

Page 1 of 59

Product **Trade mark** Model/Type reference **Serial Number Report Number** FCC ID Date of Issue **Test Standards Test result**

- **Baby Monitor** 2
- VAVA
- : VA-IHOO6PU
 - N/A
 - EED32L00047503
- : 2AFDGVA-IH006B
- Jul. 08, 2019
- 47 CFR Part 15 Subpart C

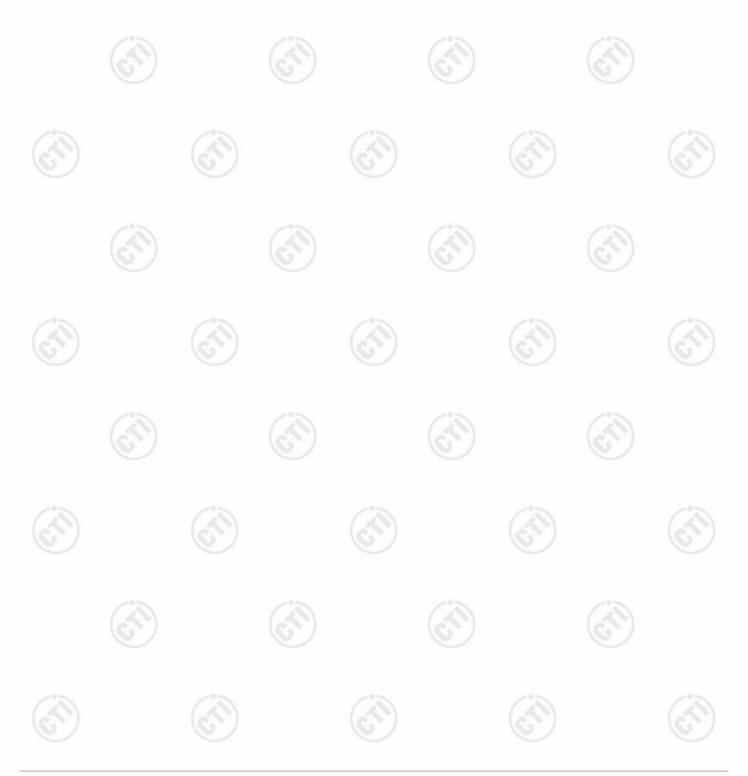
Prepared for:

: PASS

SUNVALLEYTEK INTERNATIONAL. INC 46724 lakeview Blvd, Fremont, CA 94538

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Hotline: 400-6788-333



2 Version

Page 2 of 59

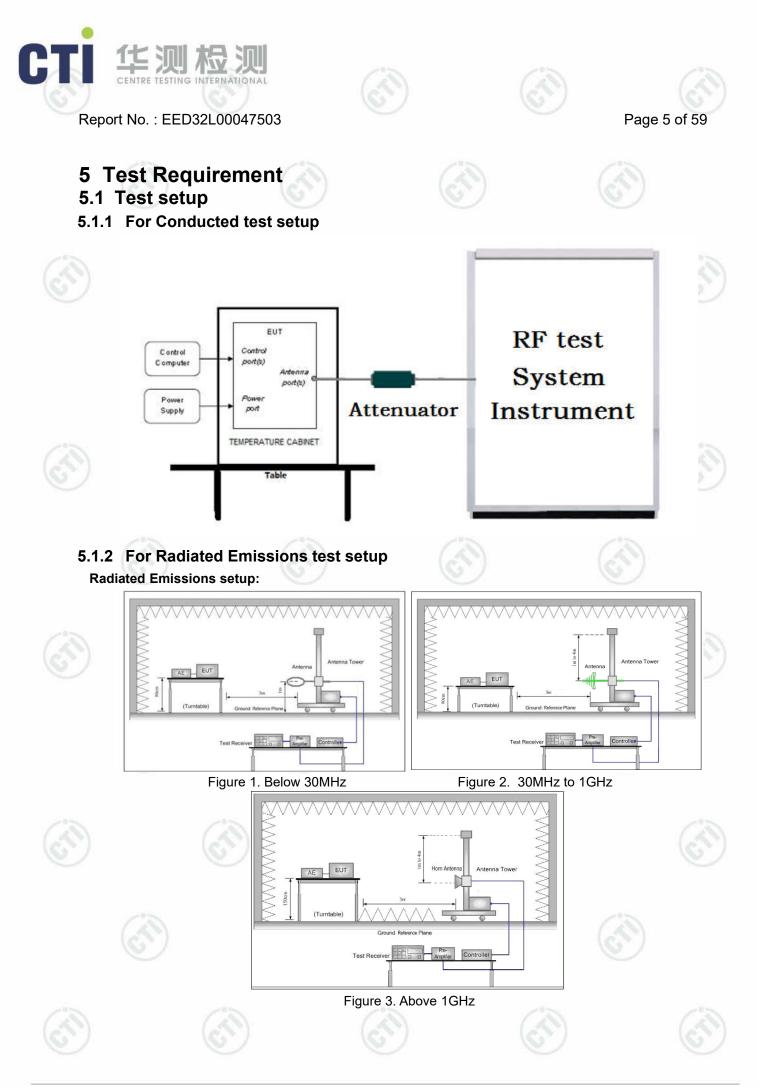
Version No.	Date	Description
00	Jul. 08, 2019	Original
*		

3 Test Summary

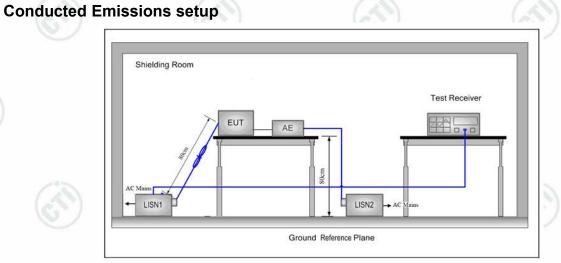
i oot oannary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
emark:		Sa /	1537	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.


The tested samples and the sample information are provided by the client.

1 COVER PAGE			\checkmark
2 VERSION			•••••
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT	<u> </u>	\sim	
5.1 TEST SETUP 5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions to 5.1.3 For Conducted Emissions	est setup		
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION		<u></u>	<u></u>
6 GENERAL INFORMATION			
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJE 6.4 DESCRIPTION OF SUPPORT UNIT 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDAR 6.8 OTHER INFORMATION REQUEST 	CTIVE TO THIS STANDARD S D CONDITIONS		
6.9 MEASUREMENT UNCERTAINTY (9	95% CONFIDENCE LEVELS, K=	2)	
7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREME			
Appendix A): 20dB Occupied B Appendix B): Carrier Frequency Appendix C): Dwell Time Appendix D): Hopping Channel Appendix E): Conducted Peak (Appendix F): Band-edge for RF Appendix G): RF Conducted Sp Appendix H): Pseudorandom Fi	andwidth v Separation Number Output Power Conducted Emissions purious Emissions requency Hopping Sequence ent onducted Emission	e	
Appendix J): AC Power Line Co Appendix K): Restricted bands	· · · · · · · · · · · · · · · · · · ·		
Appendix J): AC Power Line Co	s Emissions		



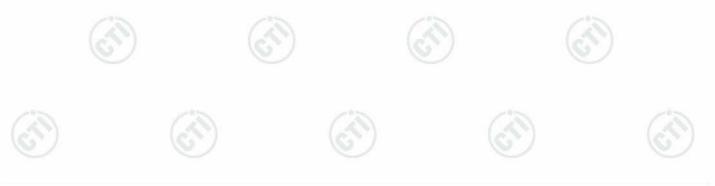
5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:				C
Temperature:	26°C			
Humidity:	57% RH			
Atmospheric Pressure:	1010mbar			
	100	A 34	6.5	

5.3 Test Condition

Test Mode	Тх		RF Channel	
Test Mode		Low(L)	Middle(M)	High(H)
GFSK	2410MHz ~2477 MHz	Channel 1	Channel 10	Channel 20
Gran		2410MHz	2441.5MHz	2477MHz
TX mode: The EUT transmitte	d the continuous modulati	on test signal a	at the specific chan	nel(s).


