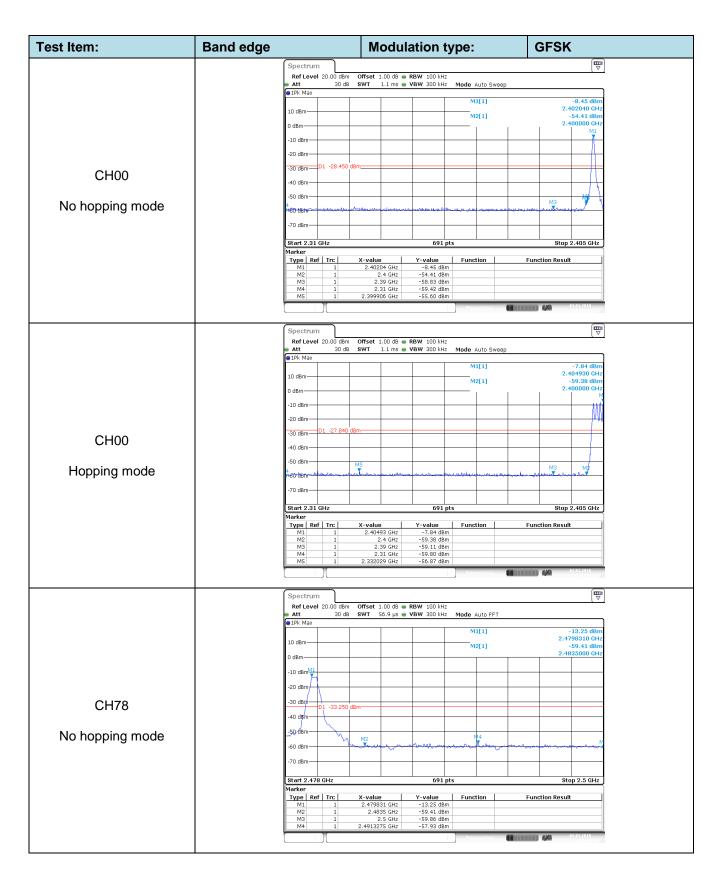
5.10. Band edge and Spurious Emissions (conducted)

LIMIT

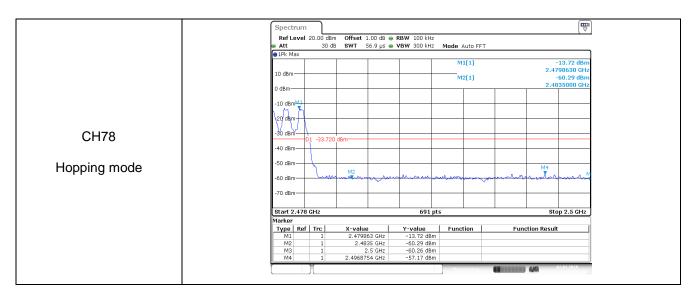
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

