

Report No. : EED32L00047501 Page 1 of 57

TEST REPORT

Product : Baby Monitor

Trade mark : VAVA

Model/Type reference : VA-IH006BU

Serial Number : N/A

Report Number : EED32L00047501 **FCC ID** : 2AFDGVA-IH006A

Date of Issue : Jul. 08, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

SUNVALLEYTEK INTERNATIONAL. INC 46724 lakeview Blvd, Fremont, CA 94538

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Report Sea

Kevin Lan

Reviewed by:

Date:

Mare Xin

Jay Zheng

Ware Xin

Jul. 08, 2019

Kevin Lan

Kevin Yang

Check No: 3336847766

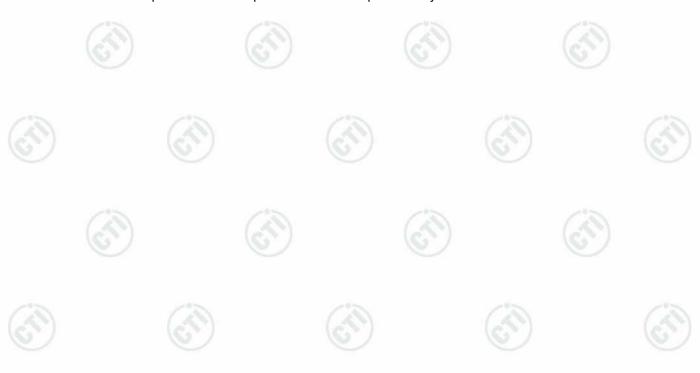
(4)

Report No. : EED32L00047501

2 Version

Version No.	Date	Description
00	Jul. 08, 2019	Original
	(S)	

Report No. : EED32L00047501 Page 3 of 57


3 Test Summary

rest Summary		Z**		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Pomork:	(63.)	(5.5	10.0	

Remark:

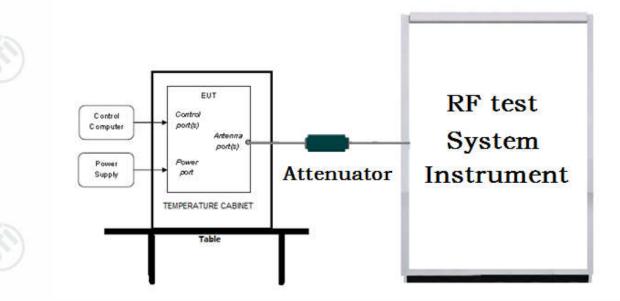
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Report No. : EED32L00047501 Page 4 of 57

4 Content

I COVER PAGE 2 VERSION				
3 TEST SUMMARY. 4 CONTENT. 5 TEST REQUIREMENT. 5.1 TEST SETUP. 5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time. Appendix D: Hopping Channel Number. Appendix D: Hopping Channel Number. Appendix D: Band-edge for RF Conducted Emissions. Appendix B: Conducted Peak Output Power. Appendix B: Pseudorandom Frequency Hopping Sequence. Appendix B: Pseudorandom Frequency Hopping Sequence. Appendix B: Restricted bands around fundamental frequency (Radiated). Appendix J: AC Power Line Conducted Emission. Appendix J: Restricted bands around fundamental frequency (Radiated). Appendix D: Restricted bands around fundamental frequency (Radiated).	1 COVER PAGE			 1
3 TEST SUMMARY. 4 CONTENT. 5 TEST REQUIREMENT. 5.1 TEST SETUP. 5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time. Appendix D: Hopping Channel Number. Appendix D: Hopping Channel Number. Appendix D: Band-edge for RF Conducted Emissions. Appendix B: Conducted Peak Output Power. Appendix B: Pseudorandom Frequency Hopping Sequence. Appendix B: Pseudorandom Frequency Hopping Sequence. Appendix B: Restricted bands around fundamental frequency (Radiated). Appendix J: AC Power Line Conducted Emission. Appendix J: Restricted bands around fundamental frequency (Radiated). Appendix D: Restricted bands around fundamental frequency (Radiated).	2 VERSION			 2
A CONTENT	3 TEST SUMMARY			3
5.1 TEST SETUP. 5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6.1 CLIENT INFORMATION. 6.2 GENERAL INFORMATION. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time. Appendix C): Dwell Time. Appendix D): Hopping Channel Number. Appendix C): Conducted Peak Output Power. Appendix F): Band-edge for RF Conducted Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix I): Antenna Requirement. Appendix J): Antenna Requirement. Appendix J): Ac Power Line Conducted Emission. Appendix J): Restricted bands around fundamental frequency (Radiated).				
5.1 TEST SETUP. 5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6.3 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARDS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix B): Carrier Frequency Separation. Appendix B): Conducted Peak Output Power. Appendix B): Conducted Peak Output Power. Appendix G): RF Conducted Spurious Emissions. Appendix G): RF Conducted Spurious Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix J): AC Power Line Conducted Emission. Appendix J): AC Power Line Conducted Emission. Appendix K): Restricted bands around fundamental frequency (Radiated). Appendix L): Radiated Spurious Emissions.				
5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix D): Hopping Channel Number. Appendix D): Hopping Channel Number. Appendix E): Conducted Peak Output Power. Appendix G): RF Conducted Spurious Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix J): Antenna Requirement. Appendix J): Antenna Requirement. Appendix J): AC Power Line Conducted Emission. Appendix J): Radiated Spurious Emissions. PHOTOGRAPHS OF TEST SETUP.				
5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION				
5.1.3 For Conducted Emissions test setup. 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION. 6.3 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix D): Hopping Channel Number. Appendix D): Hopping Channel Number. Appendix E): Conducted Peak Output Power. Appendix B): Band-edge for RF Conducted Emissions. Appendix G): RF Conducted Spurious Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix J): Antenna Requirement. Appendix J): AC Power Line Conducted Emission. Appendix K): Restricted bands around fundamental frequency (Radiated). Appendix L): Radiated Spurious Emissions.		•		
5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time Appendix D): Hopping Channel Number. Appendix F): Band-edge for RF Conducted Emissions. Appendix F): Band-edge for RF Conducted Emissions. Appendix G): RF Conducted Spurious Emissions. Appendix H): Pseudorandom Frequency Hopping Sequence. Appendix J): Antenna Requirement. Appendix J): AC Power Line Conducted Emission. Appendix K): Restricted bands around fundamental frequency (Radiated). Appendix L): Radiated Spurious Emissions.				
5.3 TEST CONDITION 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix C): Dwell Time Appendix E): Conducted Peak Output Power Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix I): Antenna Requirement Appendix I): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions.				
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix F): Band-edge for RF Conducted Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix H): Pseudorandom Frequency Hopping Sequence Appendix J): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions PHOTOGRAPHS OF TEST SETUP.				
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix F): Band-edge for RF Conducted Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix H): Pseudorandom Frequency Hopping Sequence Appendix J): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions PHOTOGRAPHS OF TEST SETUP.	6 GENERAL INFORMAT	TON		7
6.2 GENERAL DESCRIPTION OF EUT				
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS				
6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix C): Dwell Time Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix J): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions.				
6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions PHOTOGRAPHS OF TEST SETUP				
6.6 DEVIATION FROM STANDARDS				
6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST				
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)				
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST				
Appendix A): 20dB Occupied Bandwidth				
Appendix A): 20dB Occupied Bandwidth			A/862 /	
Appendix A): 20dB Occupied Bandwidth				
Appendix B): Carrier Frequency Separation				
Appendix C): Dwell Time	Appendix A): 20dB	Occupied Bandwidth		 14
Appendix D): Hopping Channel Number				
Appendix E): Conducted Peak Output Power				
Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions PHOTOGRAPHS OF TEST SETUP				
Appendix G): RF Conducted Spurious Emissions				
Appendix H): Pseudorandom Frequency Hopping Sequence				
Appendix I): Antenna Requirement				
Appendix J): AC Power Line Conducted Emission			•	
Appendix K): Restricted bands around fundamental frequency (Radiated)				 30
Appendix L): Radiated Spurious Emissions PHOTOGRAPHS OF TEST SETUP				
PHOTOGRAPHS OF TEST SETUP				
PHOTOGRAPHS OF FUT CONSTRUCTIONAL DETAILS.				
	PHOTOGRAPHS OF EU	T CONSTRUCTIONAL DE	TAILS	50



