

Report No.: EED32N80972801

Product Baby Monitor

Trade mark VAVA / Miroir/FAKEME/Amyneo/Teble

: VA-IH006, VA-IH009, TB-IH002, TB-IH003, Model/Type reference

MR-IH001, MR-IH002

Serial Number N/A

Report Number EED32N80972801 FCC ID 2AFDGVA-IH006V1

Date of Issue Nov. 22, 2021

47 CFR Part 15 Subpart C **Test Standards**

Test result **PASS**

Prepared for:

SUNVALLEYTEK INTERNATIONAL. INC 46724 Lakeview Blvd, Fremont, CA 94538

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District,

Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

mark. chen

Reviewed by:

Lavon Ma Aaron Ma

Mark Chen David Wang

David Wang

Date:

Nov. 22, 2021

Check No.:6716300921

Contents

						Page
1 CONTENTS						
2 VERSION						
3 TEST SUMMA	ARY	••••••	•••••	••••••	 	4
4 GENERAL IN	ORMATION		•••••	•••••	 	5
	ORMATION					
	DESCRIPTION OF					
	RONMENT ON OF SUPPOR					
5 TEST RESUL						
	REQUIREMENT					
	R LINE CONDUC					
	CONDUCTED O					
	SSION BANDWID					
	F HOPPING CH					
	CCUPANCY					
	E MEASUREMEN					
	D Spurious E					
	RANDOM FREQU SPURIOUS EM					_
6 APPENDIX A.						
7 PHOTOGRAP						
8 PHOTOGRAP	HS OF EUT C	ONSTRUCTI	IONAL DETAI	LS	 	41

Report No.: EED32N80972801

Page 3 of 51

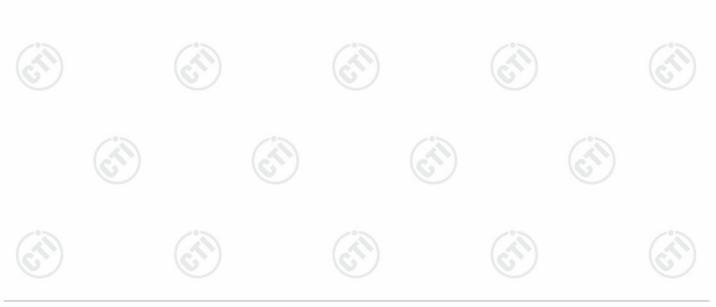
Version

Version No. Date		Description		
00 Nov. 16, 2021		Original		
Cin	(1)			
(0,1)	(0,1)	(67)	(67)	

Report No. : EED32N80972801 Page 4 of 51

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission		
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:


Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: VA-IH006, VA-IH009, TB-IH002, TB-IH003, MR-IH001, MR-IH002

Only the model VA-IH006 was tested, the others is equivalent to the previous tested model VA-IH006.

1.We also declare that the electrical circuit, components using and enclosure using of the aforesaid model are identical.

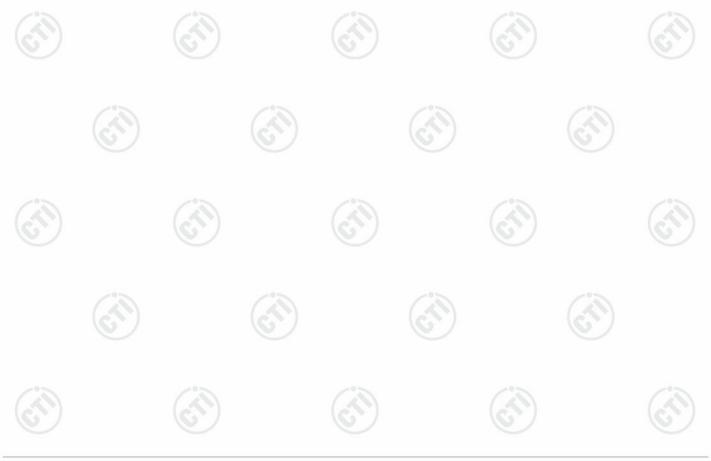
2.Except the opening screen icon,the hardware and software of MR-IH001/TB-IH002 and MR-IH002/TB-IH003 are same as VA-IH006 and VA-IH009 respectively.


