

Food Evant

Folan Hu

Jason Zhou

FCC PART 22/24 TEST REPORT FCC Part 22 /Part 24

Report Reference No.: HK1809271163E

FCC ID: 2AFD9LITEPRO

Compiled by

(position+printed name+signature) : File administrators Gary Qian

Supervised by

(position+printed name+signature) : Technique principal Eden Hu

Approved by

(position+printed name+signature): Manager Jason Zhou

Date of issue: Oct. 17, 2018

Testing Laboratory Name: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park,

Address: Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name: MOVEON TECHNOLOGY LIMITED

Address: World Trade Plaza-A block #3201-3202 Fuhong Road, Futian,

Shenzhen, China

FCC Part 22: PUBLIC MOBILE SERVICES Standard :

FCC Part 24: PERSONAL COMMUNICATIONS SERVICES

Shenzhen HUAK Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description : Smart Phone

Brand Name: ZOOM

Model LitePro

Ratings: DC 3.7V From Battery; DC5V/0.5A

Modulation : GSM / GPRS :GMSK

HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK

Hardware version: 7130D-MMI-V10

Software version: Zoom_LitePro_001_20180903

Frequency GSM 850MHz; PCS 1900MHz; UMTS Band II; UMTS Band V

Result : PASS

Page 2 of 69 Report No.: HK1809271163E

TEST REPORT

Test Report No. : HK1809271163E Oct. 17, 2018

Date of issue

Equipment under Test : Smart Phone

Model /Type : LitePro

Applicant : MOVEON TECHNOLOGY LIMITED

Address : World Trade Plaza-A block #3201-3202 Fuhong Road, Futian, Shenzhen,

China

Manufacturer : MOVEON TECHNOLOGY LIMITED

World Trade Plaza-A block #3201-3202 Fuhong Road, Futian, Shenzhen, Address

China

Factory MOVEON TECHNOLOGY LIMITED

World Trade Plaza-A block #3201-3202 Fuhong Road, Futian, Shenzhen, Address

China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 69 Report No.: HK1809271163E

Revision	Issue Date	Revisions	Revised By	
V1.0	Oct. 17, 2018	Initial Issue	Jason Zhou	

TABLE OF CONTENTS

Report No.: HK1809271163E

1.VERIFICATION OF COMPLIANCE	错误! 未定义书签。
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	
2.2RELATED SUBMITTAL(S) / GRANT (S)	8
2.3 TEST METHODOLOGY	S
2.4 TEST FACILITY	10
2.6 SPECIAL ACCESSORIES	11
2.7 EQUIPMENT MODIFICATIONS	11
3. SYSTEM TEST CONFIGURATION	12
3.1 EUT CONFIGURATION	12
3.2 EUT EXERCISE	12
3.3 CONFIGURATION OF EUT SYSTEM	12
4. SUMMARY OF TEST RESULTS	13
5. DESCRIPTION OF TEST MODES	
6. OUTPUT POWER	15
6.1 CONDUCTED OUTPUT POWER	15
6.2 RADIATED OUTPUT POWER	21
6.2.1 MEASUREMENT METHOD	21
6.2.2 PROVISIONS APPLICABLE	22
6.3. PEAK-TO-AVERAGE RATIO	25
6.3.1 MEASUREMENT METHOD	25
6.3.2 PROVISIONS APPLICABLE	25
6.3.3 MEASUREMENT RESULT	26
7. OCCUPIED BANDWIDTH	27
7.1 MEASUREMENT METHOD	27
7.2 PROVISIONS APPLICABLE	27
7.3 MEASUREMENT RESULT	28
8. BAND EDGE	34
8.1 MEASUREMENT METHOD	32
8.2 PROVISIONS APPLICABLE	32
8.3 MEASUREMENT RESULT	35
9. SPURIOUS EMISSION	38
9.1 CONDUCTED SPURIOUS EMISSION	38
9.2 RADIATED SPURIOUS EMISSION	53
9.2.2 TEST SETUP	54
10. FREQUENCY STABILITY	59
10.1 MEASUREMENT METHOD	59