Report No. : EED32L00047501 Page 5 of 57

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

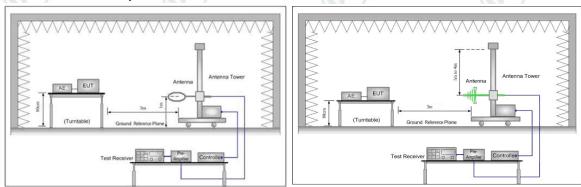
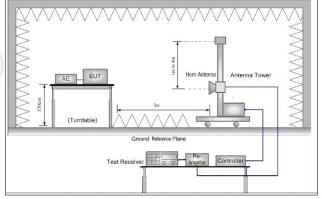
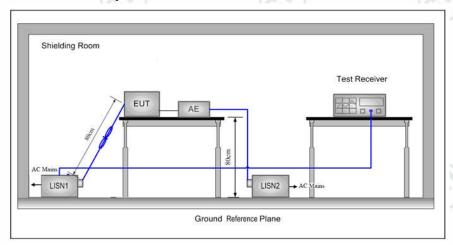


Figure 1. Below 30MHz

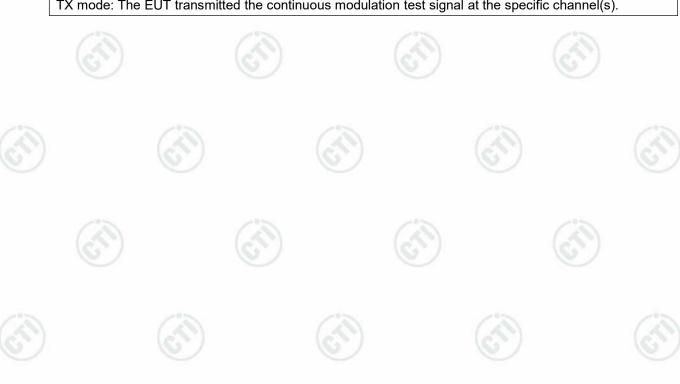
Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

Report No. : EED32L00047501 Page 6 of 57

5.1.3 For Conducted Emissions test setup Conducted Emissions setup



5.2 Test Environment

Operating Environment:	(6)	(0)
Temperature:	26°C	
Humidity:	57% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test Mode	Tx	RF Channel				
rest wode	IX.	Low(L)	Middle(M)	High(H)		
GFSK	0440041- 0477 041-	Channel 1	Channel 10	Channel 20		
GFSK	2410MHz ~2477 MHz	2410MHz	2441.5MHz	2477MHz		
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s).						

Report No.: EED32L00047501 Page 7 of 57

6 General Information

6.1 Client Information

Applicant:	SUNVALLEYTEK INTERNATIONAL. INC
Address of Applicant:	46724 lakeview Blvd, Fremont, CA 94538
Manufacturer:	Shenzhen NearbyExpress Technology Development Co., Ltd.
Address of Manufacturer:	333 Bulong Road, jialianda Industrial Park, Building 1, Bantain, Longgang District, Shenzhen, China
Factory:	Foshan Shunde Alford Electronics Co., Ltd
Address of Factory:	Xinjiao Industrial Park, Daliang, Shunde Foshan City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	Baby Monitor			
Model No.(EUT):	VA-IH006BU			
Trade mark:	VAVA			
EUT Supports Radios application:	2410MHz - 24	77MHz		(64)
Power Supply:	AC adapter	Model: VSD0500120VU Input:100-240V~50/60Hz 0.3A Output: 5V == 1.2A		
Sample Received Date:	Mar. 11, 2019			
Sample tested Date:	Mar. 11, 2019	to Jul. 03, 2019	(87)	

6.3 Product Specification subjective to this standard

	<u>-</u>							
Operation	Frequency:	2410MH	2410MHz - 2477MHz					
Modulatio	n Technique:	Frequen	cy Hopping Spi	ead Spectru	ım(FHSS)		(3)	
Modulatio	n Type:	GFSK	(6))	(6)		(6)	
Number o	of Channel:	20						
Hopping (Channel Type:	Adaptive	Frequency Ho	pping syster	ns			
Test Pow	er Grade:	N/A		25		75		
Test Softv	ware of EUT:	N/A	4)	(25)	9)	(3))	
Antenna 7	Гуре:	External	External antenna					
Antenna (Gain:	0dBi	0dBi					
Test Volta	age:	AC 120\	/, 60Hz		-0-		-0.5	
Operation	Frequency ea	ch of channe	el (A)		(4)		(41)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2410MHz	6	2427.5MHz	11	2445MHz	16	2462.5MHz	
2	2413.5MHz	7	2431MHz	12	2448.5MHz	17	2466MHz	
3	2417MHz	8	2434.5MHz	13	2452MHz	18	2469.5MHz	
4	2420.5MHz	9	2438MHz	14	2455.5MHz	19	2473MHz	
5	2424MHz	10	2441.5MHz	15	2459MHz	20	2477MHz	

6.4 Description of Support Units

The EUT has been tested independently.

Report No. : EED32L00047501 Page 8 of 57

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

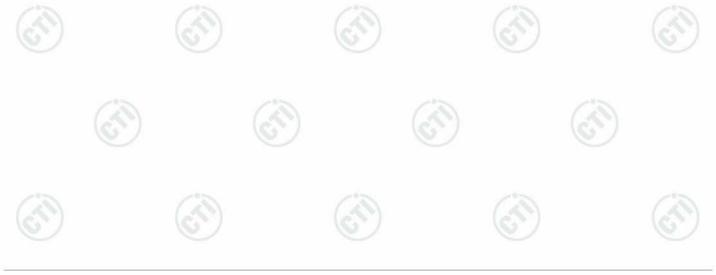
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

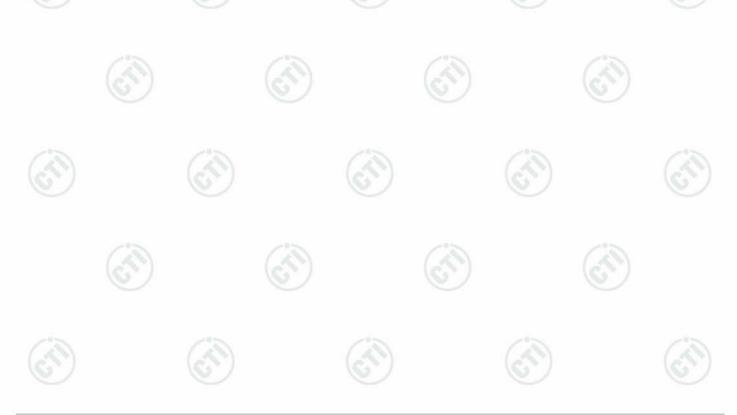

None.

6.8 Other Information Requested by the Customer

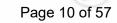
None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

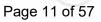
No.	Item	Measurement Uncertainty
•_1	Radio Frequency	7.9 x 10 ⁻⁸
	DE navion anniversed	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadiated Country and allow to the	4.3dB (30MHz-1GHz)
3 Radiated Spurious emission tes	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction online	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Report No. : EED32L00047501 Page 9 of 57


7 Eq<u>uipment List</u>

	RF test system								
Equipment	Manufacturer	er Model No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020				
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020				
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020				
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020				
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020				
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020				
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020				
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020				
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020				
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020				
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020				


Report No.: EED32L00047501

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020	
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020	
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020	
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020	
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020	
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020	
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020	
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020	
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020	

Report No. : EED32L00047501

	3M S	emi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-23-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020
LISN	schwarzbeck	NNBM8125	81251548	05-08-2019	05-06-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020

Report No. : EED32L00047501

Page 12 of 57

	3M full-anechoic Chamber								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd- yyyy)				
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020				
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-25-2020				
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-25-2020				
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-25-2020				
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021				
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021				
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021				
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021				
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021				
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020				
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021				
Horn Antenna	ETS- LINDGREN	3117	7 00057407 07-		07-08-2021				
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-20-2019				
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020				
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-06-2020				
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019				
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020				
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-28-2020				
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-2021				
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021				
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020				
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020				
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020				
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020				
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020				
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020				
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020				
Cable line Times		SFT205-NMSM-	394815-0001	01-09-2019	01-08-2020				