4 General Information

4.1 Client Information

Applicant:	SUNVALLEYTEK INTERNATIONAL. INC
Address of Applicant:	46724 Lakeview Blvd, Fremont, CA 94538
Manufacturer:	Shenzhen NearbyExpress Technology Development Co., Ltd.
Address of Manufacturer:	333 Bulong Road, Jialianda Industrial Park, Building 1, Bantian, Longgang District, Shenzhen, China
Factory:	Foshan Shunde Alford Electronics Co. Ltd.
Address of Factory:	XinJiao Industrial Park, Daliang, Shunde Foshan City, Goangdong Province, China

4.2 General Description of EUT


Product Name:	Baby Monitor	\(^2\)	(.)			
Model No.(EUT):	VA-IH006, VA-IH00	09, TB-IH002, TB-IH003, MR-IH00	1, MR-IH002			
Test Mode No:	VA-IH006					
Trade Mark:	VAVA / Miroir/FAK	/AVA / Miroir/FAKEME/Amyneo/Teble				
EUT SupportsRadiosapplication:	2410MHz - 2477M	Hz	25			
	Adapter:(Camera)	Model: VSD0500120VU Input:100-240V~50/60Hz 0.3A Output: 5V 1.2A				
Power Supply:	Adapter:(Camera)	Model: TPA211F-06050-US Input:100-240V~50/60Hz 0.2A Output: 5V == 1.2A				
	Adapter:(Camera)	Model: NBS05B050120VU Input:100-240V~50/60Hz 0.2A Output: 5V 1.2A				
Sample Received Date:	Sep. 30, 2021		Cin			
Sample tested Date:	Sep. 30, 2021 to N	ov. 1, 2021	(6,7)			

Report No. : EED32N80972801 Page 6 of 51

Operation	Frequency:	1	2410MHz - 2477	2410MHz - 2477MHz					
Modulatio	n Technique:	Technique: Frequency Hopping Spread Spectrum(FHSS)							
Test Pow	er Grade:	4.0 %	(manufacturer de	eclare)					
Test Softv	ware of EUT:	(1)	(1)	(6/1)					
Modulatio	n Type:		GFSK		100				
Number o	of Channel:		20						
Hopping (Channel Type:		Adaptive Frequency Hopping systems						
Antenna T	Гуре and Gain:		External antenna, 0dBi						
Test Volta	age:		AC 120V,60Hz						
Operation	Frequency ea	ch of chan	nel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2410MHz	6	2427.5MHz	11	2445MHz	16	2462.5MHz		
2	2413.5MHz	7	2431MHz	12	2448.5MHz	17	2466MHz		
3	2417MHz	8	2434.5MHz	13	2452MHz	18	2469.5MHz		
4	2420.5MHz	9	2438MHz	14	2455.5MHz	19	2473MHz		
5	2424MHz	10	2441.5MHz	15	2459MHz	20	2477MHz		

Report No.: EED32N80972801 Page 7 of 51

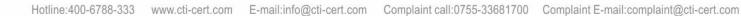
Test Environment

Operating Environment	t:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C		(3)		13
Humidity:	50~55 % RH		(0)		(6)
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C	12		13	
Humidity:	50~55 % RH	(8.73)		(847)	
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Temperature:	22~25.0 °C		-07		-05
Humidity:	50~55 % RH		(41)		(4)
Atmospheric Pressure:	1010mbar		(0)		6.