6 General Information

6.1 Client Information

Applicant:	SUNVALLEYTEK INTERNATIONAL. INC
Address of Applicant:	46724 lakeview Blvd, Fremont, CA 94538
Manufacturer:	Shenzhen Nearby Express Technology Development Company Ltd.
Address of Manufacturer:	333 Bulong Road, jialianda Industrial Park, Building 1, Bantain, Longgang District, Shenzhen, China
Factory:	Foshan Shunde Alford Electronics Co., Ltd
Address of Factory:	Xinjiao Industrial Park, Daliang, Shunde Foshan City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	Baby Mor	nitor			
Model No.(EUT):	VA-IHOO	6PU		10	205
Trade mark:	VAVA				(8)
EUT Supports Radios application:	2410MHz	- 2477MHz			C
Power Supply:	Monitor	AC adapter	(2	Model: MCUS-050200 Input:100-240V~50/60Hz 0.35A Output: 5V 2A	
	G	Battery	6	Lithium polymer Battery: 3.85Vdc,4400mAh	
Sample Received Date:	Mar. 11, 2	2019			
Sample tested Date:	Mar. 11, 2	2019 to Jul. 03, 20)19		
3 Product Specifi	cation s	ubjective to	this	standard	68
Operation Frequency:	2410MHz	- 2477MHz			C
Modulation Technique:	Frequenc	y Hopping Spread	d Spect	um(FHSS)	
Modulation Type:	GFSK				
Number of Channel:	20		62		
Hopping Channel Type:	Adaptive	Frequency Hoppi	ng syste	ems	
Test Power Grade:	N/A				
Test Software of EUT:	N/A				
Antenna Type:	External a	antenna			13
Antenna Gain:	0dBi	(\mathcal{C})			6
Test Voltage:	AC 120V,	60Hz			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
10	2410MHz	6	2427.5MHz	11	2445MHz	16	2462.5MHz
2	2413.5MHz	7	2431MHz	12	2448.5MHz	17	2466MHz
3	2417MHz	8	2434.5MHz	13	2452MHz	18	2469.5MHz
4	2420.5MHz	9	2438MHz	14	2455.5MHz	19	2473MHz
5	2424MHz	10	2441.5MHz	15	2459MHz	20	2477MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

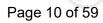
6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE power, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Sourious optication test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List


		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020	
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020	
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020	
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020	
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020	

	(Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020

Page 11 of 59

E audia a su t		Semi/full-anecho	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-23-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	<u>v</u>	01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020
LISN	schwarzbeck	NNBM8125	81251548	05-08-2019	05-06-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	67	01-09-2019	01-08-2020

Page 12 of 59

		3M full-anechoi		Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd- yyyy)	(mm-dd- yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-25-2020
Spectrum NANA Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-20-2019
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-06-2020
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-28-2020
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020

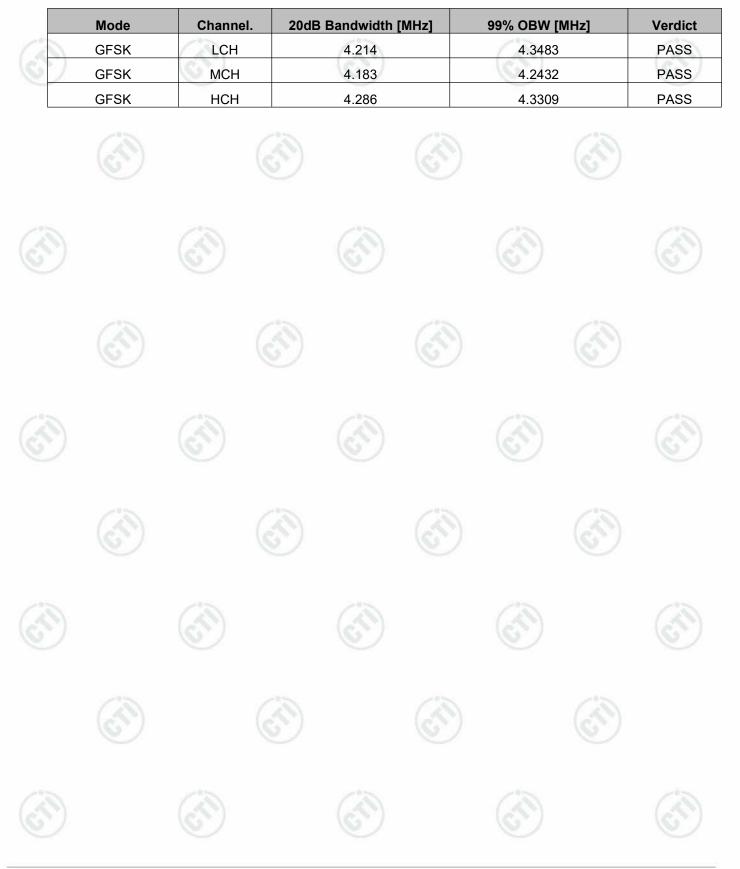
8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
(2)	1	FCC Part15C	Subpart C-Intentional Radiators
S	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

	Test requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
0	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
/	Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
0	Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
2	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
0	Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
	Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
	Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)



Appendix A): 20dB Occupied Bandwidth

Test Result

Page 14 of 59

Test Graph

Appendix B): Carrier Frequency Separation

Result Table

	Mode	Channel.	Carrier Freq	uency Separa	ation [MHz]		Verdict
N.	GFSK	LCH	U	3.519	U		PASS
	GFSK	МСН		3.488			PASS
	GFSK	НСН	~	3.4765		1	PASS