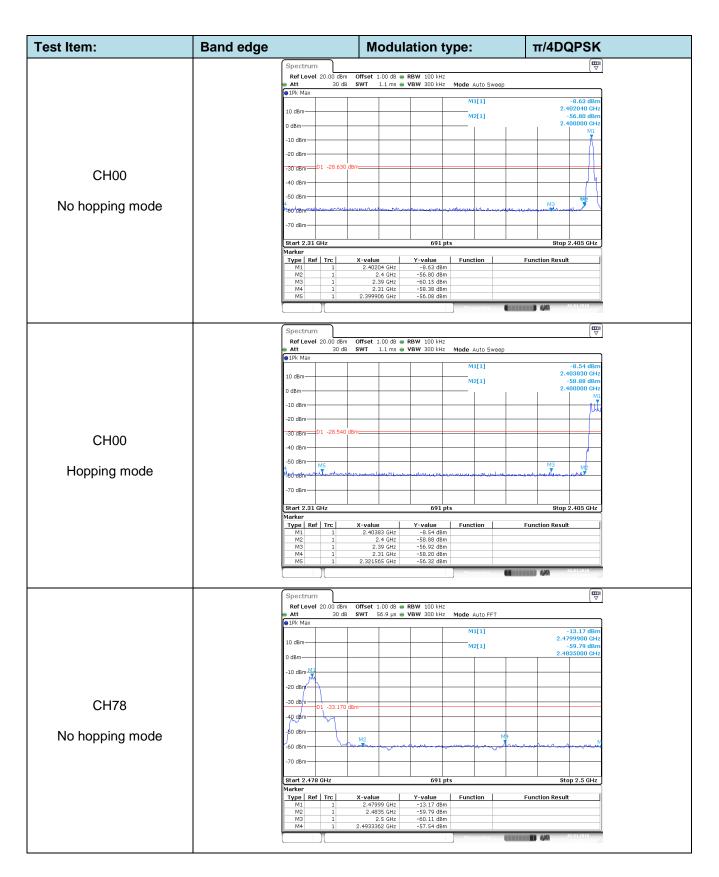
TEST PROCEDURE

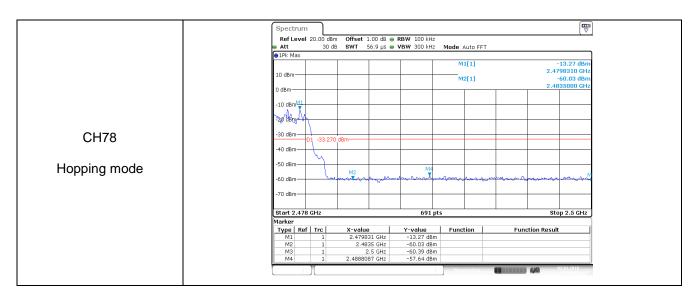

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic.
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

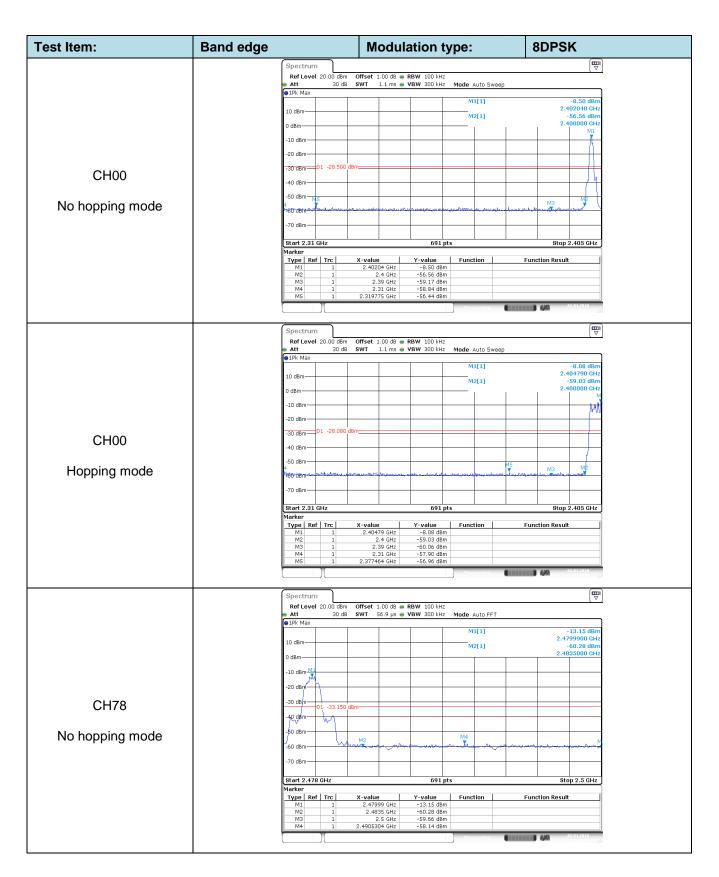
TEST MODE:

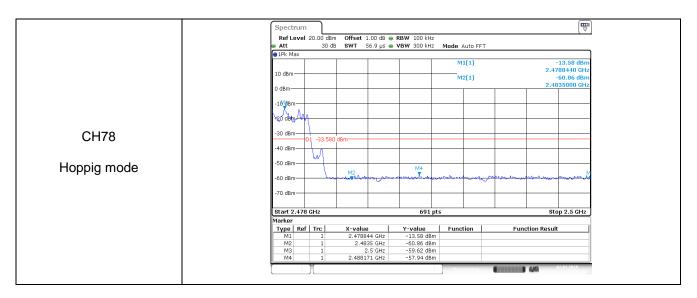

Please refer to the clause 3.3

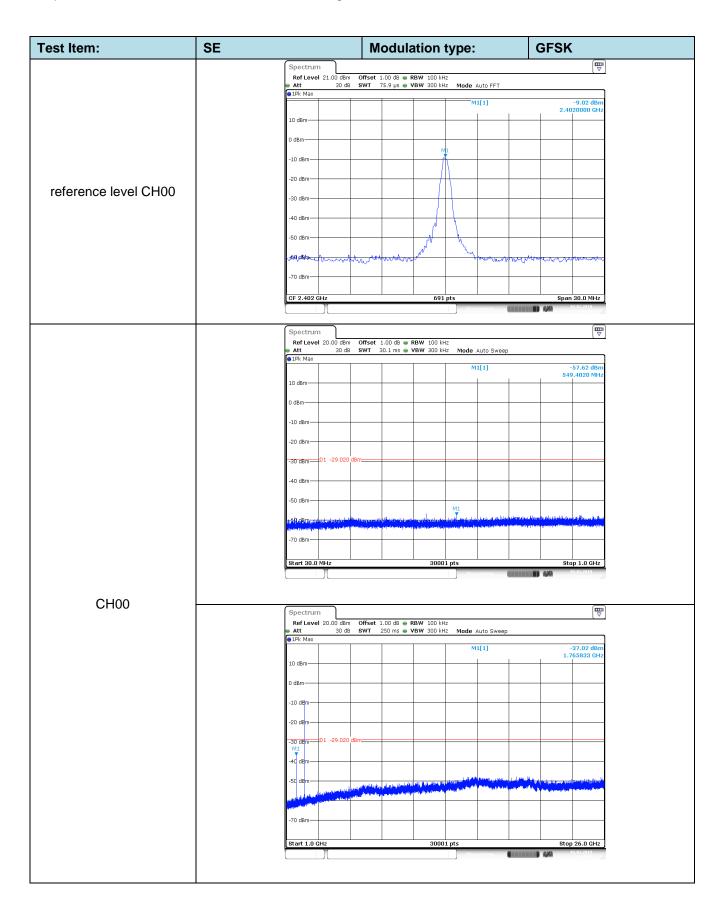
TEST RESULTS

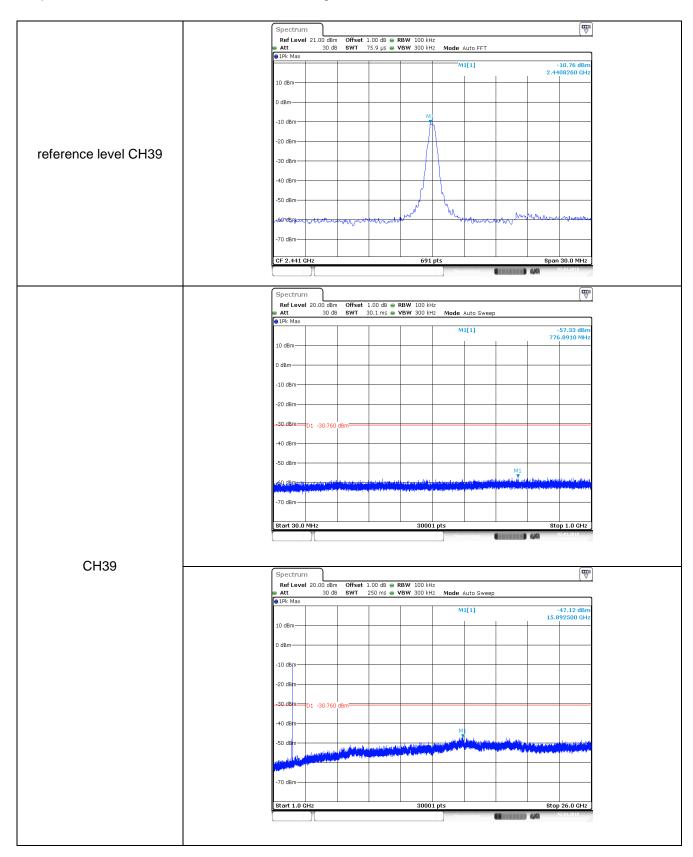

 Report No.: TRE1709009902 Page: 38 of 58 Issued: 2018-01-11

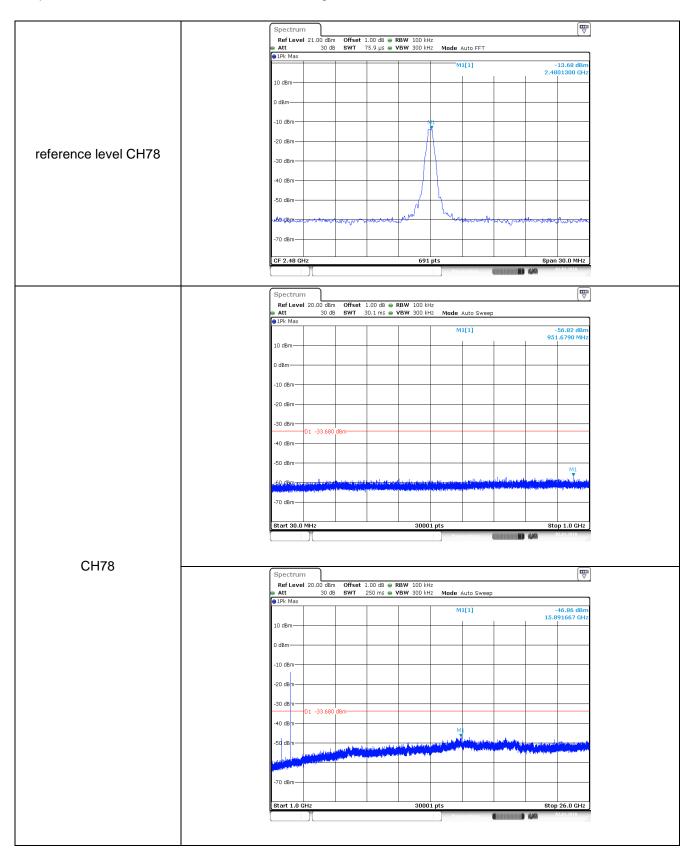