4.4 **Description of Support Units**

The EUT has been tested independently

4.5 Test Location


All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.6 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	RF power, conducted	0.46dB (30MHz-1GHz)	
2	Kr power, conducted	0.55dB (1GHz-18GHz)	
		3.3dB (9kHz-30MHz)	
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz) 4.5dB (1GHz-18GHz)	
3	Radiated Spurious emission test		
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32N80972801 Page 9 of 51

4.7 Equipment List

	Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022		
Temperature/ Humidity Indicator	Defu	TH128	/	(a)			
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022		
Barometer	changchun	DYM3	1188				

		RF test s	ystem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(0)		<u> </u>
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(A)		~~~

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-16-2020 10-14-2021	10-15-2021 10-13-2022	
Multi device Controller	maturo	NCD/070/10711 112				
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022	
Cable line	Fulai(7M)	SF106	5219/6A		/	
Cable line	Fulai(6M)	SF106	5220/6A	(2-2-)	(23	
Cable line	Fulai(3M)	SF106	5216/6A	(V)/	(0)	
Cable line	Fulai(3M)	SF106	5217/6A			

Report No. : EED32N80972801 Page 10 of 51

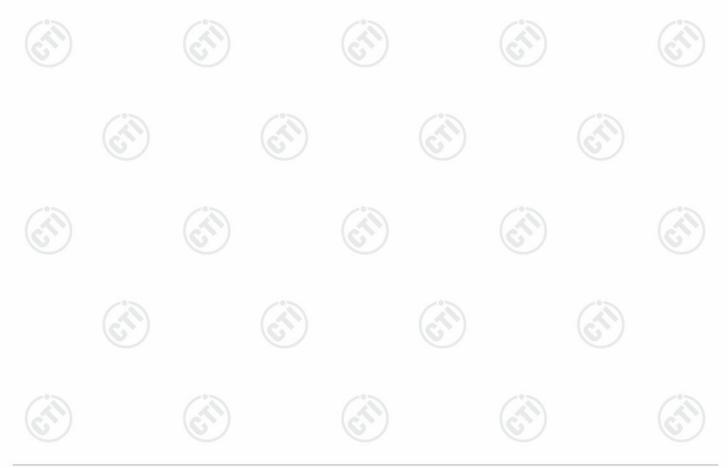
		3M full-anechoi	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	00057407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980596	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-21-2021	04-20-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3	(4)	01-09-2021	01-08-2024
Filter bank	JS Tonscend	JS0806-F	188060094	04-09-2021	04-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	<u> </u>	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		(
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	(<u> </u>
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(2)	(

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

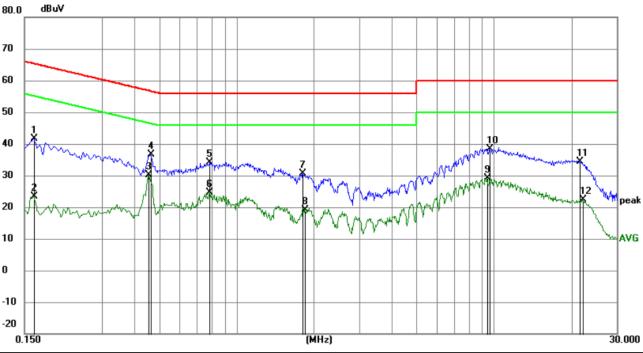
EUT Antenna: Please see Internal photos

The antenna is External antenna. The best case gain of the antenna is 0dBi.