Report No. : EED32L00047501 Page 13 of 57

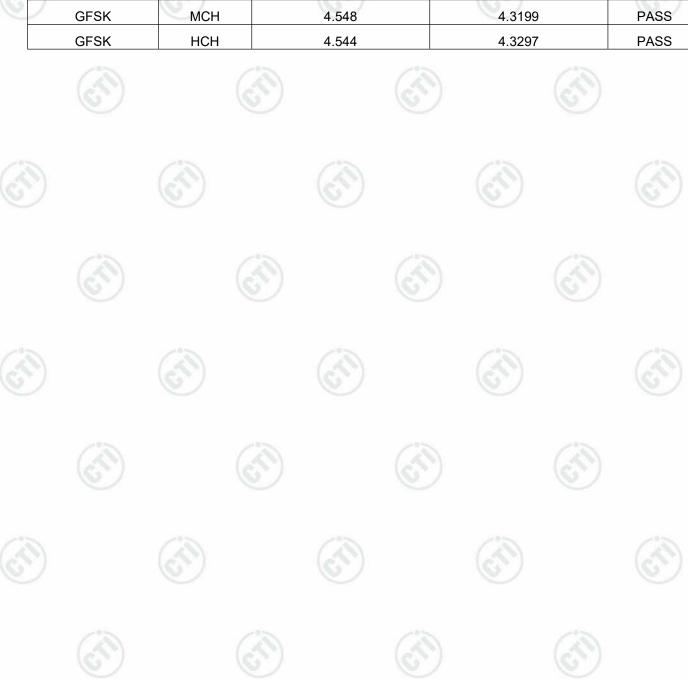
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

ot ivesuits List.					
Test requirement	Test method	Test item	Verdict	Note	
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)	
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)	
Part15C Section 15.247 (b)(1)	ANSI 63 10		PASS	Appendix E)	
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F	
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)	
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)	
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)	
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)	
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)	



Report No. : EED32L00047501 Page 14 of 57

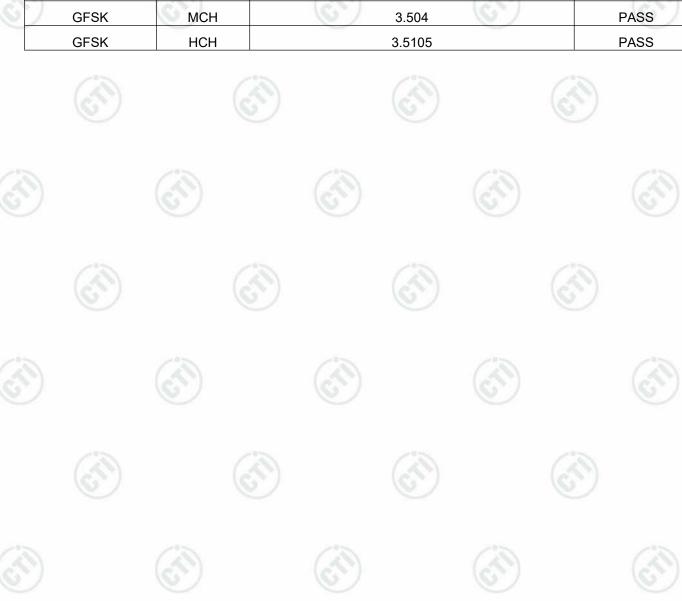
Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	4.566	4.2751	PASS
GFSK	MCH	4.548	4.3199	PASS
GFSK	НСН	4.544	4.3297	PASS

Report No. : EED32L00047501 Page 15 of 57

Test Graph



Report No. : EED32L00047501 Page 16 of 57

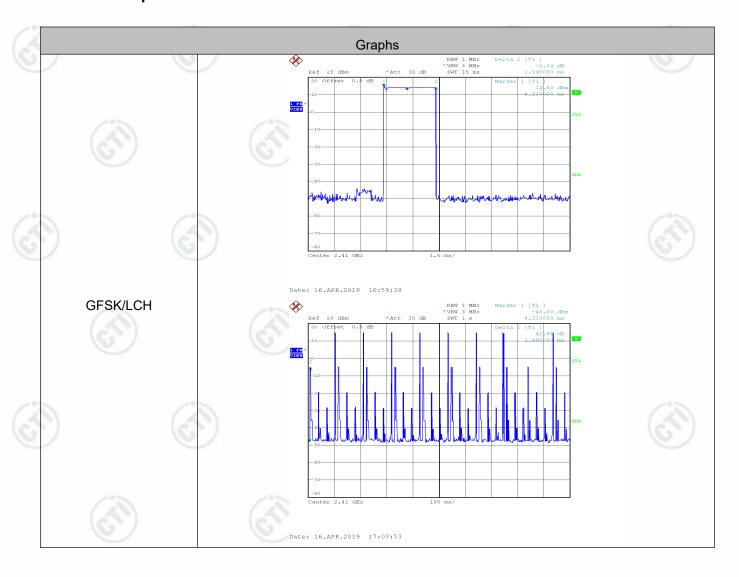
Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	3.501	PASS
GFSK	MCH	3.504	PASS
GFSK	НСН	3.5105	PASS