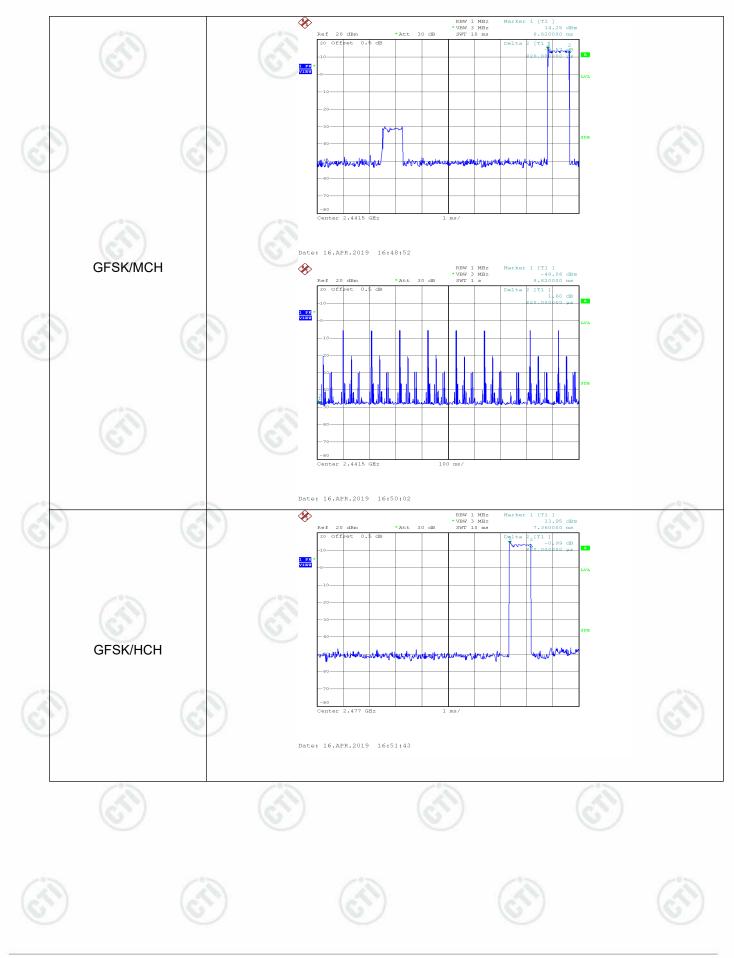
Test Graph

Appendix C): Dwell Time

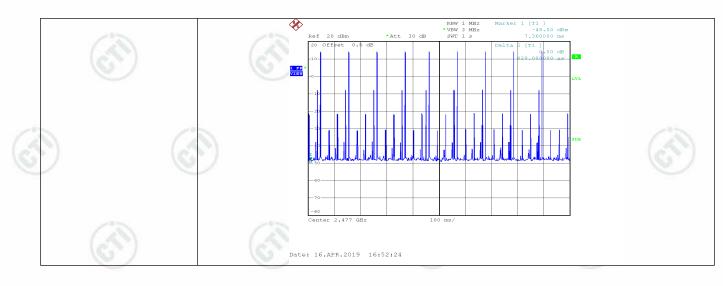
Result Table

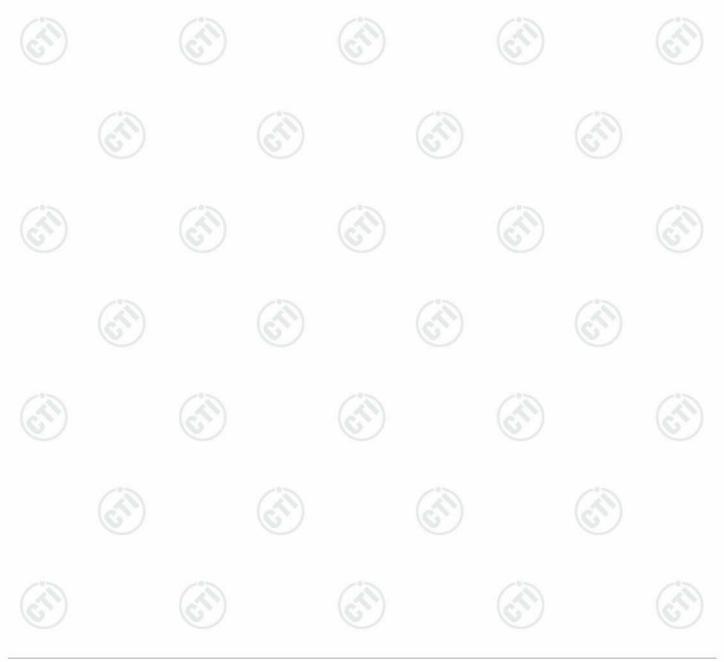
Mode	Channel	Observe time[s]	one set of pulses[ms]	pulses within 1s	Dwell Time[s]	Verdict
GFSK	LCH	7.6	0.46	9	0.03	PASS
GFSK	МСН	7.6	0.82	8	0.05	PASS
GFSK	нсн	7.6	0.82	9	0.06	PASS
	GFSK GFSK	GFSK LCH GFSK MCH	ModeChannel time[s]GFSKLCH7.6GFSKMCH7.6	ModeChanneltime[s]pulses[ms]GFSKLCH7.60.46GFSKMCH7.60.82	ModeChanneltime[s]pulses[ms]within 1sGFSKLCH7.60.469GFSKMCH7.60.828	ModeChanneltime[s]pulses[ms]within 1sTime[s]GFSKLCH7.60.4690.03GFSKMCH7.60.8280.05

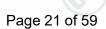
Test Graph



Page 19 of 59






Page 20 of 59

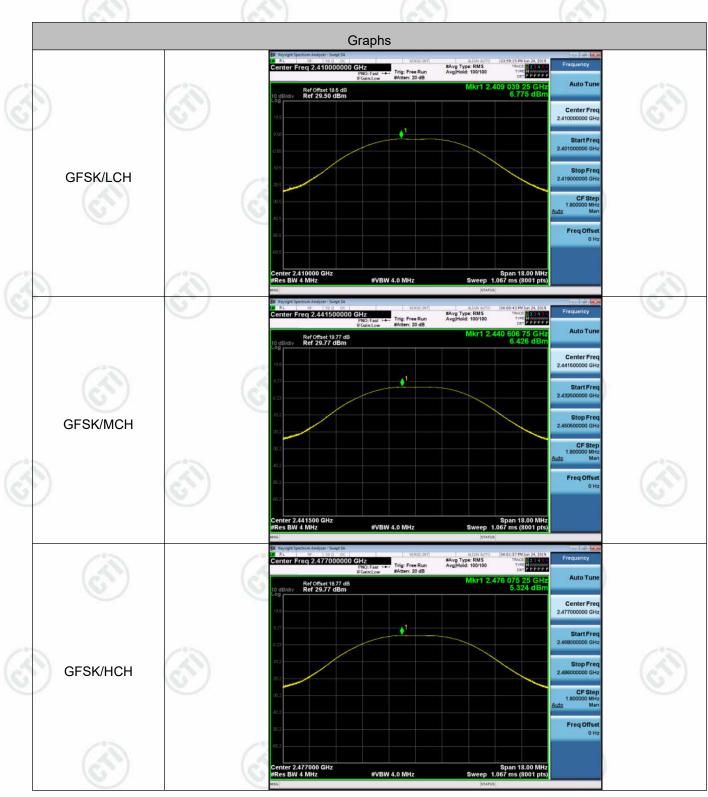
Appendix D): Hopping Channel Number

Result Table

	Mode	Channel.	Numb	er of Hopping (Channel	Verdict
S)	GFSK	Нор	G'	20	S	PASS
	Test Graph	า				
			Gra Bit Reysigte Spectrum Analyzer - Swept SA	iphs		
		(Center Freq 2.441750000 GHz Frog 2.441750000 GHz Frog Frog	Fast +++ Trig: Free Run Avg Ho n:Low #Atten: 10 dB	ALLON AUTO 0354-49 PM Apr 04, 2019 ype: RMS TRACE 0554 49 id: 100/100 Third Det 0574 97 Det 057575	Frequency Auto Tune
			10 dBldiv Ref 0ffset 19.5 dB Ref 19.50 dBm 050 MANA NA MA	Ya Ma Ma Ma Ma Ma Ma Ma	11 Y 17 W 17 W 17 W 17 W 18 W 1	Center Freq
				44 44 44 44 44 44 44 44 44 44 44 44 44	142	start Freq
a			30.5 40.5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Stop Freq
e l	GFSK/Hop		611 m5			.483500000 GHz
			Start 2.40000 GHz #Res BW 100 kHz MR MODE TRC 9CL X 1 A2 1 f (A) 78,991 0 1 2 401 902 C	#VBW 300 kHz Y FUNCTION 1 AHz (Δ) 13.247 dB GHz -24.001 dBm	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts) FUNCTION WOTH FUNCTION VALUE	
		1	3 4 5 6 6 7			Freq Offset 0 Hz
			8 9 10 11	т.		
			MBIG		STATUS	