Report No. : EED32N80972801 Page 12 of 51

5.2 AC Power Line Conducted Emissions

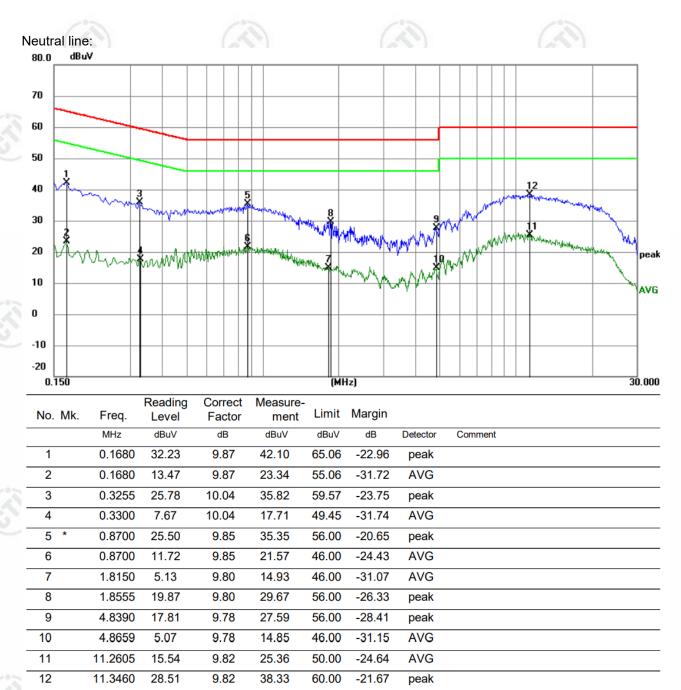
	Test Requirement:	47 CFR Part 15C Section 15.20	7							
	Test Method:	ANSI C63.10: 2013								
	Test Frequency Range:	150kHz to 30MHz								
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swe	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
3	Limit:	Limit (dBu\/)								
9		Frequency range (MHz)	Quasi-peak	Average						
		0.15-0.5	66 to 56*	56 to 46*						
		0.5-5	56	46						
		5-30	60	50						
		* Decreases with the logarithm of	of the frequency.							
	Test Setup:	Shielding Room		Test Receiver						
		AC Mains	Ground Reference Plane	nins						
	Test Procedure:	1) The mains terminal disturbance voltage test was conducted in a shielded								
		room. 2) The EUT was connected to A Impedance Stabilization Netwimpedance. The power cable connected to a second LISN reference plane in the same measured. A multiple socket power cables to a single LISI exceeded. 3) The tabletop EUT was placed ground reference plane. And placed on the horizontal ground reference plane. And placed on the horizontal ground reference plane. The LISN 1 unit under test and bonded to mounted on top of the ground between the closest points of the EUT and associated equations.	work) which provides a se of all other units of a 2, which was bonded way as the LISN 1 for outlet strip was used N provided the rating of the LISN and reference plane, a vertical ground reference plane, a vertical ground reference plane, a vertical ground reference plane. This was placed 0.8 m from a ground reference plane. This of the LISN 1 and the Enipment was at least 0.1 m emission, the relative rface cables must be of the contract of the lative rface cables must be of the contract of the lative rface cables must be of the contract of the lative rface cables must be of the contract of the lative rface cables must be of the lative rface cables.	a 50Ω/50μH + 5Ω linear the EUT were to the ground the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was rence plane. The horizontal ground m the boundary of the plane for LISNs is distance was EUT. All other units of 8 m from the LISN 2. e positions of						
	Exploratory Test Mode:	ANSI C63.10: 2013 on conducted measurement. Non-hopping transmitting mode with all kind of modulation and all kind of								
		data type at the lowest, middle, high channel.								
	Final Test Mode:	Through Pre-scan, find the GF		e lowest channel is the						
		worst case. Only the worst case is recorded								
	Test Results:	Pass								



Adapter:(Camera):NBS05B050120VU

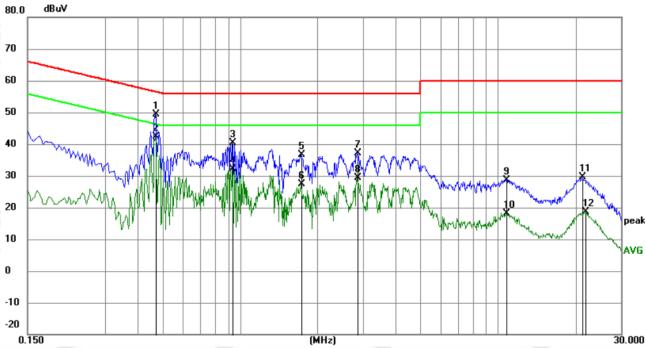
Measurement Data

Live line:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1635	31.85	9.87	41.72	65.28	-23.56	peak	
2		0.1635	13.51	9.87	23.38	55.28	-31.90	AVG	
3	*	0.4560	20.24	9.96	30.20	46.77	-16.57	AVG	
4		0.4650	26.78	9.96	36.74	56.60	-19.86	peak	
5		0.7845	24.40	9.85	34.25	56.00	-21.75	peak	
6		0.7845	14.80	9.85	24.65	46.00	-21.35	AVG	
7		1.8060	20.87	9.80	30.67	56.00	-25.33	peak	
8		1.8420	9.35	9.80	19.15	46.00	-26.85	AVG	
9		9.4379	19.28	9.78	29.06	50.00	-20.94	AVG	
10		9.6225	28.61	9.78	38.39	60.00	-21.61	peak	
11		21.5745	24.51	9.98	34.49	60.00	-25.51	peak	
12		22.1550	12.39	9.98	22.37	50.00	-27.63	AVG	