Page 5 of 69 Report No.: HK1809271163E

Α	APPENDIX A: PHOTOGRAPHS OF TEST SETUP	. 69
	10.3 MEASUREMENT RESULT	. 61
	10.2 PROVISIONS APPLICABLE	. 60

1. SUMMARY

1.1 General Remarks

Date of receipt of test sample	:	Sep. 26, 2018
Testing commenced on	:	Sep. 26, 2018
Testing concluded on	:	Oct. 10, 2018

Report No.: HK1809271163E

2. SUMMARY

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation: Smart Phone				
i Toddot Designation.				
	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐			
	SGSM 900 SDCS 1800 (Non-U.S. Bands)			
Frequency Bands:	☑UMTS FDD Band II ☐UMTS FDD Band IV			
	⊠UMTS FDD Band V (U.S. Bands)			
	⊠UMTS FDD Band I ⊠UMTS FDD Band VIII (Non-U.S. Bands)			
Antenna Type	PIFA Antenna			
Type of Modulation	GSM / GPRS :GMSK			
Type of Modulation	WCDMA: QPSK			
Antonno goin	GSM850:0.99dBi; PCS1900: 0.84dBi;			
Antenna gain	WCDMA850: 0.74dBi; WCDMA1900:0.66dBi			
Power Supply:	DC 3.7V by battery			
Battery parameter:	DC3.7V/2500mAh			
Dual Card:	GSM /WCDMA Card Slot			
Duai Caru.	GSM Card Slot.			
GPRS Class	12			
Extreme Vol. Limits:	DC3.4 V to 4.2 V (Normal: DC3.7 V)			
Extreme Temp. Tolerance -10°C to +50°C				
*** Note: 1. The High Voltage DC	4.35V and Low Voltage DC3.4V were declared by manufacturer			
2. The EUT couldn't be	operating normally with higher or lower voltage.			

Report No.: HK1809271163E

2. We found out the test mode with the highest power level after we analyze all the data rates. So we chose worst cases a representative.

^{***} Note:1.The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode for WCDMA band II, WCDMA band V, only these modes were used for all tests.

Page 8 of 69 Report No.: HK1809271163E

GSM/WCDMA Card1 Slot:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average	
	(dBm)	(dBm)	Burst Power (dBm)	
GSM 850	31.47	32.39	31.52	
PCS 1900	27.69	29.44	28.69	
UMTS BAND II	21.58	23.49	22.36	
UMTS BAND V	21.69	23.87	21.72	

GSM Card2 Slot:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average Burst Power (dBm)	
	(dBm)	(dBm)		
GSM 850 30.95		31.79	30.98	
PCS 1900	27.21	28.99	28.13	

Page 9 of 69 Report No.: HK1809271163E

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID:2AFD9LITEPRO**, filing to comply with the FCC Part 22H&24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-E-2016, and KDB 971168 D01 Power Means License Digital Systems V03R01.

Page 10 of 69 Report No.: HK1809271163E

2.4 TEST FACILITY

Site	Shenzhen HUAK Testing Technology Co., Ltd.		
Location	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an		
Location	District, Shenzhen City, China		
Designation Number	esignation Number CN1229		
Test Firm Registration Number : 616276			

ALL TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Receiver	R&S	ESCI 7	HKE-010	2017/12/28	2018/12/27
LISN	R&S	ENV216	HKE-002	2017/12/28	2018/12/27
Spectrum analyzer	Agilent	N9020A	HKE-048	2017/12/28	2018/12/27
Horn antenna	Schwarzbeck	9120D	HKE-013	2017/12/28	2019/12/26
Preamplifier	EMCI	EMC051845SE	HKE-015	2017/12/28	2018/12/27
Double-Ridged	ETS LINDGREN	3117	HKE-087	2017/12/28	2018/12/27
Waveguide Horn	ETS LINDGREN	3117	TIKE-007	2017/12/28	2016/12/27
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	2017/12/28	2019/12/26
Spectrum analyzer	Agilent	N9020A	HKE-048	2017/12/28	2018/12/27
Power Sensor	Agilent	E9300A	HKE-086	2017/12/28	2018/12/27
Wireless					
Communication	R&S	CMU200	HKE-026	2017/12/28	2018/12/27
Test Set					