Report No. : EED32L00047501 Page 17 of 57

Test Graph

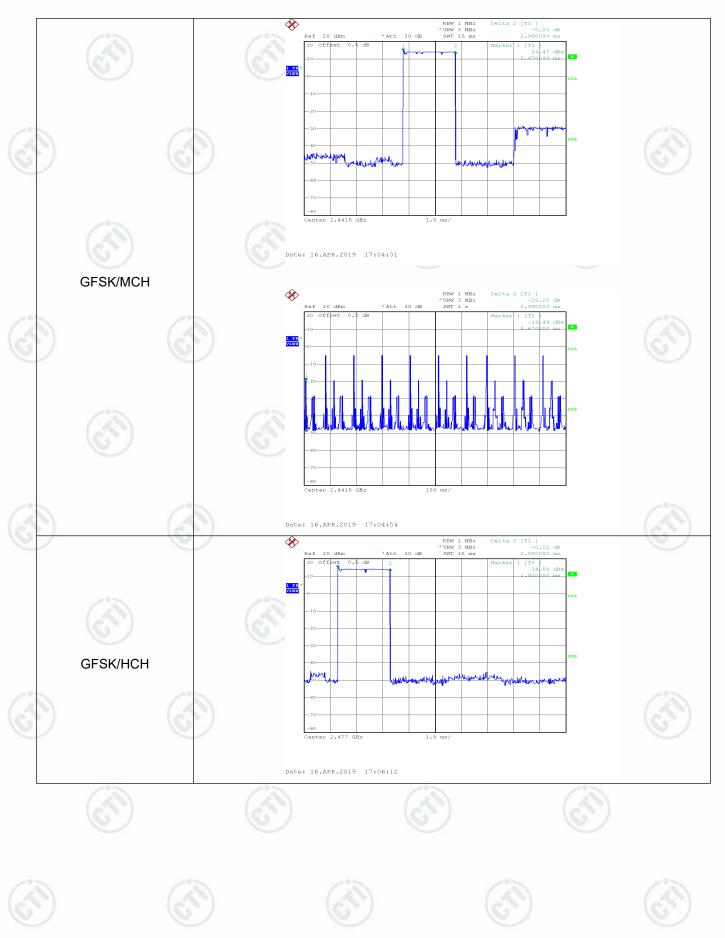

Report No. : EED32L00047501 Page 18 of 57

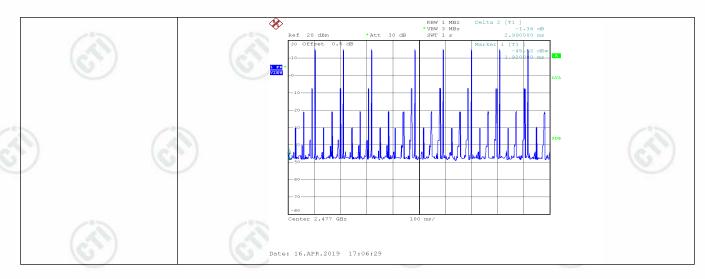
Appendix C): Dwell Time

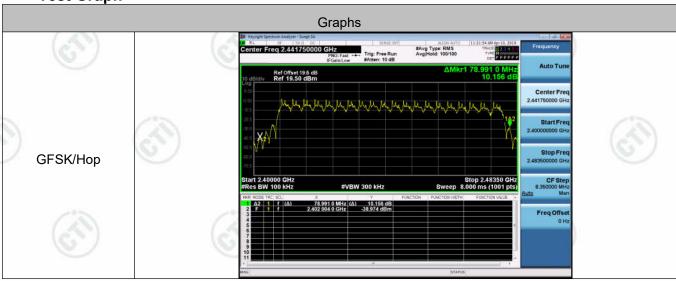
Result Table

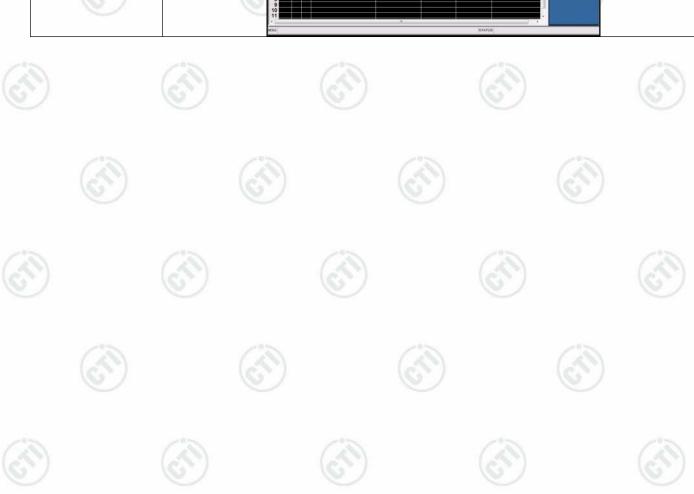
Mode	Channel	Observe time[s]	one set of pulses[ms]	pulses within 1s	Dwell Time[s]	Verdict
GFSK	LCH	7.6	1.33	8	0.08	PASS
GFSK	MCH	7.6	2.68	9	0.18	PASS
GFSK	НСН	7.6	1.07	8	0.06	PASS

Test Graph





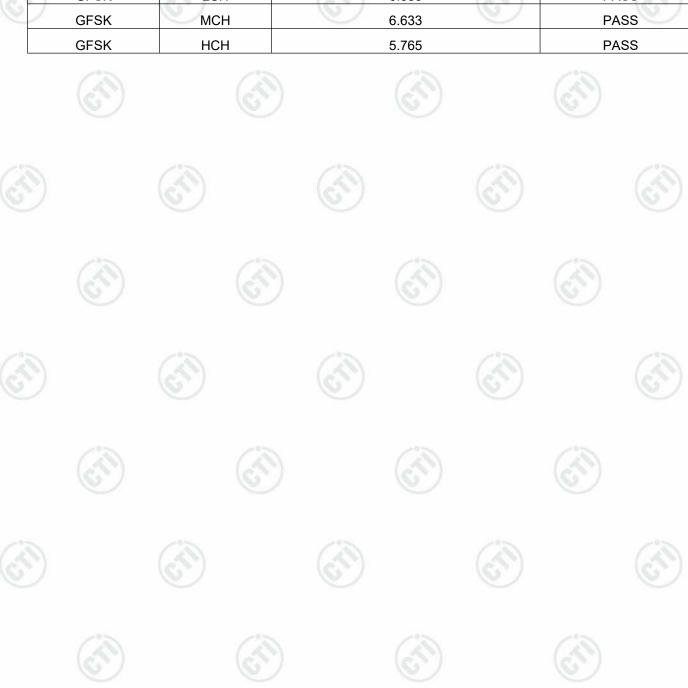

Report No.: EED32L00047501 Page 21 of 57


Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	20	PASS

Test Graph



Report No.: EED32L00047501 Page 22 of 57

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	6.888	PASS
GFSK	MCH	6.633	PASS
GFSK	нсн	5.765	PASS

Report No. : EED32L00047501 Page 23 of 57

Test Graph

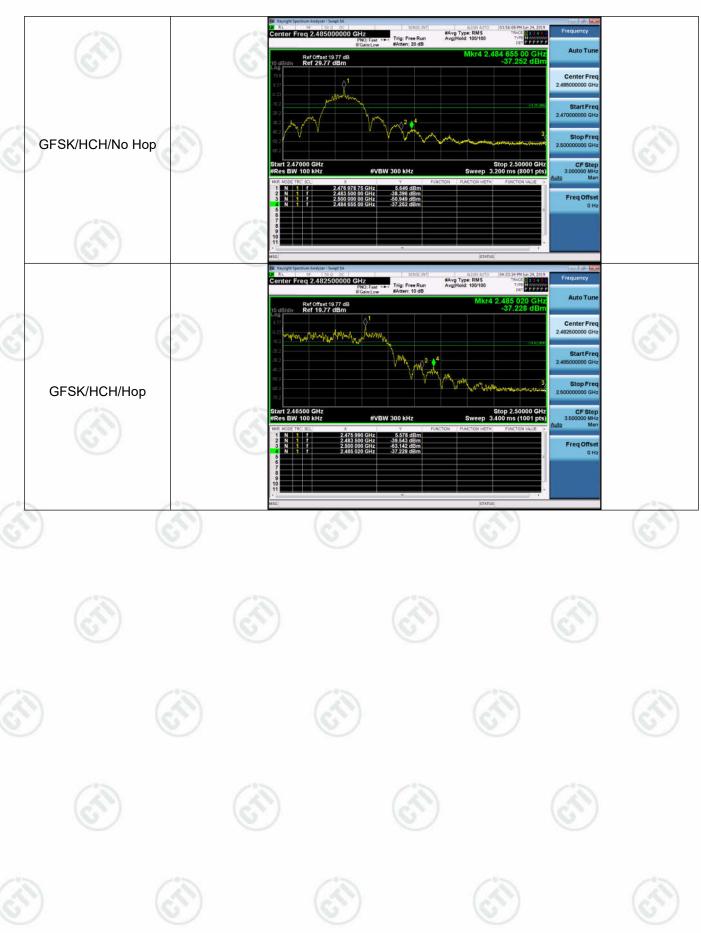
Report No. : EED32L00047501 Page 24 of 57

Appendix F): Band-edge for RF Conducted Emissions

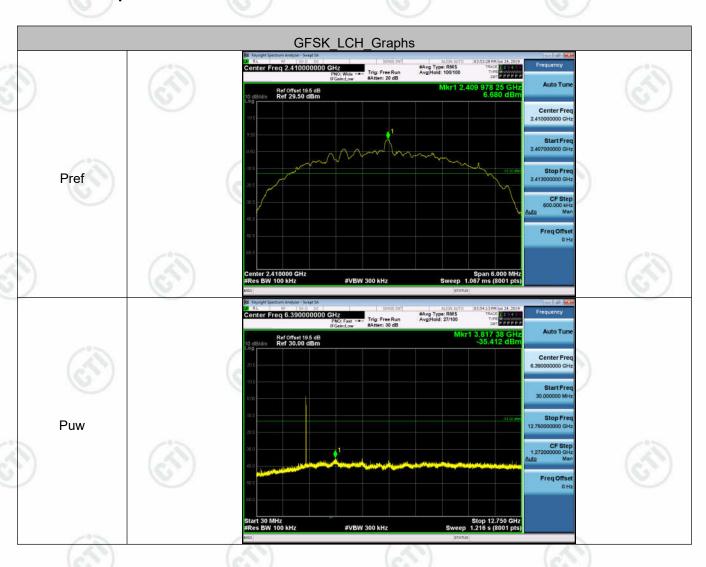
Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2410	6.646	Off	-49.900	-13.35	PASS
Gran	LCH	2410	6.797	On	-56.285	-13.2	PASS
GFSK	НСН	2477	5.646	Off	-37.252	-14.35	PASS
Gran	псп	2477	5.578	On	-37.228	-14.42	PASS

Test Graph



Report No.: EED32L00047501

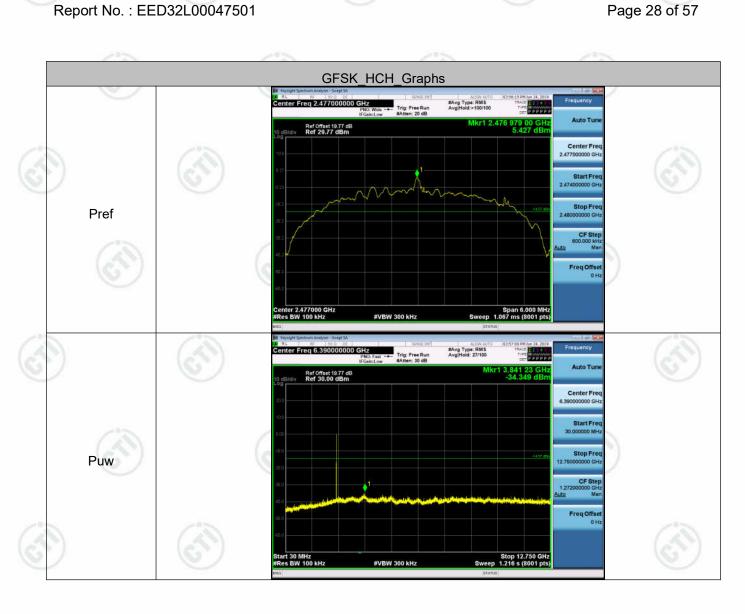


Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	6.68	<limit< th=""><th>PASS</th></limit<>	PASS
GFSK	MCH	6.316	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	нсн	5.427	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph