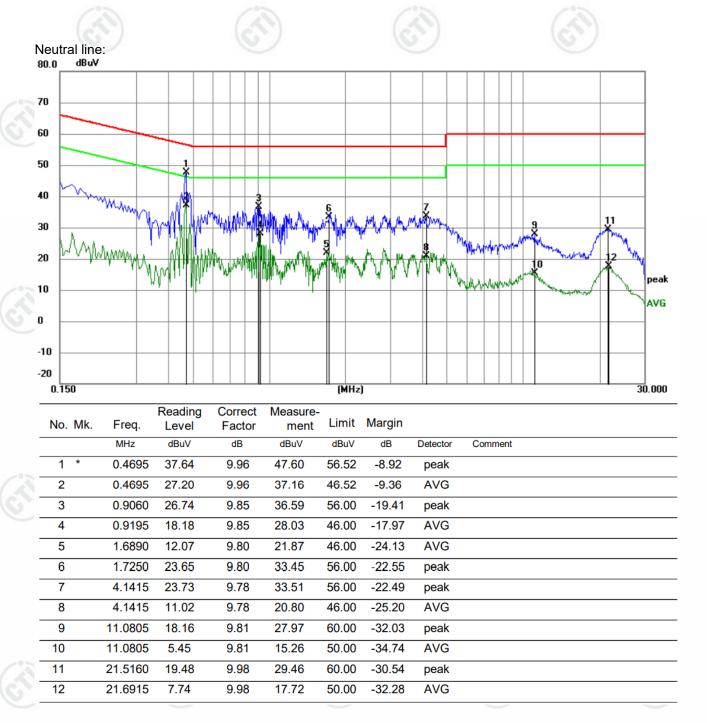
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



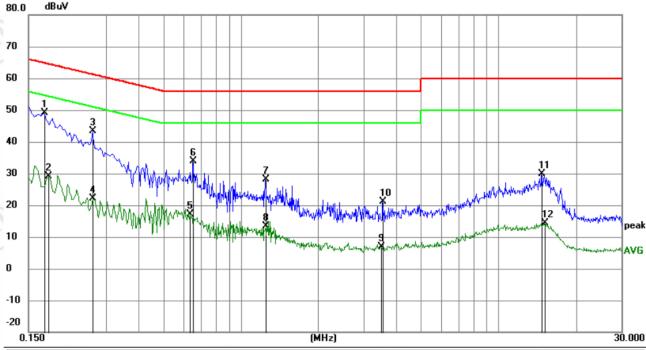
Adapter:(Camera):VSD0500120VU

Measurement Data


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4695	39.44	9.96	49.40	56.52	-7.12	peak	
2	*	0.4695	32.46	9.96	42.42	46.52	-4.10	AVG	
3		0.9375	30.48	9.84	40.32	56.00	-15.68	peak	
4		0.9375	22.22	9.84	32.06	46.00	-13.94	AVG	
5		1.7340	26.77	9.80	36.57	56.00	-19.43	peak	
6		1.7340	17.47	9.80	27.27	46.00	-18.73	AVG	
7		2.8455	27.30	9.79	37.09	56.00	-18.91	peak	
8		2.8455	19.60	9.79	29.39	46.00	-16.61	AVG	
9		10.7385	18.89	9.80	28.69	60.00	-31.31	peak	
10		10.7385	8.31	9.80	18.11	50.00	-31.89	AVG	
11		21.2325	19.67	9.98	29.65	60.00	-30.35	peak	
12		21.9300	8.75	9.98	18.73	50.00	-31.27	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