Page 11 of 69 Report No.: HK1809271163E

2.6 SPECIAL ACCESSORIES

The battery wassupplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 12 of 69 Report No.: HK1809271163E

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUTconfiguration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No. ID or Specification		Remark
1	Smart Phone	LitePro	2AFD9LITEPRO	EUT
2	Adapter	LitePro	DC 5.0V 1A	Accessory
3	Battery	LitePro	DC 3.7V/2500mAh	Accessory
4	Earphone	N/A	N/A	Accessory
5	USB	N/A	N/A	Accessory

^{***}Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Report No.: HK1809271163E

4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result
		Conducted	2.1046	
1	Output Dawar	Output Power	2.1040	Pass
'	Output Power	Radiated	22.042(a) (a) / 24.222 (a)	Pass
		Output Power	22.913(a) (2) / 24.232 (c)	
0	Peak-to-Average	Peak-to-Average	0.4.000(1)	Pass
2	Ratio	Ratio	24.232(d)	
	Spurious Emission	Conducted	2.1051/22.917/24.238	Pass
3		Spurious Emission		
3		Radiated		
		Spurious Emission		
4	Frequency Stability		2.1055/22.355/24.235	Pass
5	Occupied Bandwidth		2.1049	Pass
6	Band Edge		2.1051/22.917(a)/24.238(a)	Pass

Page 14 of 69 Report No.: HK1809271163E

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSMand PCS frequency band.

***Note: GSM/GPRS 850, GSM/GPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA band V,mode have been tested during the test.

The worst condition was recorded in the test report if no other modes test data.

Page 15 of 69 Report No.: HK1809271163E

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for othermodulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(GSM/GPRS850, GSM/GPRS1900, WCDMA/HSPA band II,WCDMA/HSPA band V)at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

6.1.2 MEASUREMENT RESULT

	Conducted Output Power Limits for GPRS 850 band						
Mode	Nominal Peak Power	Tolerance(dB)					
GSM	33 dBm (2W)	- 2					
GPRS	33 dBm (2W)	- 2					
	Conducted Output Power Limits for GP	RS 1900band					
Mode	Mode Nominal Peak Power Tolerance(dB)						
GSM	30 dBm (1W)	- 2					
GPRS	30 dBm (1W)	- 2					
	Conducted Output Power Limits for U	MTS band II					
Mode	Nominal Peak Power	Tolerance(dB)					
WCDMA	24dBm (0.25W)	- 2					
	Conducted Output Power Limits for UMTS band V						
Mode	Nominal Peak Power	Tolerance(dB)					
WCDMA	24dBm (0.25W)	- 2					

Page 16 of 69 Report No.: HK1809271163E

GSM 850:

Mede	Frequency	Reference	Peak	Tolerance	Avg.Burst	Duty cycle	Frame
Mode	(MHz)	Power	Power		Power	Factor(dB)	Power(dBm)
	824.2	33	32.37	-0.63	31.44	-9	22.44
GSM850	836.6	33	32.28	-0.72	31.52	-9	22.52
	848.8	33	32.39	-0.61	31.34	-9	22.34
GPRS850	824.2	33	32.29	-0.71	31.25	-9	22.25
(1 Slot)	836.6	33	32.19	-0.81	31.28	-9	22.28
(1 3101)	848.8	33	32.25	-0.75	31.34	-9	22.34
GPRS850	824.2	30	29.19	-0.81	28.42	-6	22.42
(2 Slot)	836.6	30	29.35	-0.65	28.19	-6	22.19
(2 3101)	848.8	30	29.22	-0.78	28.27	-6	22.27
GPRS850	824.2	28.23	27.28	-0.95	26.33	-4.26	22.07
	836.6	28.23	27.33	-0.90	26.42	-4.26	22.16
(3 Slot)	848.8	28.23	27.42	-0.81	26.35	-4.26	22.09
CDDC050	824.2	27	26.27	-0.73	25.28	-3	22.28
GPRS850 (4 Slot)	836.6	27	26.19	-0.81	25.42	-3	22.22
(4 3101)	848.8	27	26.21	-0.79	25.38	-3	22.38