Report No.: TRE1709009902 Page: 39 of 58 Issued: 2018-01-11

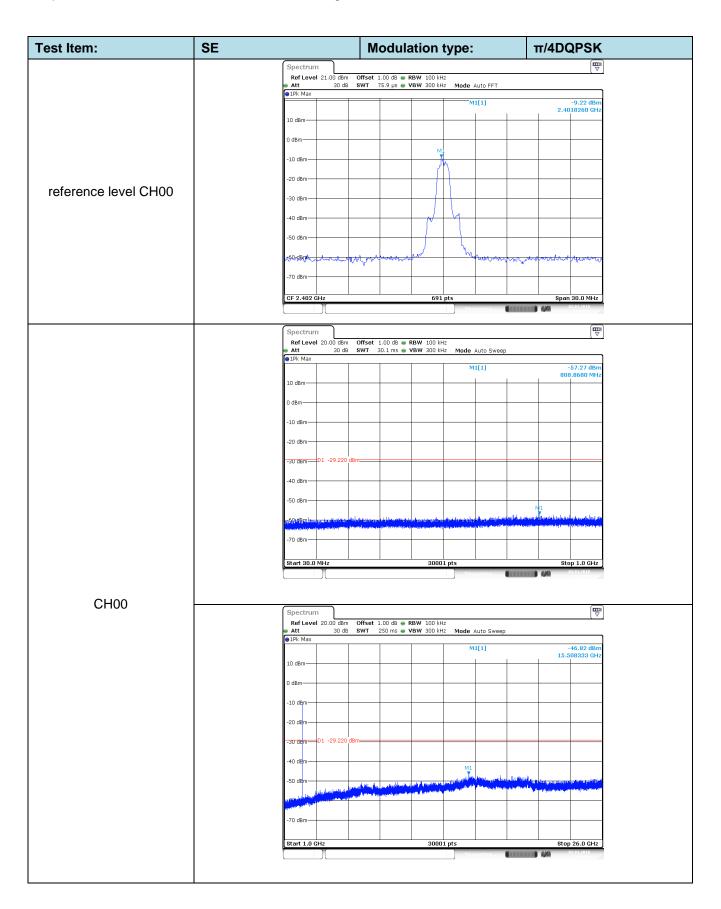

Report No.: TRE1709009902 Page: 40 of 58 Issued: 2018-01-11

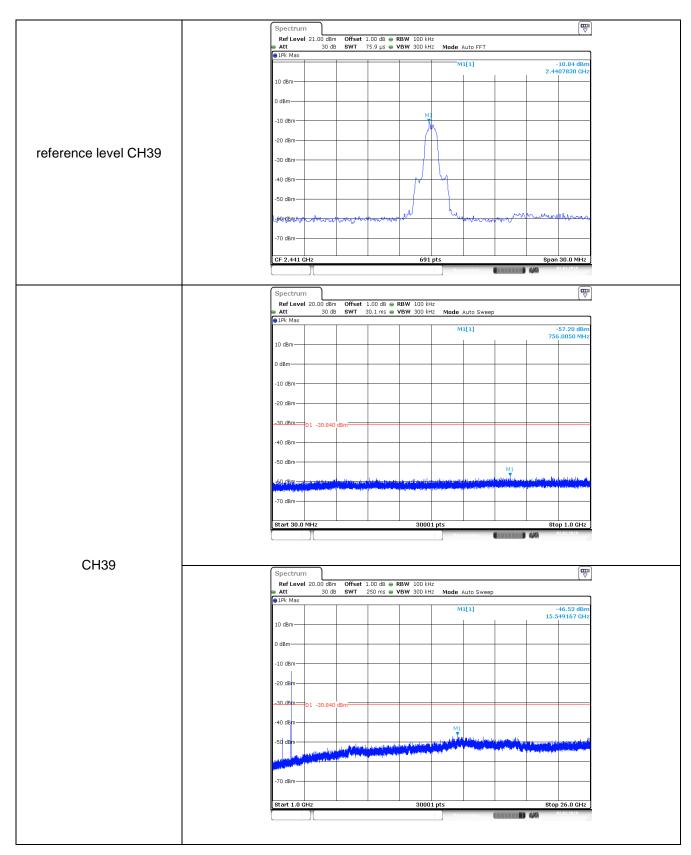

Report No.: TRE1709009902 Page: 41 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 42 of 58 Issued: 2018-01-11