Report No.: EED32L00047501

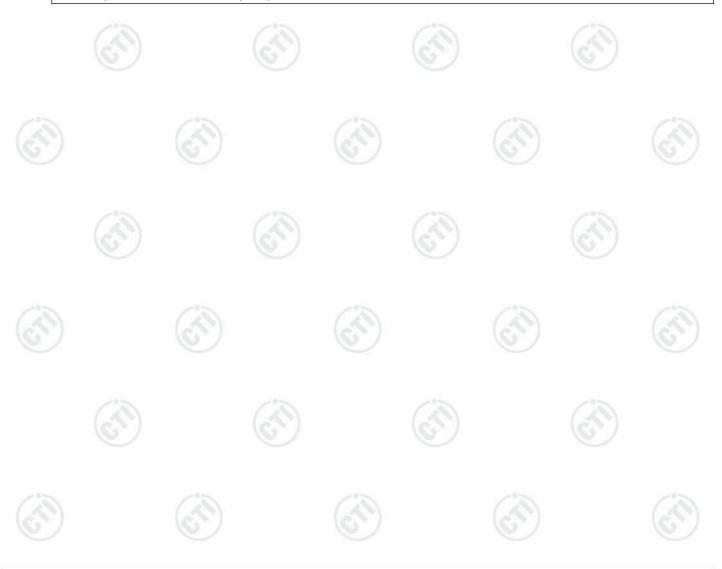
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


EUT Pseudorandom Frequency Hopping Sequence

Hopping Mechanism

VA-IH006BU family use adaptive frequency hopping. There are at 20 radio non-overlap channels (above 20dBc) in the 2.4GHz ISM band. The channel transmission bandwidth is about 3.5MHz. We can allocate 20 non-overlap channels between 2410MHz to 2477MHz. Like AFH of Bluetooth, VA-IH006BU provide smart channel selection algorithm to avoid radio interference from other 2.4GHz devices.

The system will generate a pseudorandom ordered list base on:

- 1) A 8 bit factory ID(8 bit)
- 2) A 6 bit set number ID(6 bit)

Report No.: EED32L00047501 Page 30 of 57

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is External antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

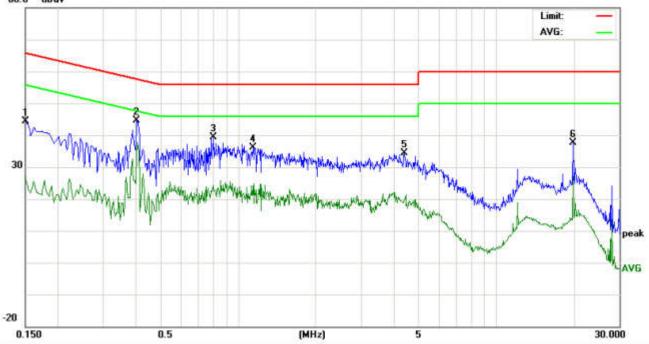
Report No. : EED32L00047501 Page 31 of 57

Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequenc	y range :150KHz-3	BOMHz	(62)							
				conducted in a shield	led room.						
	2) The EUT v Stabilization power call which was for the un	2) The EUT was connected to AC power source through a LISN 1 (Line Impedar Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. To power cables of all other units of the EUT were connected to a second LISN which was bonded to the ground reference plane in the same way as the LISI for the unit being measured. A multiple socket outlet strip was used to conn multiple power cables to a single LISN provided the rating of the LISN was not									
(cris)	3)The tableto reference	a)The tabletop EUT was placed upon a non-metallic table 0.8m above the grour reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,									
	EUT shall reference 1 was pla ground re plane. Thi	be 0.4 m from the plane was bonded ced 0.8 m from the ference plane for s distance was between the plane for the p	vertical ground refeto the horizontal geboundary of the LISNs mounted ween the closest p	reference plane. The verence plane. The veround reference pland unit under test and on top of the ground points of the LISN 1 at ment was at least 0.8	rtical ground le. The LISN bonded to a lid reference and the EUT.						
(1)	of the inte			ve positions of equipi ing to ANSI C63.10 o							
Limit:											
		(8.41.1)	Limit	(dBµV)							
	Frequency	range (MHz)	Quasi-peak	Average							
18	0.1	5-0.5	66 to 56*	56 to 46*	(40)						
	(C4")	.5-5	56	46	(6,)						
		5-30	60	50							
	* The limit de MHz to 0.	creases linearly w 50 MHz.		f the frequency in the	e range 0.15						
(6)	NOTE: INC.	омет шти в арриос		пеционсу							

Report No.: EED32L00047501 Page 32 of 57

Measurement Data

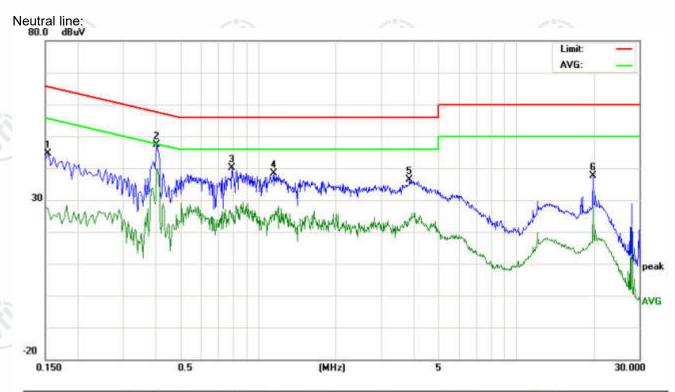

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : Baby Monitor Model/Type reference : VA-IH006BU

Temperature : 22° **Humidity** : 53%

Live line: 80.0 dBuV


No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	(dBuV)		377583	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	34.43	31.47	17.16	9.91	44.34	41.38	27.07	65.99	55.99	-24.61	-28.92	P	
2	0.4060	34.73	31.36	24.97	9.89	44.62	41.25	34.86	57.73	47.73	-16.48	-12.87	P	
3	0.8059	29.47	25.89	13.70	9.80	39.27	35.69	23.50	56.00	46.00	-20.31	-22.50	P	
4	1.1420	26.31	23.47	14.22	9.80	36.11	33.27	24.02	56.00	46.00	-22.73	-21.98	P	
5	4.4100	24.67	21.33	9.83	9.73	34.40	31.06	19.56	56.00	46.00	-24.94	-26.44	P	
6	19.8779	27.80	25.62	17.12	9.91	37.71	35.53	27.03	60.00	50.00	-24.47	-22.97	P	

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	(dBuV)		t Limit Margin (dBuV) (dB)					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	34.63	31.20	17.13	9.91	44.54	41.11	27.04	65.78	55.78	-24.67	-28.74	P	
2	0.4060	37.45	34.65	29.98	9.89	47.34	44.54	39.87	57.73	47.73	-13.19	-7.86	P	
3	0.7940	30.30	27.55	16.21	9.80	40.10	37.35	26.01	56.00	46.00	-18.65	-19.99	P	
4	1.1500	28.66	25.33	15.91	9.80	38.46	35.13	25.71	56.00	46.00	-20.87	-20.29	P	
5	3.8660	26.74	24.67	14.55	9.73	36.47	34.40	24.28	56.00	46.00	-21.60	-21.72	P	
6	19.8779	27.74	24.78	17.73	9.91	37.65	34.69	27.64	60.00	50.00	-25.31	-22.36	P	

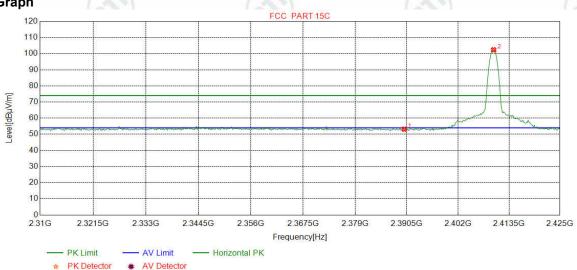
Notes:

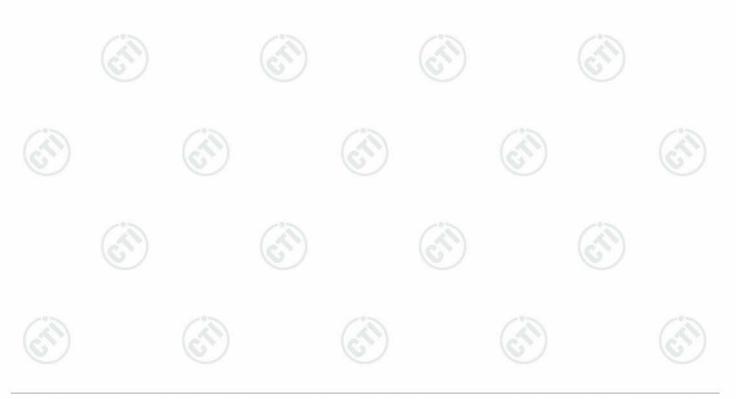
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32L00047501 Page 34 of 57

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	-	AL 4011	Peak	1MHz	3MHz	Peak	-0
		Above 1GHz	Peak	1MHz	10Hz	Average	ŝ
Test Procedure:	Belo	w 1GHz test proced	dure as below:				
	b	The EUT was placed at a 3 meter semi-and determine the position. The EUT was set 3 nwas mounted on the The antenna height is determine the maximal selections of the antenna of the antenn	echoic camber. The nof the highest rancters away from top of a variable-te varied from one um value of the fi	he table wa adiation. the interfer neight ante meter to fo eld strengtl	ence-receinna tower. bur meters h. Both hor	of the grees to the group of th	wh und
	d. e. f.	polarizations of the a For each suspected of the antenna was tune table was turned fron The test-receiver sys Bandwidth with Maxii Place a marker at the frequency to show co bands. Save the spec	emission, the EUT ed to heights from n 0 degrees to 360 tem was set to Per mum Hold Mode. e end of the restrict ompliance. Also me ctrum analyzer plo	was arran I meter to O degrees to eak Detect cted band co easure any	aged to its of the following and the following a	worst case and and the rotatal maximum read and Specified he transmit in the restrict	ble dinç ted
		for lowest and highes ve 1GHz test proce					
	g. h. i.	Different between ab to fully Anechoic Cha meter(Above 18GHz b. Test the EUT in the The radiation measu Transmitting mode, a Repeat above proced	ove is the test site mber and change the distance is 1 elowest channel rements are perfound found the X ax	e form table meter and , the Highe rmed in X, kis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). cositioning for t is worse case	
Limit:		Frequency	Limit (dBµV	/m @3m)	Rei	mark	
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value	
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
		216MHz-960MHz	46.0)	Quasi-pe	eak Value	
		960MHz-1GHz	54.0	0	Quasi-pe	eak Value	
				, I.E.	Averag	ıa Malua	
	0	Above 1GHz	54.0 74.0			ye Value Value	

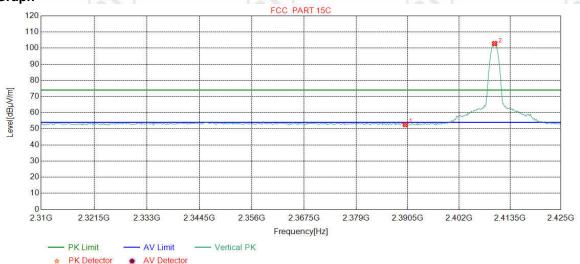


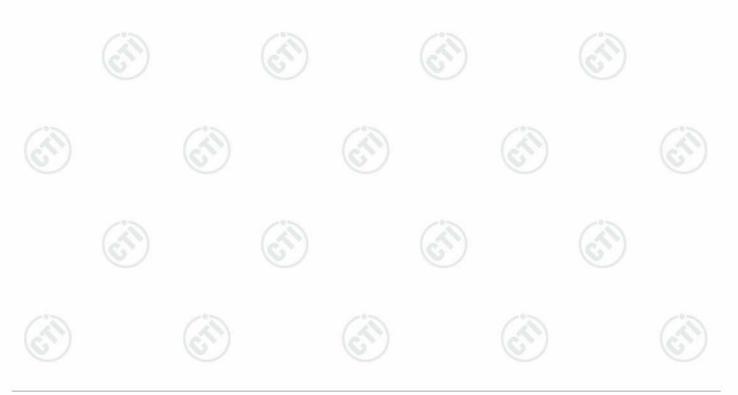

Test plot as follows:

Mode:	GFSK	Channel:	2410
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.98	53.16	74.00	20.84	Pass	Horizontal
2	2410.0313	32.27	13.35	-42.43	99.18	102.37	74.00	-28.37	Pass	Horizontal

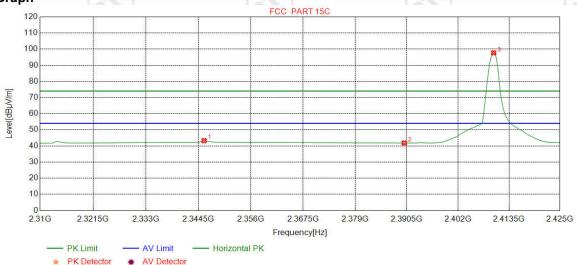


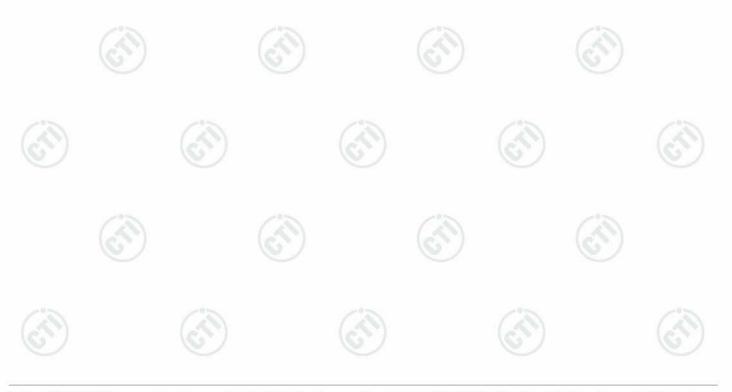

Report No. : EED32L00047501 Page 36 of 57

Mode:	GFSK	Channel:	2410
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.44	52.62	74.00	21.38	Pass	Vertical
2	2410.0313	32.27	13.35	-42.43	99.62	102.81	74.00	-28.81	Pass	Vertical

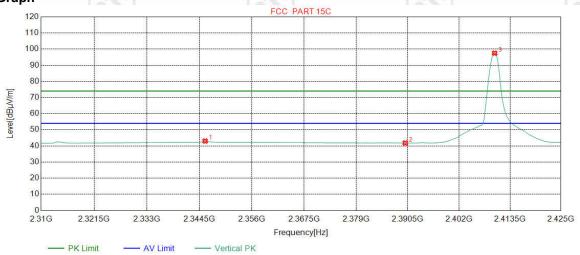



Report No. : EED32L00047501 Page 37 of 57

Mode:	GFSK	Channel:	2410
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2345.6946	32.18	13.64	-42.46	39.90	43.26	54.00	10.74	Pass	Horizontal
2	2390.0000	32.25	13.37	-42.44	38.65	41.83	54.00	12.17	Pass	Horizontal
3	2410.0313	32.27	13.35	-42.43	94.52	97.71	54.00	-43.71	Pass	Horizontal



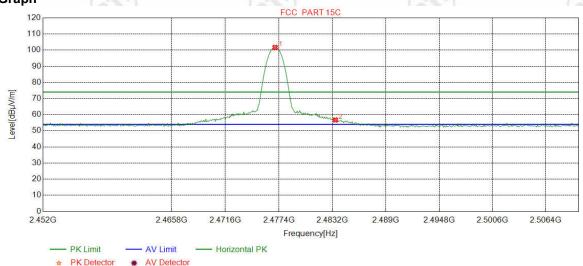
AV Detector

D	20	- 5 57	
Page	SO	01 57	

Mode:	GFSK	Channel:	2410
Remark:	AV		

Test Graph

Ant Cable Pream Freq. [MHz] Reading Level Limit Margin Factor NO Result loss gain Polarity [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2345.6946 **Pass** 1 32.18 13.64 -42.46 39.67 43.03 54.00 10.97 Vertical Pass 2 2390.0000 32.25 13.37 -42.44 38.65 41.83 54.00 12.17 Vertical Pass 32.27 3 2410.0313 13.35 -42.43 94.32 97.51 54.00 -43.51 Vertical