Page 17 of 69 Report No.: HK1809271163E

PCS 1900:

Mode	Frequency (MHz)	Reference Power	Peak Power	Tolerance	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	1850.2	30	29.44	-0.56	28.69	-9	19.69
GSM1900	1880	30	29.06	-0.94	28.54	-9	19.54
	1909.8	30	29.71	-0.29	28.46	-9	19.46
CDDC1000	1850.2	30	28.79	-1.21	27.28	-9	18.28
GPRS1900 (1 Slot)	1880	30	28.78	-1.22	27.17	-9	18.17
(1 3101)	1909.8	30	28.49	-1.51	27.37	-9	18.37
GPRS1900	1850.2	27	25.25	-1.75	24.42	-6	18.42
	1880	27	25.14	-1.86	24.25	-6	18.25
(2 Slot)	1909.8	27	25.33	-1.67	24.54	-6	18.54
GPRS1900	1850.2	25.23	24.27	-0.96	23.39	-4.26	19.13
	1880	25.23	24.44	-0.79	23.47	-4.26	19.21
(3 Slot)	1909.8	25.23	24.19	-1.04	23.56	-4.26	19.30
00004000	1850.2	24	23.57	-0.43	22.74	-3	19.74
GPRS1900	1880	24	23.39	-0.61	22.58	-3	19.58
(4 Slot)	1909.8	24	23.46	-0.54	22.55	-3	19.55

Page 18 of 69 Report No.: HK1809271163E

UMTS BAND II

Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Power
	1852.4	24	23.23	-0.77	22.11
WCDMA1900 RMC	1880	24	23.49	-0.51	22.36
	1907.6	24	23.47	-0.53	22.28
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1852.4	24	23.32	-0.68	22.18
WCDMA1900 AMR	1880	24	23.12	-0.88	22.23
/	1907.6	24	23.37	-0.63	22.12
HSDPA	1852.4	24	21.32	-2.68	21.56
	1880	24	21.32	-2.68	21.47
Subtest 1	1907.6	24	21.08	-2.92	21.48
HSDPA	1852.4	24	22.24	-1.76	20.33
	1880	24	22.26	-1.74	20.26
Subtest 2	1907.6	24	22.18	-1.82	20.28
LICDDA	1852.4	24	22.33	-1.67	20.05
HSDPA	1880	24	22.03	-1.97	20.11
Subtest 3	1907.6	24	22.09	-1.91	20.10
LICDDA	1852.4	24	22.11	-1.89	20.53
HSDPA	1880	24	22.54	-1.46	20.49
Subtest 4	1907.6	24	22.13	-1.87	20.58
LICLIDA	1852.4	24	22.02	-1.98	20.44
HSUPA	1880	24	21.06	-2.94	20.39
Subtest 1	1907.6	24	22.99	-1.01	20.43
LICLIDA	1852.4	24	22.48	-1.52	21.00
HSUPA	1880	24	22.19	-1.81	21.06
Subtest 2	1907.6	24	22.51	-1.49	21.33
LICLIDA	1852.4	24	22.45	-1.55	21.58
HSUPA	1880	24	22.40	-1.60	21.47
Subtest 3	1907.6	24	21.46	-2.54	21.61
LICLIDA	1852.4	24	22.12	-1.88	21.53
HSUPA	1880	24	22.22	-1.78	22.47
Subtest 4	1907.6	24	22.49	-1.51	22.33
ПСППУ	1852.4	24	22.41	-1.59	21.17
HSUPA	1880	24	22.47	-1.53	21.28
Subtest 5	1907.6	24	22.33	-1.67	21.23