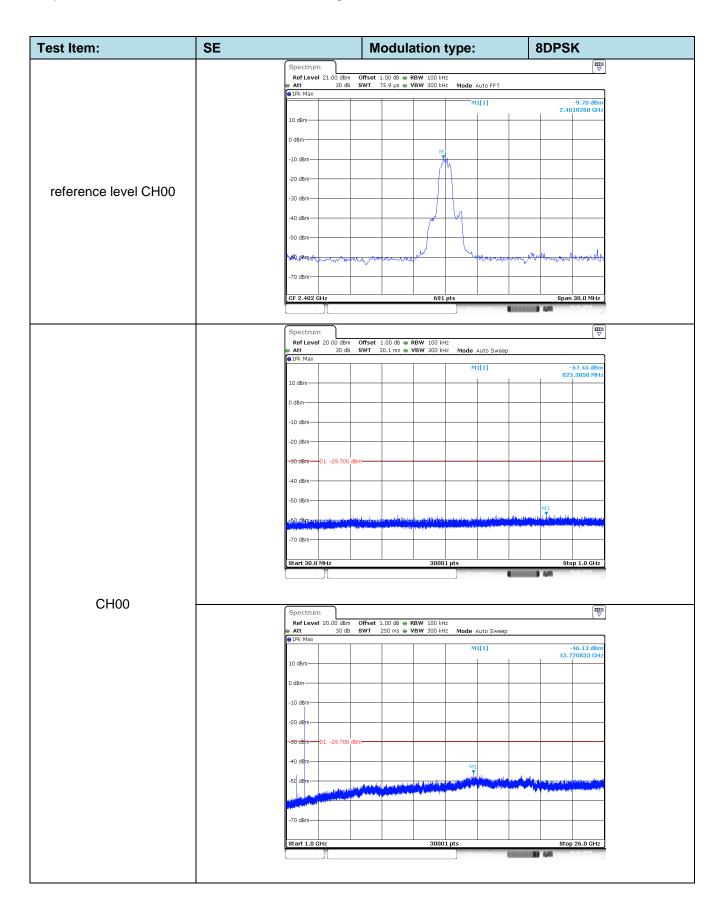

Report No.: TRE1709009902 Page: 43 of 58 Issued: 2018-01-11

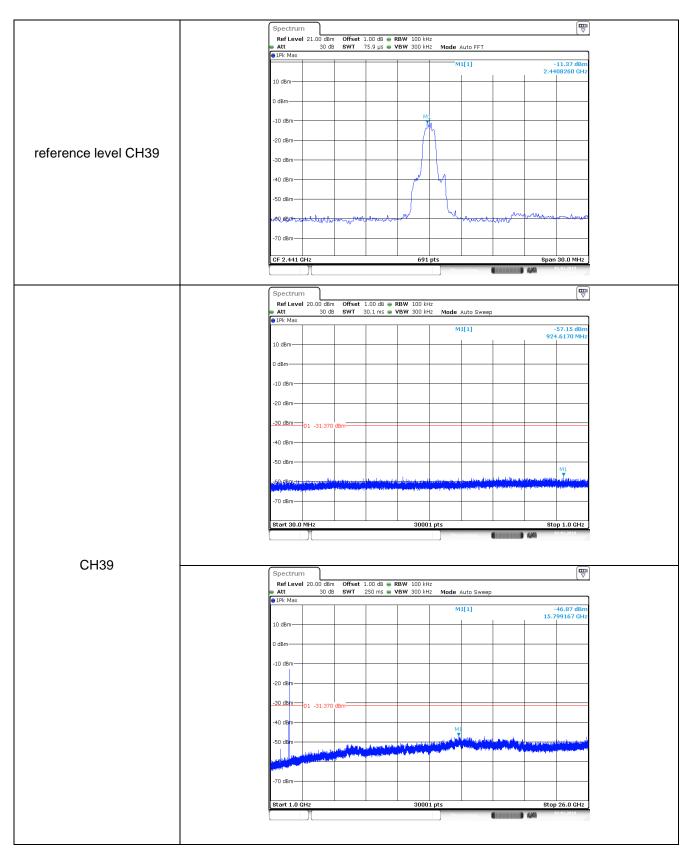

Report No.: TRE1709009902 Page: 44 of 58 Issued: 2018-01-11

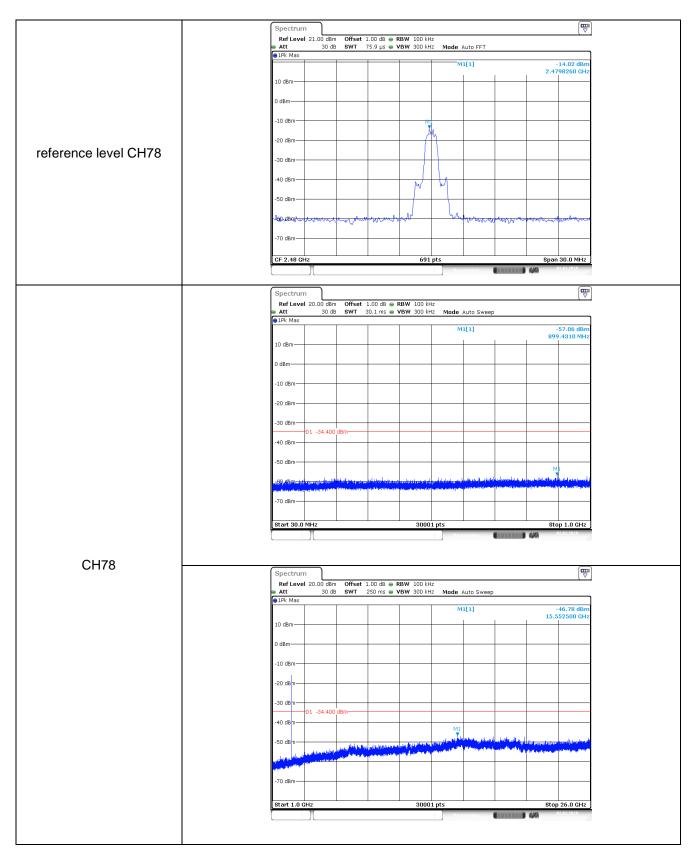

Report No.: TRE1709009902 Page: 45 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 46 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 47 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 48 of 58 Issued: 2018-01-11


Report No.: TRE1709009902 Page: 49 of 58 Issued: 2018-01-11

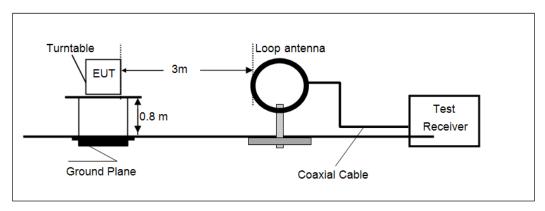