Appendix E): Conducted Peak Output Power

Result Table

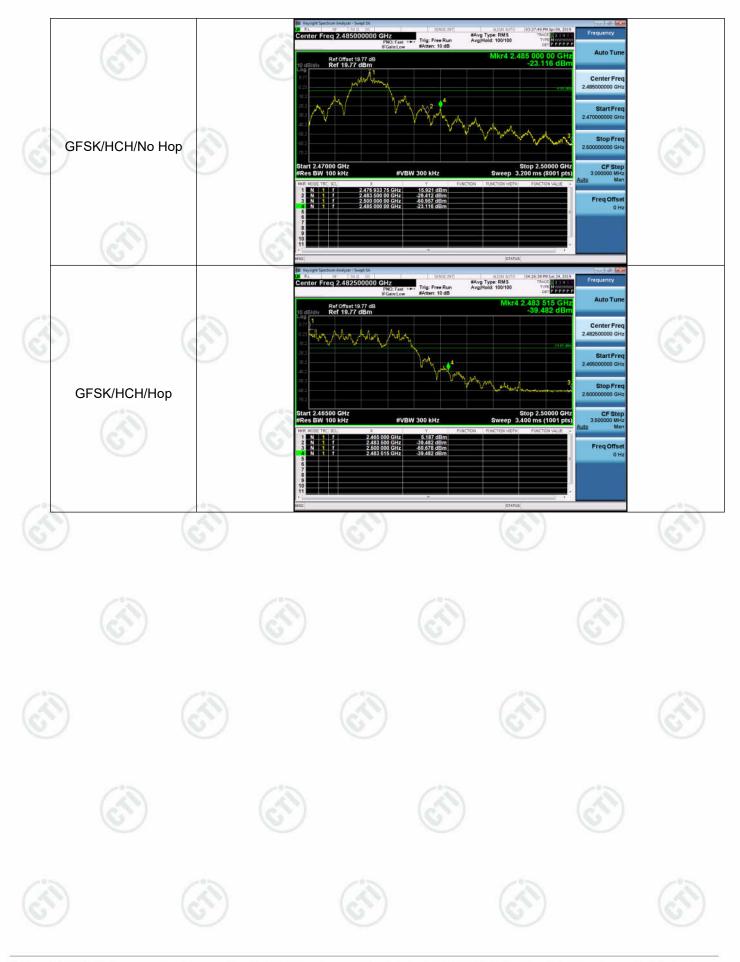

6	Mode	Channel.	Maximum Peak Outpu	t Power [dBm]	Verdict
	GFSK	LCH	6.775		PASS
	GFSK	MCH	6.426		PASS
	GFSK	нсн	5.324)	PASS

Test Graph

Appendix F): Band-edge for RF Conducted Emissions

Result Table

3	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
~	GFSK	LCH	2402	6.162	Off	-50.549	-13.84	PASS
	GFSK	LCH	2402	6.740	On	-59.028	-13.26	PASS
	OFOK	ЦСЦ	2490	4.786	Off	-38.328	-15.21	PASS
	GFSK	HCH	2480	5.187	On	-39.482	-14.81	PASS
	Test Gra	aph	$(c^{(n)})$		(\mathcal{S})		 (5) 	


Graphs #Avg Type: RMS AvgiHold: 100/10 Ref Offset 19.5 dB Ref 29.50 dBm Center Fre GFSK/LCH/No Hop -28 951 dB 47.626 dB 2 400 000 Freq Offs er Freq 2.400500000 GHz #Avg Type: RMS Avg|Hold: 100/100 st +++ Trig: Free Run NAtten: 10 dB uto Tu Ref Offset 19.5 dB Ref 19.50 dBm GFSK/LCH/Hop Freq Offse

Page 25 of 59

Appendix G): RF Conducted Spurious Emissions

Result Table

	Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
2	GFSK	LCH	6.262	<limit< td=""><td>PASS</td></limit<>	PASS
	GFSK	МСН	5.771	<limit< td=""><td>PASS</td></limit<>	PASS
	GFSK	нсн	4.552	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Appendix H): Pseudorandom Frequency Hopping Sequence

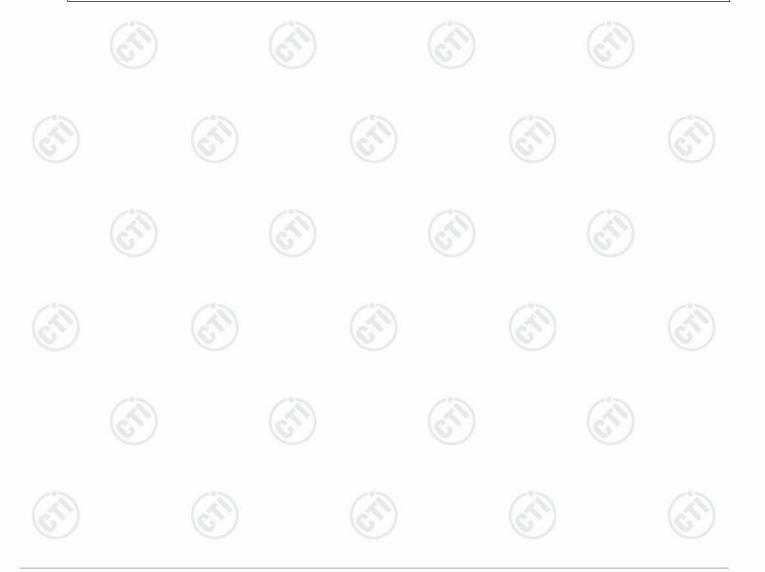
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


Hopping Mechanism

VA-IHOO6PU family use adaptive frequency hopping. There are at 20 radio non-overlap channels (above 20dBc) in the 2.4GHz ISM band. The channel transmission bandwidth is about 3.5MHz. We can allocate 20 non-overlap channels between 2410MHz to 2477MHz. Like AFH of Bluetooth, VA-IHOO6PU provide smart channel selection algorithm to avoid radio interference from other 2.4GHz devices.

The system will generate a pseudorandom ordered list base on:

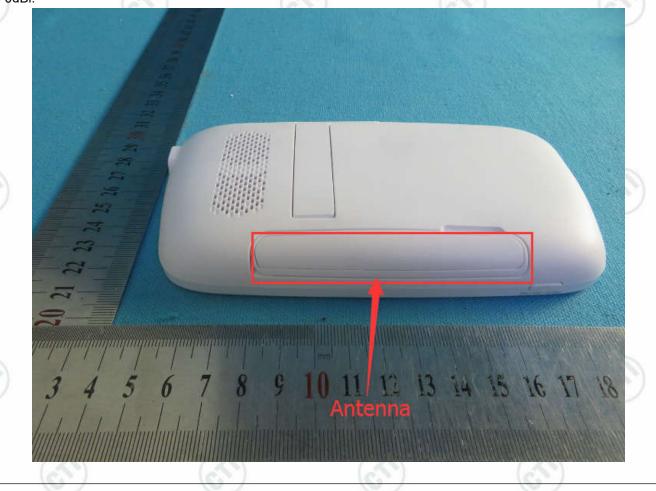
1) A 8 bit factory ID(8 bit)

2) A 6 bit set number ID(6 bit)

Page 30 of 59

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

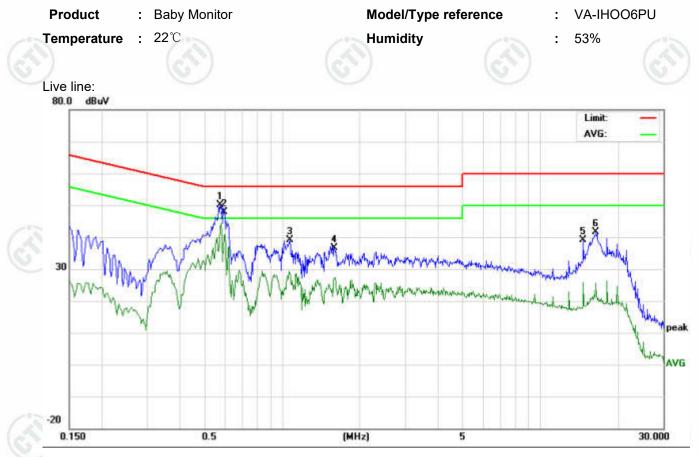
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is External antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix J): AC Power Line Conducted Emission