Page 19 of 69 Report No.: HK1809271163E

UMTS BAND V

5 5						
Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Power	
	826.4	24	23.62	-0.41	21.58	
WCDMA850 RMC	836.4	24	23.46	-0.45	21.11	
	846.6	24	23.87	-0.23	21.72	
	826.4	24	23.66	-1.00	21.18	
WCDMA850 AMR	836.4	24	23.49	-0.91	21.33	
, avii c	846.6	24	23.31	-0.89	21.15	
HSDPA	826.4	24	22.77	-1.66	20.14	
	836.4	24	22.50	-1.51	20.21	
Subtest 1	846.6	24	22.62	-1.48	20.27	
HSDPA	826.4	24	22.63	-1.71	19.95	
	836.4	24	22.21	-1.58	20.07	
Subtest 2	846.6	24	22.82	-1.75	20.03	
HSDPA	826.4	24	21.79	-2.67	20.62	
	836.4	24	21.58	-2.56	20.26	
Subtest 3	846.6	24	21.82	-2.04	20.50	
HSDPA	826.4	24	22.93	-1.89	20.62	
	836.4	24	22.99	-1.71	20.37	
Subtest 4	846.6	24	22.86	-1.66	20.51	
HSUPA	826.4	24	22.49	-1.78	20.53	
	836.4	24	22.34	-1.86	21.52	
Subtest 1	846.6	24	22.63	-1.45	20.97	
HSUPA	826.4	24	22.71	-1.97	20.85	
	836.4	24	22.59	-1.9	20.99	
Subtest 2	846.6	24	22.16	-1.91	21.00	
HSUPA	826.4	24	22.04	-1.82	20.87	
	836.4	24	22.06	-1.87	20.61	
Subtest 3	846.6	24	22.06	-1.89	20.66	
HSUPA	826.4	24	22.33	-1.67	20.78	
	836.4	24	22.34	-1.66	20.32	
Subtest 4	846.6	24	22.32	-1.68	20.87	
HSUPA	826.4	24	22.90	-1.42	20.43	
	836.4	24	22.54	-1.53	20.51	
Subtest 5	846.6	24	22.42	-1.4	20.26	

Page 20 of 69 Report No.: HK1809271163E

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH	0< CM<2 F	MAY(CM 1 O)
HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)

Note: CM=1 for β $_{c}/\beta$ $_{d}$ =12/15, β $_{hs}/\beta$ $_{c}$ =24/15.For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

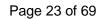
The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 21 of 69 Report No.: HK1809271163E

6.2 RADIATED OUTPUT POWER 6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-E-2016 were applied.


- 1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signal operating below 1GHz are performed using dipole antennas. Measurements on signals operating above 1GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.
- 2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. TheARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 5. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 6. The EUT is then put into continuously transmitting mode at its maximum power level.
- 7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi...

Page 22 of 69 Report No.: HK1809271163E

6.2.2 PROVISIONS APPLICABLE

Mode	FCC Part Section(s)	Nominal Peak Power
GSM/GPRS 850	22.913(a)(2)	<=38.45dBm (7W). ERP
GSM/GPRS 1900	24.232(c)	<=33dBm (2W). EIRP
UMTS BAND II	24.232(c)	<=33dBm (2W),EIRP
UMTS BANDV	22.913(a)(2)	<=38.45dBm (7W).ERP

