

11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE

1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1 GHz , use 1 MHz VBW and RBW for peak reading. Then 1 MHz RBW and 10 Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1 GHz .
8. For testing above 1 GHz , the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
9. In case the emission is lower than 30 MHz , loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

11.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000 MHz

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{KHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{KHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission, the test records reported below are the worst result compared to other modes.

Attestation Of Global Gompliance

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30 MHz .

RADIATED EMISSION BELOW 1GHZ

RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL

NO.	Freq. $[\mathrm{MHz}]$	Level $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Factor $[\mathrm{dB}]$	Limit $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Height $[\mathrm{cm}]$	Angle $\left[{ }^{\circ}\right]$	Polarity
1	48.4300	25.07	14.71	40.00	14.93	100	108	Horizontal
2	78.5000	20.25	10.46	40.00	19.75	200	358	Horizontal
3	143.4900	24.85	14.88	43.50	18.65	200	301	Horizontal
4	213.3300	30.55	12.86	43.50	12.95	100	127	Horizontal
5	340.4000	23.22	17.48	46.00	22.78	100	87	Horizontal
6	792.4200	38.66	28.33	46.00	7.34	200	1	Horizontal

RESULT: PASS

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

NO.	Freq. $[\mathrm{MHz}]$	Level $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Factor $[\mathrm{dB}]$	Limit $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Height $[\mathrm{cm}]$	Angle $\left[{ }^{\circ}\right]$	Polarity
1	46.4900	32.61	14.77	40.00	7.39	100	0	Vertical
2	70.7400	26.21	12.07	40.00	13.79	100	307	Vertical
3	136.7000	30.62	14.64	43.50	12.88	100	313	Vertical
4	169.6800	26.92	13.98	43.50	16.58	100	11	Vertical
5	310.3300	22.62	16.29	46.00	23.38	100	224	Vertical
6	600.3600	31.05	24.33	46.00	14.95	100	22	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin= Result -Limit.
2. The "Factor" value can be calculated automatically by software of measurement system.
3. All test modes had been pre-tested. The 802.11 b at low channel is the worst case and recorded in the report.

RADIATED EMISSION ABOVE 1GHZ

Frequency	Emission Level	Limits	Margin	Detector	Comment
(MHz)	($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	(dB)	Type	
TX 11b 2412MHz					
4824	48.67	74	-25.33	Pk	Horizontal
4824	35.50	54	-18.50	AV	Horizontal
7236	51.05	74	-22.95	pk	Horizontal
7236	34.04	54	-19.96	AV	Horizontal
4824	50.82	74	-23.18	Pk	Vertical
4824	34.20	54	-19.80	AV	Vertical
7236	49.80	74	-24.20	Pk	Vertical
7236	38.06	54	-15.94	AV	Vertical
TX 11b 2437MHz					
4874	49.24	74	-24.76	Pk	Horizontal
4874	31.41	54	-22.59	AV	Horizontal
7311	47.49	74	-26.51	Pk	Horizontal
7311	34.54	54	-19.46	AV	Horizontal
4874	49.94	74	-24.06	Pk	Vertical
4874	39.76	54	-14.24	AV	Vertical
7311	47.38	74	-26.62	Pk	Vertical
7311	37.33	54	-16.67	AV	Vertical
TX 11b 2462MHz					
4924	49.88	74	-24.12	Pk	Horizontal
4924	33.61	54	-20.39	AV	Horizontal
7386	49.37	74	-24.63	Pk	Horizontal
7386	38.11	54	-15.89	AV	Horizontal
4924	51.07	74	-22.93	Pk	Vertical
4924	38.05	54	-15.95	AV	Vertical
7386	47.72	74	-26.28	Pk	Vertical
7386	35.95	54	-18.05	AV	Vertical

RESULT: PASS

Note:

1. Margin $=$ Emission Level - Limit
2.1 $\mathrm{GHz}-25 \mathrm{GHz}$ (All test modes had been pre-tested. The 802.11 b mode is the worst case and recorded in the report. No recording in the test report at least have 20 dB margin).

12. BAND EDGE EMISSION

12.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting
2)Conducted Emissions at the bang edge
a)The transmitter output was connected to the spectrum analyzer
b) Set RBW $=1 \mathrm{MHz}, V B W=3 \mathrm{MHz}$
c) Suitable frequency span including 100 kHz bandwidth from band edge

12.2. TEST SET-UP

Radiated same as 11.2

Note:

1. Factor=Antenna Factor + Cable loss - Amplifier gain. Field Strength=Factor + Reading level
2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB . Use the $\mathrm{AdB}(\mu \mathrm{V})$ to represent the Amplitude. Use the $\mathrm{F} \mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$ to represent the Field Strength. So $\mathrm{A}=\mathrm{F}$.