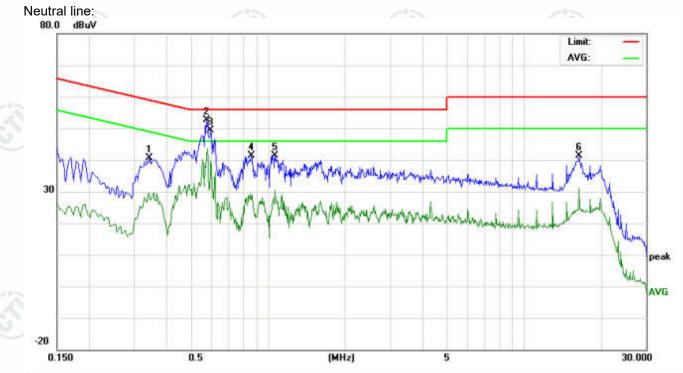
Test Procedure:	Test frequency range :150KHz	-30MHz		
	1)The mains terminal disturban	ce voltage test was cor	nducted in a shield	ed room
	 The EUT was connected to Stabilization Network) whic power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a se exceeded. 	h provides a 50Ω/50μH hits of the EUT were co ound reference plane in d. A multiple socket ou	$1 + 5\Omega$ linear imper- onnected to a sec n the same way as tlet strip was used	edance. ond LISI s the LIS d to coni
(ST)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangeme		
	4) The test was performed wit EUT shall be 0.4 m from the			
	reference plane was bonde 1 was placed 0.8 m from t ground reference plane for plane. This distance was be All other units of the EUT a LISN 2.	d to the horizontal grou he boundary of the un r LISNs mounted on stween the closest poin	ind reference plan it under test and l top of the groun ts of the LISN 1 a	e. The L bonded t d refere nd the E
(St)	5) In order to find the maximum of the interface cables must conducted measurement.			
Limit:				٦
	Frequency range (MHz)	Limit (dB	μV)	13
) (Quasi-peak	Average	(25)
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	1
(S)	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is applied		(6))	range (



Page 32 of 59

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	(dBuV)		Lir (dB	1.0		rgin JB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.5820	39.72	37.64	32.83	10.02	49.74	47.66	42.85	56.00	46.00	-8.34	-3.15	Ρ	
2	0.6020	36.62	34.26	30.94	10.04	46.66	44.30	40.98	56.00	46.00	-11.70	-5.02	Ρ	
3	1.0700	28.30	26.30	19.46	9.80	38.10	36.10	29.26	56.00	46.00	-19.90	-16.74	P	
4	1.6100	25.74	22.36	17.73	9.76	35.50	32.12	27.49	56.00	46.00	-23.88	-18.51	P	
5	14.6940	29.06	27.24	15.99	9.97	39.03	37.21	25.96	60.00	50.00	-22.79	-24.04	P	
6	16.4300	31.59	27.21	15.73	9.96	41.55	37.17	25.69	60.00	50.00	-22.83	-24.31	P	

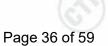
No	Freq.				Correct Measurement Factor (dBuV)			Limit (dBuV)		Margin (dB)					
	MHz	Pe	ak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.3420	29	.27	26.34	19.76	9.95	39.22	36.29	29.71	59.15	49.15	-22.86	-19.44	P	
2	0.582) 41	.34	39.07	30.61	10.02	51.36	49.09	40.63	56.00	46.00	-6.91	-5.37	P	
3	0.598	39	.37	35.67	29.56	10.05	49.42	45.72	39.61	56.00	46.00	-10.28	-6.39	P	
4	0.858	30	.42	27.38	19.68	9.81	40.23	37.19	29.49	56.00	46.00	-18.81	-16.51	P	
5	1.070	31	.47	28.31	20.62	9.80	41.27	38.11	30.42	56.00	46.00	-17.89	-15.58	Ρ	
6	16.418	31	.52	28.55	21.13	9.96	41.48	38.51	31.09	60.00	50.00	-21.49	-18.91	Ρ	

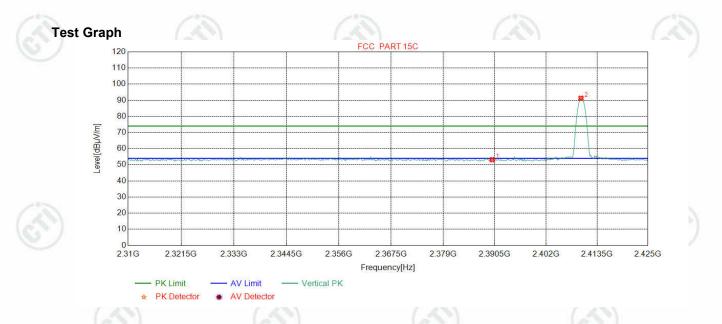
Notes:

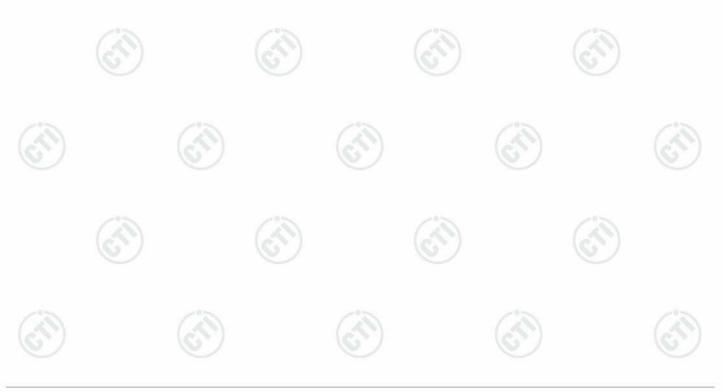
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

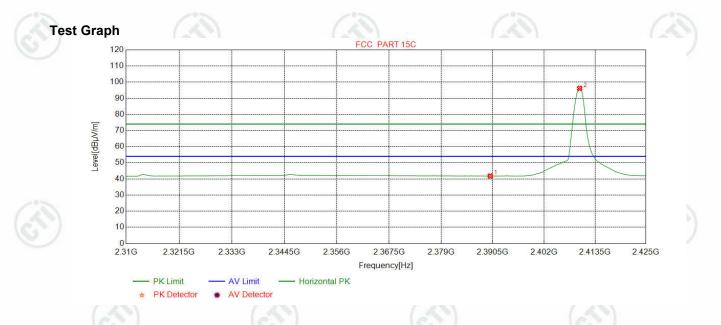
Appendix K): Restricted bands around fundamental frequency (Radiated)