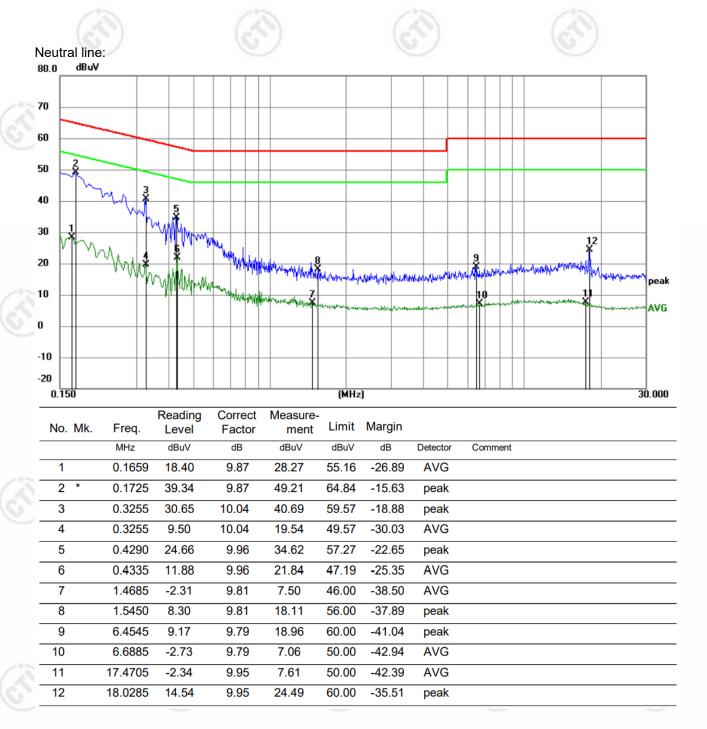
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Adapter:(Camera):TPA211F-06050-US

Measurement Data

Live line: 80.0 dBuV


No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1725	39.32	9.87	49.19	64.84	-15.65	peak	
2)	0.1796	19.20	9.87	29.07	54.50	-25.43	AVG	
3	3	0.2670	33.26	10.00	43.26	61.21	-17.95	peak	
4		0.2670	12.18	10.00	22.18	51.21	-29.03	AVG	
5	5	0.6360	7.14	10.00	17.14	46.00	-28.86	AVG	
6	6	0.6540	23.96	9.97	33.93	56.00	-22.07	peak	
7	,	1.2480	18.31	9.82	28.13	56.00	-27.87	peak	
8	3	1.2525	3.57	9.82	13.39	46.00	-32.61	AVG	
9)	3.4980	-2.93	9.78	6.85	46.00	-39.15	AVG	
10)	3.5520	11.40	9.78	21.18	56.00	-34.82	peak	
11		14.7390	19.99	9.92	29.91	60.00	-30.09	peak	
12)	15.1260	4.44	9.93	14.37	50.00	-35.63	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32N80972801 Page 19 of 51

5.3 Maximum Conducted Output Power

47 CFR Part 15C Section 15.247 (b)(1)
ANSI C63.10:2013	
Control Computer Power Supply Power Dod Table EUT Control Dod	RF test System Instrument
Remark: Offset=Cable loss+ attended	
Span = approximately 5 times the centered on a hopping channel RBW > the 20 dB bandwidth of the measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to peak of the emission.	20 dB bandwidth, e emission being
21dBm	(6.)
Non-hopping transmitting with all k	ind of modulation and all kind of data type
Through Pre-scan, find the DH5 modulation type	of data type is the worst case of GFSk
Refer to Appendix A	(25)
	Remark: Offset=Cable loss+ attenuator Table Remark: Offset=Cable loss+ attenuator Use the following spectrum analyz Span = approximately 5 times the centered on a hopping channel RBW > the 20 dB bandwidth of the measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to peak of the emission. 21dBm Non-hopping transmitting with all k Through Pre-scan, find the DH5 modulation type

5.4 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Control Computer Power Supply Power Fable Attenuator Table RF test System System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
Limit:	NA NA					
Exploratory Test Mode	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type					
Test Results:	Refer to Appendix A					