Report No.: TRE1709009902 Page: 50 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 51 of 58 Issued: 2018-01-11

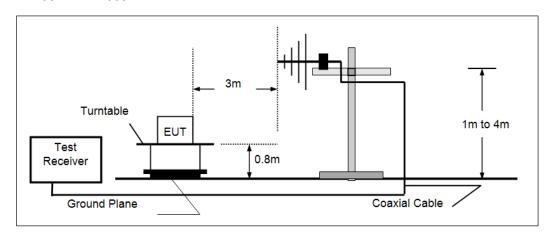
Report No.: TRE1709009902 Page: 52 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 53 of 58 Issued: 2018-01-11

5.11. Spurious Emissions (radiated)

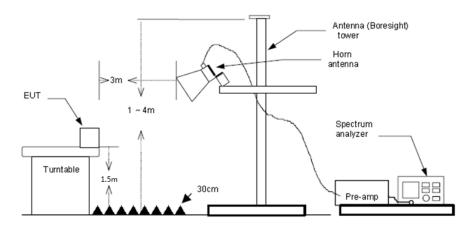

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value					
30 MHz ~ 88 MHz	40.00	Quasi-peak					
88 MHz ~ 216 MHz	43.50	Quasi-peak					
216 MHz ~ 960 MHz	46.00	Quasi-peak					
960 MHz ~ 1 GHz	54.00	Quasi-peak					
Above 1 GHz	54.00	Average					
Above 1 GHz	74.00	Peak					