6.2.3 MEASUREMENT RESULT

	Radiated Power (ERP) for GSM/GPRS 850						
		Result					
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion			
		(dBm)	Of Max. ERP				
	824.2	31.47	Horizontal	Pass			
	836.6	31.33	Horizontal	Pass			
GSM	848.8	31.31	Horizontal	Pass			
	824.2	28.44	Vertical	Pass			
	836.6	28.49	Vertical	Pass			
	848.8	28.53	Vertical	Pass			
	824.2	25.28	Horizontal	Pass			
	836.6	25.49	Horizontal	Pass			
CDDC	848.8	25.54	Horizontal	Pass			
GPRS -	824.2	23.36	Vertical	Pass			
	836.6	23.37	Vertical	Pass			
	848.8	23.55	Vertical	Pass			

Report No.: HK1809271163E

Radiated Power (E.I.R.P) for GSM/GPRS 1900					
		Res	Result		
Mode	Frequency	Max. Peak	Polarization	Conclusion	
		E.I.R.P.(dBm)	Of Max. E.I.R.P.		
	1850.2	27.58	Horizontal	Pass	
	1880.0	27.69	Horizontal	Pass	
GSM	1909.8	27.47	Horizontal	Pass	
GOIVI	1850.2	24.36	Vertical	Pass	
	1880.0	24.42	Vertical	Pass	
	1909.8	24.38	Vertical	Pass	
	1850.2	23.55	Horizontal	Pass	
	1880.0	23.49	Horizontal	Pass	
GPRS	1909.8	23.66	Horizontal	Pass	
GPRS	1850.2	21.53	Vertical	Pass	
	1880.0	21.48	Vertical	Pass	
	1909.8	21.58	Vertical	Pass	

Radiated Power (E.I.R.P) for UMTS band II Result Frequency Mode Max. Peak E.I.R.P **Polarization** Conclusion Of Max. E.I.R.P (dBm) 21.44 1852.4 Horizontal **Pass** Pass 1880 21.53 Horizontal 1907.6 21.58 Horizontal **Pass UMTS** 1852.4 19.77 Vertical Pass 1880 19.69 Vertical Pass 1907.6 19.78 Vertical Pass

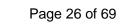
Report No.: HK1809271163E

	Radiated Power (ERP) for UMTS band V					
			Result			
Mode	Frequency	Max. Peak ERP (dBm)	Polarization	Conclusion		
			Of Max. ERP			
	826.4	21.43	Horizontal	Pass		
	836.4	21.28	Horizontal	Pass		
LIMTO	846.6	21.69	Horizontal	Pass		
UMTS	826.4	19.44	Vertical	Pass		
	836.4	19.53	Vertical	Pass		
	846.6	19.47	Vertical	Pass		

Note: Above is the worst mode data.

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD


Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

6.3.3 MEASUREMENT RESULT

C.O.O MEAGOREMENT REGGET				
Modes	GSM850(GSM)			
Channel	128	190	251	
Channel	(Low)	(Mid)	(High)	
Frequency	004.0	836.6	040.0	
(MHz)	824.2	030.0	848.8	
Peak-To-Average Ratio (dB)/GSM	1.33	1.28	1.27	
Peak-To-Average Ratio (dB)/GRPS	1.44	1.36	1.19	

Report No.: HK1809271163E

Modes	PCS1900 (GSM)			
Channel	512	661	810	
Channel	(Low)	(Mid)	(High)	
Frequency	1050.2	4000	4000.0	
(MHz)	1850.2	1880	1909.8	
Peak-To-Average Ratio (dB)/GSM	0.52	0.47	0.39	
Peak-To-Average Ratio (dB)/GPRS	1.00	1.23	1.41	

Modes	UMTS BAND II			
Channel	9262	9400	9538	
	(Low)	(Mid)	(High)	
Frequency	1852.4	1880	1907.6	
(MHz)				
Peak-To-Average Ratio (dB)	1.12	1.17	1.28	

Modes	UMTS BAND V		
Channel	4132	4182	4233
	(Low)	(Mid)	(High)
Frequency	826.4	836.4	946.6
(MHz)			846.6
Peak-To-Average Ratio (dB)	1.23	1.53	1.47

Page 27 of 69 Report No.: HK1809271163E

7. OCCUPIED BANDWIDTH

7.1 MEASUREMENT METHOD

- 1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.
- 2. RBW=1~5% of the expected OBW, VBW>=3 x RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