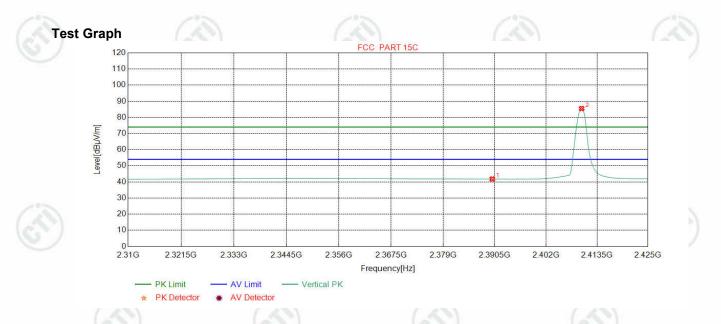
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak 120kHz		300kHz	Quasi-peak		
~		Peak	1MHz	3MHz	Peak		
) 	Above 1GHz	Peak	Peak 1MHz 10Hz		Average	Average	
Test Procedure:	Below 1GHz test procedu	ire as below:		_			
	 a. The EUT was placed of at a 3 meter semi-anex determine the position b. The EUT was set 3 meters was mounted on the to was mounted on the to c. The antenna height is determine the maximu polarizations of the anten d. For each suspected er the antenna was tuned table was turned from e. The test-receiver systers Bandwidth with Maxim 	choic camber. T of the highest ra- eters away from op of a variable-l varied from one m value of the fi tenna are set to nission, the EUT I to heights from 0 degrees to 36 em was set to Pe um Hold Mode.	he table wa adiation. the interfer neight anter meter to for eld strengtl make the r 1 was arran 1 meter to 0 degrees t eak Detect	ence-receinna tower. our meters n. Both hor neasureme ged to its 4 meters to find the	360 degrees iving antenna above the gra rizontal and v ent. worst case ar and the rotata maximum rea	to a, wh ounc vertic nd th able	
(A)	f. Place a marker at the offrequency to show con bands. Save the spect for lowest and highest	npliance. Also m rum analyzer plo	easure any	emission	s in the restri		
	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ber and change he distance is 1 lowest channel ments are perfo d found the X as	easure any ot. Repeat f e, change fi e form table meter and , the Highe rmed in X, kis position	v emission for each po rom Semi- 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	s in the restric ower and mod Anechoic Ch to 1.5 5 meter). positioning for it is worse cas	dulat namb r	
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m rum analyzer plo channel ure as below: we is the test site he distance is 1 lowest channel ments are perfo d found the X as ires until all freq	easure any ot. Repeat f e, change fi e form table meter and , the Highe rmed in X, kis position uencies me	v emission for each po 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa	s in the restrictower and mode Anechoic Charto 1.5 5 meter). Dositioning for it is worse cas as complete.	dulat namb r	
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: we is the test site he distance is 1 lowest channel ments are perfo d found the X ax irres until all freq Limit (dBµV	easure any ot. Repeat f e, change fi e form table meter and , the Highe rmed in X, kis position uencies me /m @3m)	v emission for each po com Semi- 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei	s in the restrictower and mode Anechoic Charto 1.5 5 meter). Dositioning for it is worse case as complete.	dulat namb r	
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also m rum analyzer plo channel ure as below: we is the test site ber and change he distance is 1 lowest channel ments are perfo d found the X ax ires until all freq Limit (dBµV 40.	e, change fi e, change fi e form table meter and , the Highe rmed in X, kis position uencies me /m @3m)	v emission for each po rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-po	Anechoic Ch Anechoic Ch to 1.5 meter). cositioning for it is worse cas as complete. mark eak Value	dulat namb r	
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procede g. Different between abov to fully Anechoic Charr meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m rum analyzer plo channel ure as below: ve is the test site he distance is 1 lowest channel ments are perfo d found the X az ures until all freq Limit (dBµV 40.0	easure any bt. Repeat f e, change fi e form table meter and , the Highe rmed in X, kis position uencies me /m @3m) 0	v emission for each po com Semi- 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restrictower and mode Anechoic Charto 1.5 5 meter). Doositioning for it is worse cas as complete. mark eak Value eak Value	dulat namb r	
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procede g. Different between abov to fully Anechoic Cham meter(Above 18GHz th h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m rum analyzer plo channel ure as below: we is the test site he distance is 1 lowest channel ments are perfo d found the X ax ires until all freq Limit (dBµV 40. 43.	easure any ot. Repeat f e, change fi e form table meter and , the Highe rmed in X, kis position uencies me /m @3m) 0 5 0	v emission for each po rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restriction of the section	dulat namb r	
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham meter(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site he distance is 1 lowest channel ments are perfo d found the X az ures until all freq Limit (dBµV 40.0	easure any bt. Repeat f e, change fi e form table meter and , the Highe rmed in X, kis position uencies me /m @3m) 0 5 0	v emission for each po com Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restrictower and mode Anechoic Charto 1.5 5 meter). Doositioning for it is worse cas as complete. mark eak Value eak Value	dulat namb r	

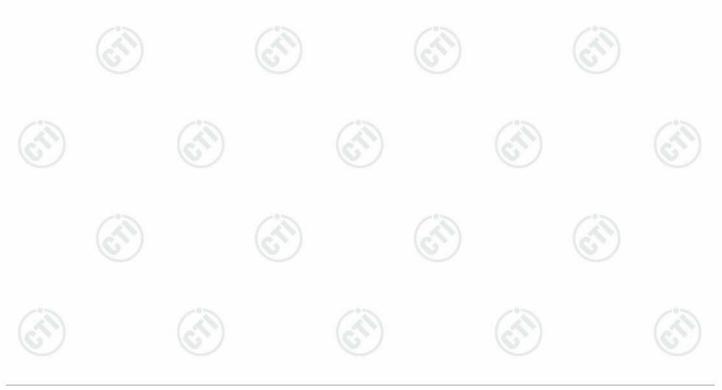


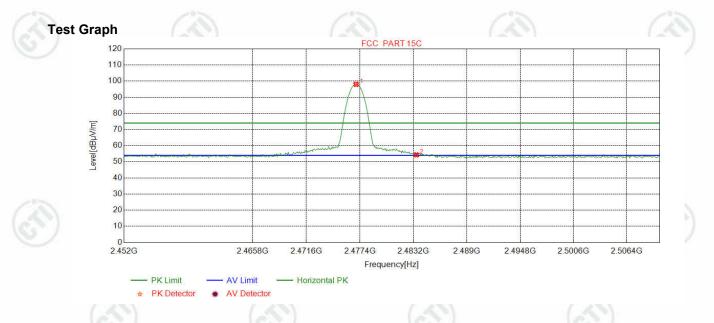




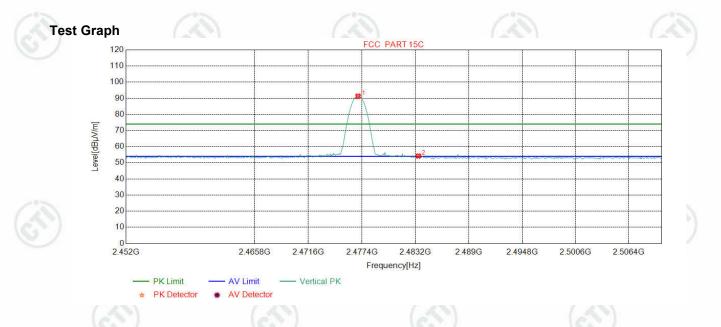

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.98	53.16	74.00	20.84	Pass	Vertical
2	2409.8874	32.27	13.35	-42.43	88.06	91.25	74.00	-17.25	Pass	Vertical
	()			•				/		

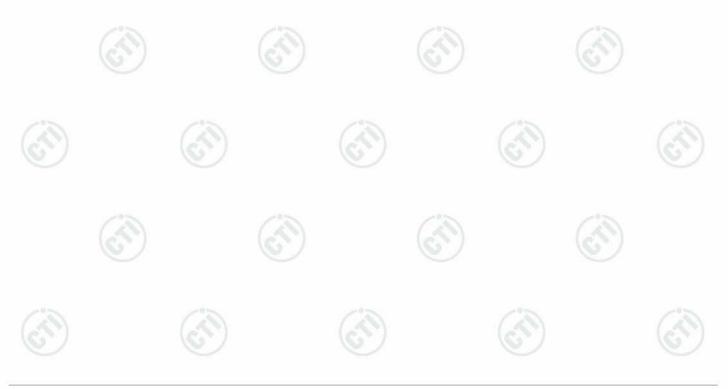

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Horizontal
2	2410.0313	32.27	13.35	-42.43	92.95	96.14	54.00	-42.14	Pass	Horizontal
			1					/		