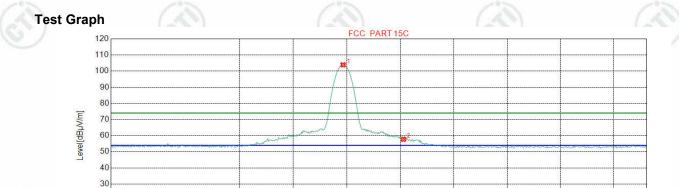



Page	30	of 57	
Paue	SS	01 57	

Mode:	GFSK	Channel:	2477
Remark:	PK		

Test Graph

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2476.9712	32.37	13.41	-42.41	98.33	101.70	74.00	-27.70	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	53.33	56.69	74.00	17.31	Pass	Horizontal



20

Report No. : EED32L00047501 Page 40 of 57

Mode:	GFSK	Channel:	2477
Remark:	PK		<u> </u>

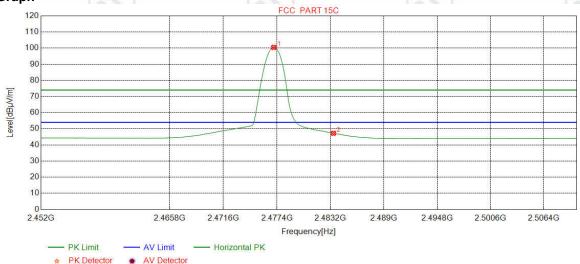

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2476.9712	32.37	13.41	-42.41	100.54	103.91	74.00	-29.91	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	54.41	57.77	74.00	16.23	Pass	Vertical

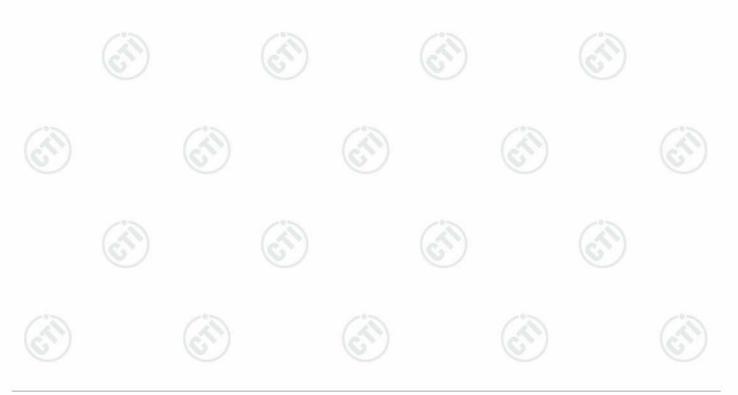
Frequency[Hz]

2.489G

2.5006G

2.5064G





Mode:	GFSK	Channel:	2477
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.0438	32.37	13.41	-42.41	97.08	100.45	54.00	-46.45	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	43.84	47.20	54.00	6.80	Pass	Horizontal

Report No. : EED32L00047501 Page 42 of 57

		1.3031	(20.7)
Mode:	GFSK	Channel:	2477
Remark:	AV		

Test Graph FCC PART 15C 100 90 80 70 60 40 30 20 10 0 2.452G 2.4658G 2.4716G 2.4774G 2.4832G 2.489G 2.4948G 2.5006G 2.5064G Frequency[Hz] PK Limit **AV Limit** - Vertical PK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.0438	32.37	13.41	-42.41	99.28	102.65	54.00	-48.65	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	45.89	49.25	54.00	4.75	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

AV Detector

Report No.: EED32L00047501 Page 43 of 57

Appendix L): Radiated Spurious Emissions

Receiver Setup:	(6.7)	160	57/		(6.)
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
b)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
(10)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(0)		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	- ((A))-	30
1.705MHz-30MHz	30	- \	<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

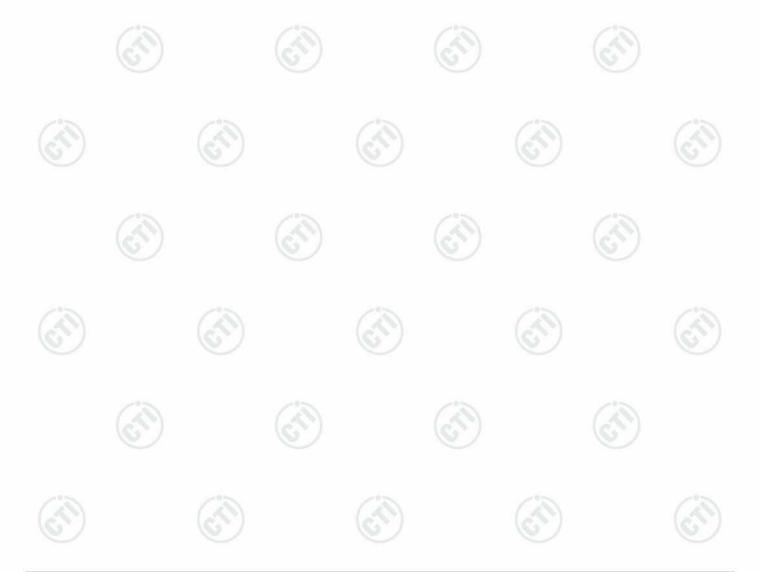
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32L00047501 Page 44 of 57

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	: :	TX				Channel:		2410		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	72.0052	8.62	0.97	-32.05	52.48	30.02	40.00	9.98	Pass	Н
2	107.9958	10.92	1.23	-32.07	50.19	30.27	43.50	13.23	Pass	Н
3	131.9572	7.60	1.34	-32.01	60.77	37.70	43.50	5.80	Pass	Н
4	156.0156	7.76	1.46	-31.99	57.57	34.80	43.50	8.70	Pass	Н
5	263.9874	12.48	1.94	-31.88	50.41	32.95	46.00	13.05	Pass	Н
6	960.0320	22.46	3.71	-31.09	41.88	36.96	54.00	17.04	Pass	Н
7	59.9760	11.60	0.90	-32.04	48.14	28.60	40.00	11.40	Pass	V
8	72.0052	8.62	0.97	-32.05	54.37	31.91	40.00	8.09	Pass	V
9	107.6078	10.92	1.22	-32.06	48.99	29.07	43.50	14.43	Pass	V
10	131.9572	7.60	1.34	-32.01	56.18	33.11	43.50	10.39	Pass	V
11	649.9890	19.40	3.10	-32.07	44.00	34.43	46.00	11.57	Pass	V
12	906.4826	22.14	3.60	-31.52	41.35	35.57	46.00	10.43	Pass	V

ı	Mode:		TX				Channel:		2441.5			
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
	1	59.9760	11.60	0.90	-32.04	48.12	28.58	40.00	11.42	Pass	Н	
ĺ	2	72.0052	8.62	0.97	-32.05	50.76	28.30	40.00	11.70	Pass	Н	
	3	107.9958	10.92	1.23	-32.07	51.93	32.01	43.50	11.49	Pass	Н	
	4	132.0542	7.60	1.34	-32.01	60.23	37.16	43.50	6.34	Pass	Н	
	5	156.0156	7.76	1.46	-31.99	62.09	39.32	43.50	4.18	Pass	Н	
	6	263.9874	12.48	1.94	-31.88	50.59	33.13	46.00	12.87	Pass	Н	
Ī	7	59.9760	11.60	0.90	-32.04	49.08	29.54	40.00	10.46	Pass	V	
	8	72.0052	8.62	0.97	-32.05	52.27	29.81	40.00	10.19	Pass	V	
	9	132.0542	7.60	1.34	-32.01	53.27	30.20	43.50	13.30	Pass	V	
Ī	10	156.0156	7.76	1.46	-31.99	51.48	28.71	43.50	14.79	Pass	V	
3	11	649.9890	19.40	3.10	-32.07	44.27	34.70	46.00	11.30	Pass	V	
١	12	960.0320	22.46	3.71	-31.09	38.83	33.91	54.00	20.09	Pass	V	
	1											