7.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

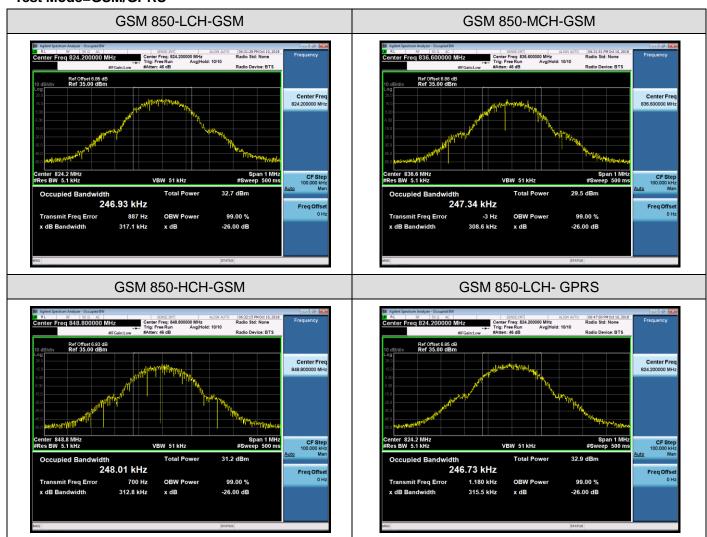
and the second of the second o

Report No.: HK1809271163E

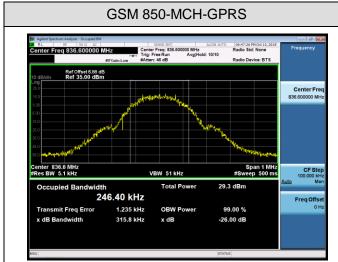
7.3 MEASUREMENT RESULT

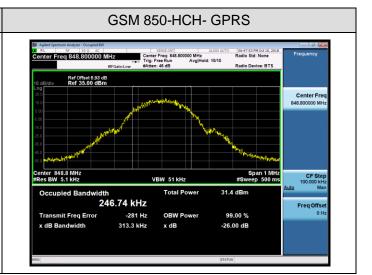
Test Results

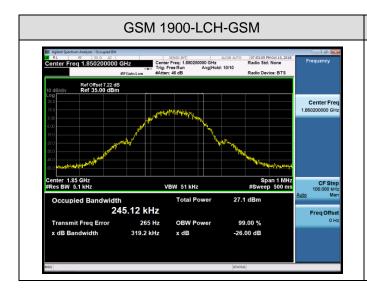
Test	Test	Test	Occupied Bandwidth	Emission Bandwidth	Vardiat
Band	Mode	Channel	(KHZ)	(KHZ)	Verdict
GSM850 —		LCH	246.93	317.1	PASS
	GSM	MCH	247.34	308.6	PASS
		HCH	248.01	312.8	PASS
	GRPS	LCH	246.73	315.5	PASS
		MCH	246.40	315.8	PASS
		HCH	246.74	313.3	PASS

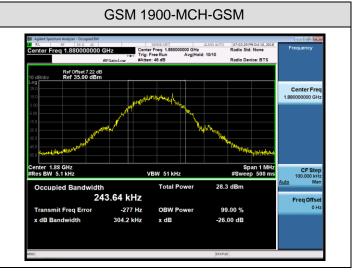

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
GSM1900	GSM	LCH	245.12	319.2	PASS
		MCH	243.64	304.2	PASS
		HCH	244.59	314.3	PASS
	GRPS	LCH	245.57	315.9	PASS
		MCH	246.10	318.5	PASS
		HCH	248.95	315.8	PASS