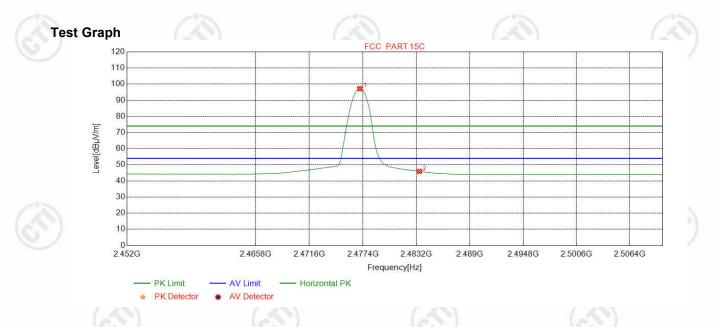




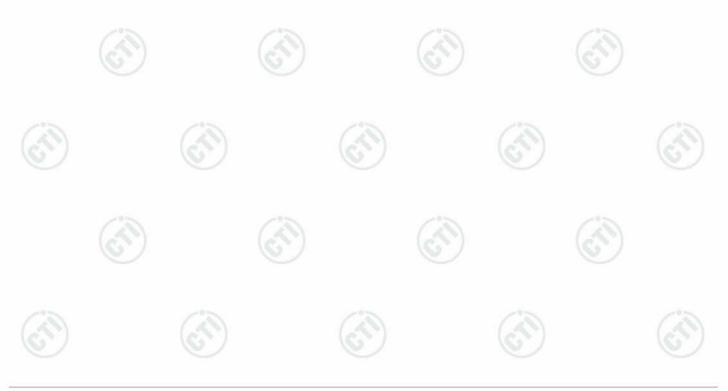
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.65	41.83	54.00	12.17	Pass	Vertical
2	2410.0313	32.27	13.35	-42.43	82.32	85.51	54.00	-31.51	Pass	Vertical
				•						

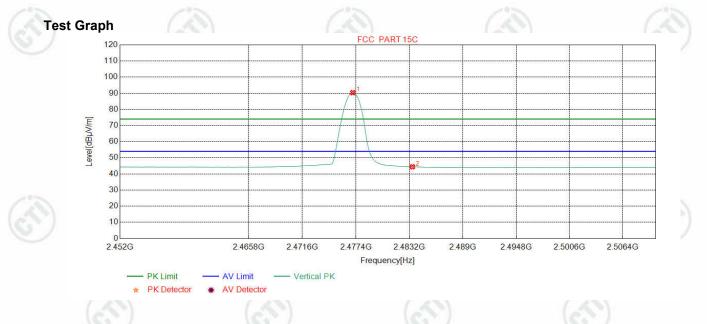

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2476.9712	32.37	13.41	-42.41	94.64	98.01	74.00	-24.01	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	50.93	54.29	74.00	19.71	Pass	Horizontal
		0	1					/		



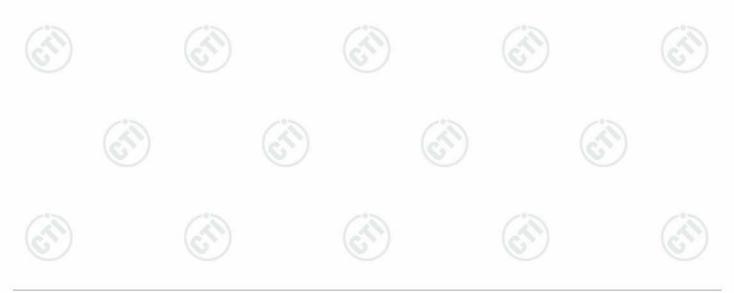


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2476.9712	32.37	13.41	-42.41	87.90	91.27	74.00	-17.27	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.83	54.19	74.00	19.81	Pass	Vertical
			1	•						





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.0438	32.37	13.41	-42.41	93.83	97.20	54.00	-43.20	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	42.55	45.91	54.00	8.09	Pass	Horizontal
		0	1							



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.0438	32.37	13.41	-42.41	86.99	90.36	54.00	-36.36	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	41.06	44.42	54.00	9.58	Pass	Vertical
N	lote:		1					/		

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix L): Radiated Spurious Emissions

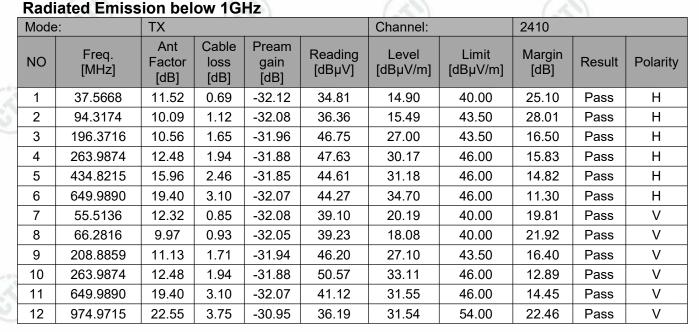
Receiver Setup:	(GT)		51		67	
	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
·)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(1)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
0		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
	<u> </u>	1	1	1	1	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

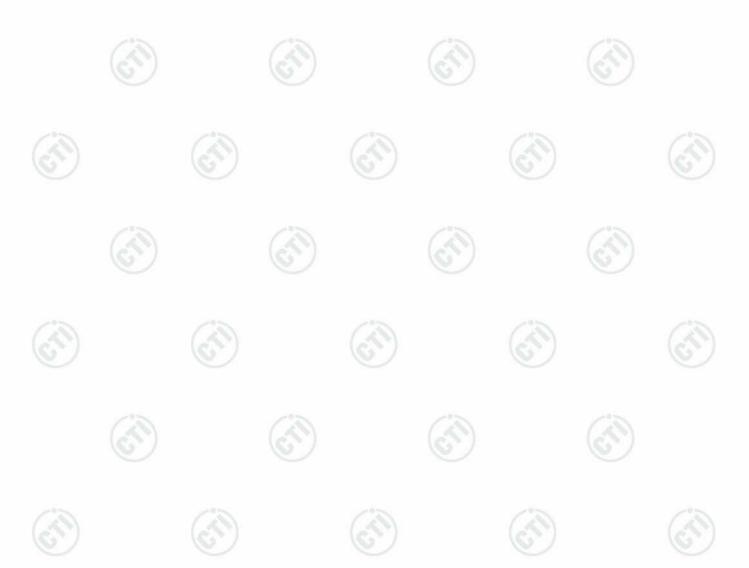
0.009MHz-0.490MHz	2400/F(kHz)			
	= (-	2.0.5	300
0.490MHz-1.705MHz	24000/F(kHz)	- 1	20-	30
1.705MHz-30MHz	30	- \	<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3
	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz ote: 15.35(b), Unless	30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 ote: 15.35(b), Unless otherwise specified	30MHz-88MHz 100 40.0 88MHz-216MHz 150 43.5 216MHz-960MHz 200 46.0 960MHz-1GHz 500 54.0 Above 1GHz 500 54.0 ote: 15.35(b), Unless otherwise specified, the limit or 150	30MHz-88MHz 100 40.0 Quasi-peak 88MHz-216MHz 150 43.5 Quasi-peak 216MHz-960MHz 200 46.0 Quasi-peak 960MHz-1GHz 500 54.0 Quasi-peak

j. Repeat above procedures until all frequencies measured was complete.