TEST CONFIGURATION

Below 30 MHz



> 30 MHz ~1000 MHz

Above 1 GHz

Report No.: TRE1709009902 Page: 54 of 58 Issued: 2018-01-11

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013.
- The EUT is placed on a turn table with 0.8 meter above ground for below 1GHz, 1.5 meter above ground for above 1GHz.
- The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=QP Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1 MHz, VBW=3 MHz Peak detector for Peak value RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

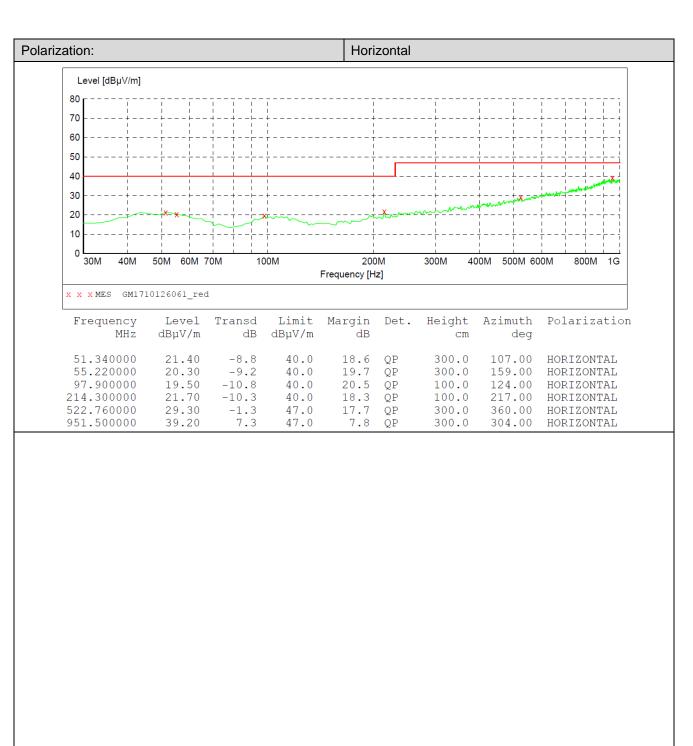
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) Below 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation High channel which it was worst case, so only the worst case's data on the test report.
- 4) Above 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report
- 5) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.


> 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: TRE1709009902 Page: 55 of 58 Issued: 2018-01-11

70 300 300 300 300 300 300 400 500 300 300 400 500 300 400 500 600 600 600 600 600 600 600 600 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ation:				Ver	tical			
70 300 300 300 300 300 300 400 300 400 500 300 400 500 300 400 500 600 600 600 600 600 600 600 600 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Level [dBµV/m]								
300	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 _F								
50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70		ļ ļ -	<u>+</u>		 			- +
10 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 127.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 127.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 127.880000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60		¦	+		 			
30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	50			 	ا !	 	 		-
30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	40	i i	<u>i i i</u>	İ	j				
20	0	0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	30+			 	 	 -	 +	 + + - - - - - - - - - - 	
10 0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 105.660000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 105.47.980000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 105.47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarizatio MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	!	j j	<u> </u>	j		المسم	aminan	moundand	"
0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 16 Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 105.660000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 105.7880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 105.7880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 105.7880000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarizatio dB dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	!				mm		 		-
30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 16 Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 105.660000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 105.47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G X x MES GM1710126062_red	30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Detrication dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	i			T				- 	
x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 127.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 127.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 127.880000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	x x MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth deg Cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	X X MES GM1710126062_red Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	30M 40M	50M 60M 70)M 10				300M 4	00M 500M 6	800M 800M 1G
Frequency Level Transd Limit Margin Det. Height Azimuth Oder Det. Heig	Frequency Level Transd Limit Margin Det. Height Azimuth Polarizatio MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 68.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL					Frequency [H	łz]			
MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 227.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 647.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	x x MES GM17	10126062_red							
MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 227.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 647.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	MHz dBμV/m dB dBμV/m dB cm deg 53.280000 21.50 -9.0 40.0 18.5 QP 100.0 39.00 VERTICAL 59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarizatio
59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 227.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 547.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL									
59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 105.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 227.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 547.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	59.100000 20.60 -9.8 40.0 19.4 QP 100.0 360.00 VERTICAL 05.660000 19.90 -10.5 40.0 20.1 QP 100.0 68.00 VERTICAL 27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	53 280000	21 50	-9 0	40 0	18 5	OP	100 0	39 00	VERTICAL.
227.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 547.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	27.880000 20.60 -9.4 40.0 19.4 QP 100.0 171.00 VERTICAL 47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	59.100000	20.60	-9.8	40.0	19.4		100.0	360.00	VERTICAL
547.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	47.980000 28.70 -0.8 47.0 18.3 QP 100.0 0.00 VERTICAL	105.660000								
			982.540000								
			982.540000	38.30	7.5	47.0	8.7	QP	100.0	28.00	VERTICAL