12.3. TEST RESULT

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 b with data rate 1 2412 MHZ	Antenna	Horizontal

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 b with data rate 1 2412 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 b with data rate 1 2462 MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 b with data rate 1 2462 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

AttestationÓf Global Gompliance

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 g with data rate 6 2412 MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 g with data rate 6 2412 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 g with data rate 6 2462 MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 g with data rate 6 2462 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 20 with data rate 6.5 2412 MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 20 with data rate 6.5 2412 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 20 with data rate 6.5 2462 MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 20 with data rate 6.5 2462 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 40 with data rate 13.5 2422 MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 40 with data rate 13.5 2422 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 40 with data rate 13.5 2452 MHZ	Antenna	Horizontal

PK

AV

RESULT: PASS

EUT	TABLET	Model Name	NET_MATRIX
Temperature	$25^{\circ} \mathrm{C}$	Relative Humidity	55.4%
Pressure	960 hPa	Test Voltage	Normal Voltage
Test Mode	802.11 n 40 with data rate 13.5 2452 MHZ	Antenna	Vertical

PK

AV

RESULT: PASS

13. FCC LINE CONDUCTED EMISSION TEST

13.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Frequency	Maximum RF Line Voltage	
	Q.P.(dBuV)	Average(dBuV)
$150 \mathrm{kHz} \sim 500 \mathrm{kHz}$	$66-56$	$56-46$
$500 \mathrm{kHz} \sim 5 \mathrm{MHz}$	56	46
$5 \mathrm{MHz} \sim 30 \mathrm{MHz}$	60	50

Note:

1. The lower limit shall apply at the transition frequency.
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz .

13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

Attestationóf Global Gompliance

13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a TABLETop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
2. Support equipment, if needed, was placed as per ANSI C63.10.
3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
4. All support equipments received $\mathrm{AC} 120 \mathrm{~V} / 60 \mathrm{~Hz}$ power from a LISN, if any.
5. The EUT received charging voltage by adapter which received $120 \mathrm{~V} / 60 \mathrm{Hzpower}$ by a LISN..
6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7. Analyzer / Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.
8. During the above scans, the emissions were maximized by cable manipulation.
9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less $-2 d B$ to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
3. The test data of the worst case condition(s) was reported on the Summary Data page.
13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST LINE 1-L

MEASUREMENT RESULT: "TEST_fin"

7/23/2019 10:23AM							
Frequency MHz	Level $\mathrm{dB} \mu \mathrm{V}$	Transd dB	Limit $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Detector	Line	PE
0.174000	38.00	10.9	65	26.8	QP	L1	FLO
0.222000	35.80	10.9	63	26.9	QP	L1	FLO
4.698000	28.40	11.6	56	27.6	QP	L1	FLO
13.978000	44.30	12.1	60	15.7	QP	L1	FLO
14.054000	43.20	12.1	60	16.8	QP	L1	FLO
14.090000	43.90	12.1	60	16.1	QP	L1	FLO

MEASUREMENT RESULT: "TEST_fin2"

$7 / 23 / 2019$							
FrequencyMHz	Level dB $\mu \mathrm{V}$	Transd dB	Limit dB $\mu \mathrm{V}$	Margin dB	Detector	Line	PE
0.222000	22.90	10.9	53	29.8	AV	L1	FLO
0.246000	20.00	10.9	52	31.9	AV	L1	FLO
4.814000	22.10	11.6	46	23.9	AV	L1	FLO
6.606000	18.80	11.7	50	31.2	AV	L1	FLO
12.210000	20.40	12.0	50	29.6	AV	L1	FLO
14.550000	24.00	12.1	50	26.0	AV	L1	FLO

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "TEST_fin"

7/23/2019 10:28AM							
Frequency MHz	Level $\mathrm{dB} \mu \mathrm{V}$	Transd dB	$\begin{array}{r} \text { Limit } \\ \mathrm{dB} \mu \mathrm{~V} \end{array}$	Margin dB	Detector	Line	PE
0.154000	47.60	10.8	66	18.2	QP	N	FLO
0.178000	45.80	10.9	65	18.8	QP	N	FLO
0.230000	43.40	10.9	62	19.0	QP	N	FLO
0.270000	41.00	10.9	61	20.1	QP	N	FLO
13.958000	45.60	12.1	60	14.4	QP	N	FLO
14.286000	42.80	12.1	60	17.2	QP	N	FLO

MEASUREMENT RESULT: "TEST_fin2"

10:28AM							
Frequency MHz	Level $\mathrm{dB} \mu \mathrm{V}$	Transd dB	Limit $\mathrm{dB} \mu \mathrm{V}$	$\underset{\mathrm{dB}}{\text { Margin }}$	Detector	Line	PE
0.154000	29.00	10.8	56	26.8	AV	N	FLO
0.178000	26.60	10.9	55	28.0	AV	N	FLO
0.230000	26.30	10.9	52	26.1	AV	N	FLO
0.270000	10.00	10.9	51	41.1	AV	N	FLO
0.574000	33.40	10.8	46	12.6	AV	N	FLO
1.110000	28.50	11.5	46	17.5	AV	N	FLO

APPENDIX A: PHOTOGRAPHS OF TEST SETUP
LINE CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP

RADIATED EMISSION ABOVE 1G TEST SETUP

----END OF REPORT----