Radiated Spurious Emissions test Data:

	Mode	:	ТХ				Channel:		2441.5		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	120.0250	9.20	1.30	-32.07	41.97	20.40	43.50	23.10	Pass	Н
<u>.</u>	2	199.9610	10.90	1.67	-31.94	47.74	28.37	43.50	15.13	Pass	Н
4	3	263.9874	12.48	1.94	-31.88	48.78	31.32	46.00	14.68	Pass	Н
2	4	434.7245	15.96	2.46	-31.85	44.24	30.81	46.00	15.19	Pass	Н
	5	649.9890	19.40	3.10	-32.07	43.95	34.38	46.00	11.62	Pass	Н
	6	960.0320	22.46	3.71	-31.09	38.11	33.19	54.00	20.81	Pass	Н
	7	54.5435	12.47	0.84	-32.08	39.28	20.51	40.00	19.49	Pass	V
	8	67.5428	9.64	0.94	-32.05	40.22	18.75	40.00	21.25	Pass	V
	9	208.8859	11.13	1.71	-31.94	46.14	27.04	43.50	16.46	Pass	V
	10	263.9874	12.48	1.94	-31.88	50.44	32.98	46.00	13.02	Pass	V
	11	649.9890	19.40	3.10	-32.07	42.04	32.47	46.00	13.53	Pass	V
3	12	974.9715	22.55	3.75	-30.95	35.31	30.66	54.00	23.34	Pass	V
	100		1			1.20		1200			100

Page 44 of 59



Page 45 of 59

	12		1	0		107		200	-	
Mode):	TX				Channel:		2477		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	37.4697	11.49	0.68	-32.11	35.64	15.70	40.00	24.30	Pass	Н
2	201.1251	10.93	1.68	-31.95	46.82	27.48	43.50	16.02	Pass	Н
3	263.9874	12.48	1.94	-31.88	48.82	31.36	46.00	14.64	Pass	Н
4	434.8215	15.96	2.46	-31.85	45.17	31.74	46.00	14.26	Pass	Н
5	649.9890	19.40	3.10	-32.07	44.96	35.39	46.00	10.61	Pass	Н
6	960.0320	22.46	3.71	-31.09	37.81	32.89	54.00	21.11	Pass	Н
7	52.6033	12.78	0.82	-32.09	39.26	20.77	40.00	19.23	Pass	V
8	67.4457	9.66	0.93	-32.04	40.48	19.03	40.00	20.97	Pass	V
9	169.9850	8.45	1.53	-31.96	41.30	19.32	43.50	24.18	Pass	V
10	208.8859	11.13	1.71	-31.94	46.26	27.16	43.50	16.34	Pass	V
11	263.9874	12.48	1.94	-31.88	50.63	33.17	46.00	12.83	Pass	V
12	649.9890	19.40	3.10	-32.07	41.30	31.73	46.00	14.27	Pass	V
1										

Transmitter Emission above 1GHz

Mode	e:		TX				Channel:		2410		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1066.4066	27.97	2.53	-42.68	57.43	45.25	74.00	28.75	Pass	Н	PK
2	2927.1927	33.08	4.39	-42.15	51.66	46.98	74.00	27.02	Pass	Н	PK
3	4818.1212	34.50	4.59	-40.65	49.24	47.68	74.00	26.32	Pass	Н	PK
4	6215.2143	35.84	5.26	-41.13	46.59	46.56	74.00	27.44	Pass	Н	PK
5	7230.0000	36.33	5.80	-41.00	45.06	46.19	74.00	27.81	Pass	Н	PK
6	9640.0000	37.66	6.70	-40.74	43.73	47.35	74.00	26.65	Pass	Н	PK
7	1675.2675	29.56	3.17	-42.72	52.09	42.10	74.00	31.90	Pass	V	PK
8	2923.7924	33.08	4.39	-42.16	51.73	47.04	74.00	26.96	Pass	V	PK
9	4141.0761	34.00	4.48	-40.82	47.44	45.10	74.00	28.90	Pass	V	PK
10	5516.1677	35.03	5.16	-40.66	47.70	47.23	74.00	26.77	Pass	V	PK
11	7230.0000	36.33	5.80	-41.00	44.63	45.76	74.00	28.24	Pass	V	PK
12	9640.0000	37.66	6.70	-40.74	44.16	47.78	74.00	26.22	Pass	V	PK
	6	1			No.	1				6	1

Mode	e:		ТΧ				Channel:		2441.5		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1066.2066	27.97	2.53	-42.68	56.95	44.77	74.00	29.23	Pass	Н	PK
2	2952.3952	33.12	4.41	-42.14	50.60	45.99	74.00	28.01	Pass	Н	PK
3	4950.1300	34.50	4.82	-40.54	47.02	45.80	74.00	28.20	Pass	Н	PK
4	6305.2203	35.86	5.46	-41.15	46.64	46.81	74.00	27.19	Pass	Н	PK
5	7324.5000	36.43	5.85	-40.92	44.55	45.91	74.00	28.09	Pass	Н	PK
6	9766.0000	37.71	6.70	-40.62	43.04	46.83	74.00	27.17	Pass	Н	PK
7	1218.6219	28.12	2.67	-42.87	52.34	40.26	74.00	31.90	Pass	V	PK
8	1748.8749	30.04	3.23	-42.68	54.14	44.73	74.00	26.96	Pass	V	PK
9	3025.0017	33.21	4.88	-42.11	50.87	46.85	74.00	28.90	Pass	V	PK
10	5474.1649	34.97	5.04	-40.63	46.87	46.25	74.00	26.77	Pass	V	PK
11	7324.5000	36.43	5.85	-40.92	44.43	45.79	74.00	28.24	Pass	V	PK
12	9766.0000	37.71	6.70	-40.62	43.82	47.61	74.00	26.22	Pass	V	PK
1.4		6	20		1.5	2	6	A. 3.		1.5	1

Page 47 of 59

12						1000			100		
Mode:			ТХ			Channel:		2477			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1065.8066	27.97	2.53	-42.68	56.89	44.71	74.00	29.29	Pass	Н	PK
2	1522.8523	28.55	3.01	-42.72	54.65	43.49	74.00	30.51	Pass	Н	PK
3	2930.1930	33.09	4.39	-42.16	51.06	46.38	74.00	27.62	Pass	Н	PK
4	5366.1577	34.87	4.82	-40.60	47.61	46.70	74.00	27.30	Pass	Н	PK
5	7431.0000	36.53	5.85	-40.83	44.23	45.78	74.00	28.22	Pass	Н	PK
6	9908.0000	37.76	6.77	-40.48	44.19	48.24	74.00	25.76	Pass	Н	PK
7	1522.0522	28.55	3.01	-42.73	52.60	41.43	74.00	32.57	Pass	V	PK
8	2344.3344	32.18	3.85	-42.45	51.55	45.13	74.00	28.87	Pass	V	PK
9	5053.1369	34.55	4.87	-40.51	47.00	45.91	74.00	28.09	Pass	V	PK
10	6328.2219	35.87	5.46	-41.16	46.95	47.12	74.00	26.88	Pass	V	PK
11	7431.0000	36.53	5.85	-40.83	44.73	46.28	74.00	27.72	Pass	V	PK
12	9908.0000	37.76	6.77	-40.48	43.72	47.77	74.00	26.23	Pass	V	PK
	/										

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

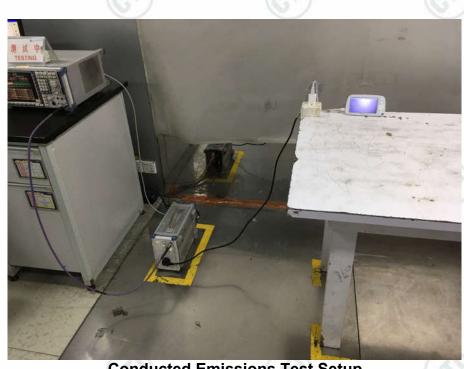
Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: VA-IHOO6PU

Radiated spurious emission Test Setup-1(Below 30MHz)


Radiated spurious emission Test Setup-2(Below 1GHz)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: VA-IHOO6PU

View of Product-1

View of Product-2