Report No.: TRE1709009902 Page: 56 of 58 Issued: 2018-01-11

Report No.: TRE1709009902 Page: 57 of 58 Issued: 2018-01-11

> 1 GHz ~ 25 GHz

					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2097.51	44.13	26.69	6.35	37.32	39.85	74.00	-34.15	Vertical	Peak
2972.75	40.39	28.57	7.47	38.25	38.18	74.00	-35.82	Vertical	Peak
4983.99	41.39	31.48	9.66	36.44	46.09	74.00	-27.91	Vertical	Peak
8002.06	31.33	37.10	12.30	34.53	46.20	74.00	-27.80	Vertical	Peak
1198.10	43.36	26.29	4.66	36.57	37.74	74.00	-36.26	Horizontal	Peak
2995.54	37.21	28.60	7.48	38.23	35.06	74.00	-38.94	Horizontal	Peak
4809.50	57.18	31.58	9.55	36.93	61.38	74.00	-12.62	Horizontal	Peak
4809.50	30.83	31.58	9.55	36.93	35.03	54.00	-18.97	Horizontal	Average
7209.02	36.23	36.21	11.87	35.07	49.24	74.00	-24.76	Horizontal	Peak

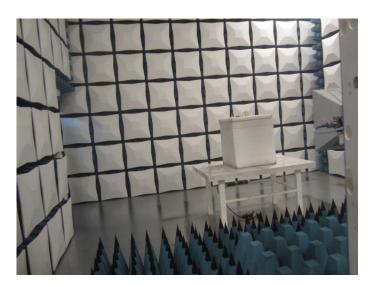
	CH39										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value		
1988.33	41.46	26.19	6.25	37.29	36.61	74.00	-37.39	Vertical	Peak		
3283.02	38.39	28.30	7.82	38.35	36.16	74.00	-37.84	Vertical	Peak		
5836.04	31.48	32.17	10.60	35.34	38.91	74.00	-35.09	Vertical	Peak		
7981.72	32.05	37.03	12.39	34.58	46.89	74.00	-27.11	Vertical	Peak		
1750.70	41.80	25.30	5.86	37.04	35.92	74.00	-38.08	Horizontal	Peak		
2671.33	43.12	28.02	7.07	38.03	40.18	74.00	-33.82	Horizontal	Peak		
4883.52	52.49	31.43	9.59	36.73	56.78	74.00	-17.22	Horizontal	Peak		
4883.52	27.83	31.43	9.59	36.73	32.12	54.00	-21.88	Horizontal	Average		
7319.96	37.46	36.30	11.99	34.92	50.83	74.00	-23.17	Horizontal	Peak		

	CH78										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value		
1487.51	44.56	25.81	5.25	36.57	39.05	74.00	-34.95	Vertical	Peak		
2972.75	41.40	28.57	7.47	38.25	39.19	74.00	-34.81	Vertical	Peak		
4996.69	35.69	31.50	9.67	36.41	40.45	74.00	-33.55	Vertical	Peak		
7027.82	31.29	35.38	11.85	34.83	43.69	74.00	-30.31	Vertical	Peak		
1495.10	40.52	25.80	5.27	36.58	35.01	74.00	-38.99	Horizontal	Peak		
3672.11	34.23	29.30	8.35	38.26	33.62	74.00	-40.38	Horizontal	Peak		
4958.68	42.77	31.46	9.64	36.52	47.35	74.00	-26.65	Horizontal	Peak		
7451.57	35.00	36.20	12.24	34.86	48.58	74.00	-25.42	Horizontal	Peak		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1709009902 Page: 58 of 58 Issued: 2018-01-11


6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)

Radiated Emissions

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: TRE1709009901.

-----End of Report-----