 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

	100			0.75		100		235		
Mode) :	TX				Channel:		2477		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	59.9760	11.60	0.90	-32.04	47.53	27.99	40.00	12.01	Pass	Н
2	72.0052	8.62	0.97	-32.05	51.49	29.03	40.00	10.97	Pass	Н
3	107.9958	10.92	1.23	-32.07	51.45	31.53	43.50	11.97	Pass	Н
4	132.0542	7.60	1.34	-32.01	61.52	38.45	43.50	5.05	Pass	Н
5	156.0156	7.76	1.46	-31.99	59.92	37.15	43.50	6.35	Pass	Н
6	649.9890	19.40	3.10	-32.07	43.31	33.74	46.00	12.26	Pass	Н
7	59.9760	11.60	0.90	-32.04	49.43	29.89	40.00	10.11	Pass	V
8	72.0052	8.62	0.97	-32.05	53.78	31.32	40.00	8.68	Pass	V
9	107.9958	10.92	1.23	-32.07	49.21	29.29	43.50	14.21	Pass	V
10	132.0542	7.60	1.34	-32.01	54.22	31.15	43.50	12.35	Pass	V
11	600.0290	19.00	2.96	-31.99	43.99	33.96	46.00	12.04	Pass	V
12	649.9890	19.40	3.10	-32.07	43.80	34.23	46.00	11.77	Pass	V
	·	100				·				VW 7

Report No. : EED32L00047501 Page 46 of 57

Transmitter Emission above 1GHz

Mode	Mode:		TX				Channel:		2410		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1418.2418	28.32	2.92	-42.68	51.61	40.17	74.00	33.83	Pass	Н	PK
2	2995.7996	33.19	4.54	-42.12	50.77	46.38	74.00	27.62	Pass	Н	PK
3	4818.1212	34.50	4.59	-40.65	51.02	49.46	74.00	24.54	Pass	Н	PK
4	5524.1683	35.04	5.16	-40.66	47.58	47.12	74.00	26.88	Pass	Н	PK
5	7230.0000	36.33	5.80	-41.00	43.90	45.03	74.00	28.97	Pass	Н	PK
6	9640.0000	37.66	6.70	-40.74	43.59	47.21	74.00	26.79	Pass	Н	PK
7	1745.6746	30.02	3.23	-42.68	53.10	43.67	74.00	30.33	Pass	V	PK
8	3205.0137	33.28	4.63	-42.00	50.04	45.95	74.00	28.05	Pass	V	PK
9	4822.1215	34.50	4.60	-40.64	51.51	49.97	74.00	24.03	Pass	V	PK
10	6024.2016	35.80	5.28	-41.09	46.67	46.66	74.00	27.34	Pass	V	PK
11	7230.0000	36.33	5.80	-41.00	43.98	45.11	74.00	28.89	Pass	V	PK
12	9640.0000	37.66	6.70	-40.74	44.28	47.90	74.00	26.10	Pass	V	PK

Mode	e:		TX				Channel:		2441.5		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2060.7061	31.78	3.56	-42.57	52.17	44.94	74.00	29.06	Pass	Н	PK
2	3159.0106	33.26	4.58	-42.02	50.59	46.41	74.00	27.59	Pass	Н	PK
3	4881.1254	34.50	4.80	-40.59	49.25	47.96	74.00	26.04	Pass	Н	PK
4	6737.2492	35.99	5.64	-41.18	47.01	47.46	74.00	26.54	Pass	Н	PK
5	7324.5000	36.43	5.85	-40.92	45.49	46.85	74.00	27.15	Pass	Н	PK
6	9766.0000	37.71	6.70	-40.62	44.06	47.85	74.00	26.15	Pass	Н	PK
7	1750.6751	30.05	3.23	-42.68	52.84	43.44	74.00	30.56	Pass	V	PK
8	3076.0051	33.23	4.77	-42.07	49.75	45.68	74.00	28.32	Pass	V	PK
9	4885.1257	34.50	4.82	-40.59	53.96	52.69	74.00	21.31	Pass	V	PK
10	6681.2454	35.97	5.47	-41.18	46.87	47.13	74.00	26.87	Pass	V	PK
11	7324.5000	36.43	5.85	-40.92	45.37	46.73	74.00	27.27	Pass	V	PK
12	9766.0000	37.71	6.70	-40.62	42.94	46.73	74.00	27.27	Pass	V	PK

Page	47	of 57	
rayc	41	0101	

Mode	e:		TX				Channel:		2477			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1795.0795	30.35	3.31	-42.71	51.12	42.07	74.00	31.93	Pass	Н	PK	
2	3049.0033	33.22	4.83	-42.09	50.17	46.13	74.00	27.87	Pass	Н	PK	
3	4956.1304	34.50	4.82	-40.54	49.14	47.92	74.00	26.08	Pass	Н	PK	
4	6499.2333	35.90	5.47	-41.19	46.82	47.00	74.00	27.00	Pass	Н	PK	
5	7431.0000	36.53	5.85	-40.83	43.70	45.25	74.00	28.75	Pass	Н	PK	
6	9908.0000	37.76	6.77	-40.48	43.04	47.09	74.00	26.91	Pass	Н	PK	
7	1715.0715	29.82	3.21	-42.67	54.13	44.49	74.00	29.51	Pass	V	PK	
8	2086.7087	31.82	3.57	-42.57	51.02	43.84	74.00	30.16	Pass	V	PK	
9	3196.0131	33.28	4.64	-42.00	50.83	46.75	74.00	27.25	Pass	V	PK	
10	4956.1304	34.50	4.82	-40.54	56.32	55.10	74.00	18.90	Pass	V	PK	
11	7431.0000	36.53	5.85	-40.83	44.25	45.80	74.00	28.20	Pass	V	PK	
12	9908.0000	37.76	6.77	-40.48	44.62	48.67	74.00	25.33	Pass	V	PK	
13	4951.9885	34.50	4.82	-40.54	48.47	47.25	54.00	6.75	Pass	V	AV	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: VA-IH006BU

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32L00047501 Page 50 of 57

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: VA-IH006BU

View of Product-1

View of Product-2

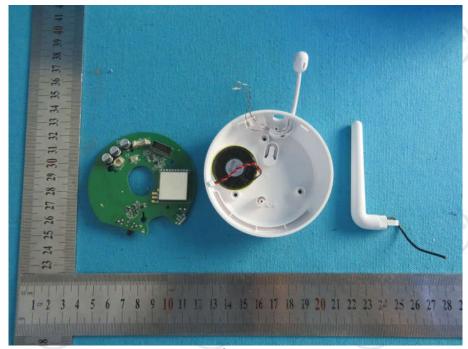
View of Product-3

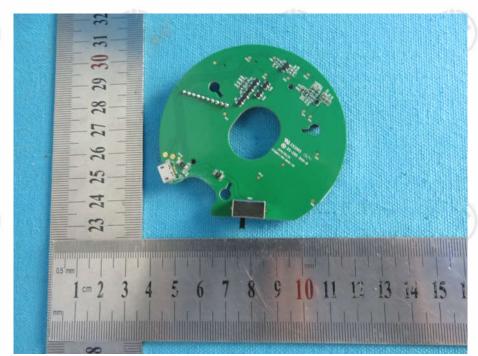
View of Product-5

View of Product-6

View of Product-7

View of Product-8

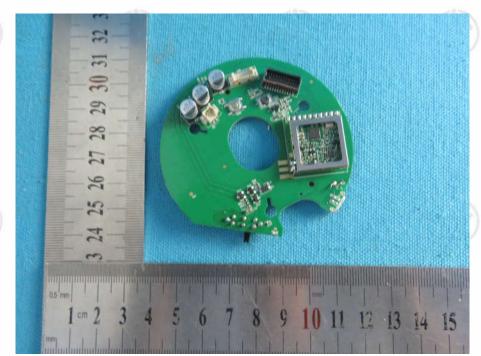




View of Product-9

View of Product-10



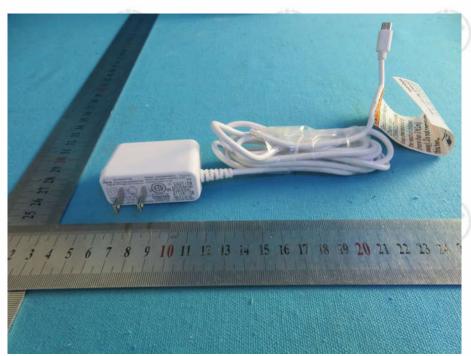


View of Product-11

View of Product-12

View of Product-13

View of Product-14



Report No.: EED32L00047501 Page 57 of 57

View of Product-15

View of Product-16

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.