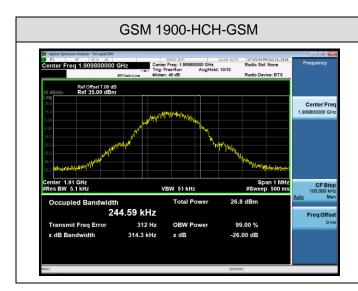
For GSM
Test Band=GSM850/PCS1900

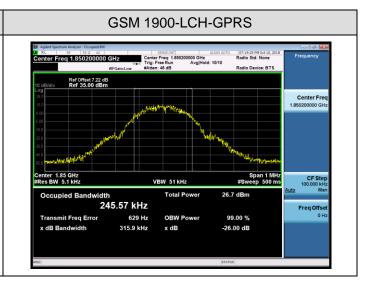

Test Mode=GSM/GPRS

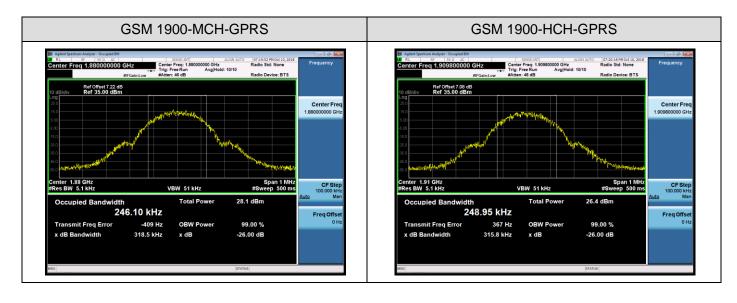



Report No.: HK1809271163E



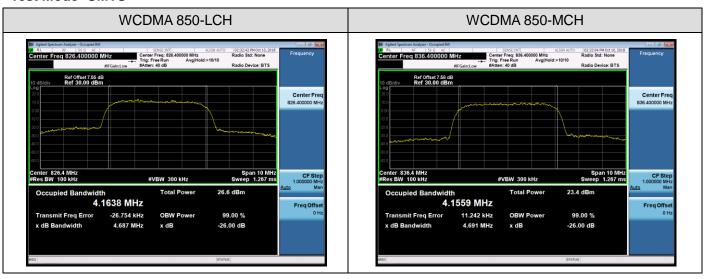

Page 30 of 69 Report No.: HK1809271163E





Report No.: HK1809271163E

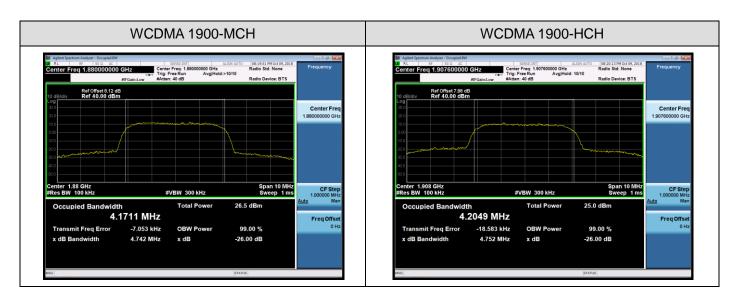
Page 32 of 69 Report No.: HK1809271163E


Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 850	UMTS	LCH	4163.8	4687	PASS
		MCH	4155.9	4691	PASS
		HCH	4156.3	4684	PASS

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 1900	UMTS	LCH	4209.4	4762	PASS
		MCH	4171.1	4742	PASS
		HCH	4204.9	4752	PASS

For WCDMA

Test Band=WCDMA850/WCDMA1900


Test Mode=UMTS

Page 33 of 69 Report No.: HK1809271163E

Page 34 of 69 Report No.: HK1809271163E

8. BAND EDGE

8.1 MEASUREMENT METHOD

- 1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration
- 2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. Span was set large enough so as to capture all out of band emissions near the band edge.
- 5. RBW>1% of the emission bandwidth, VBW >=3 x RBW, Detector=RMS, Number of points>=2 x Span/RBW, Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

8.2 PROVISIONS APPLICABLE

As Specified in FCC rules of 22.917(a) 、24.238(a)and KDB 971168 D1 V03R01.