

# **RADIO TEST REPORT**

# Report No: STS1509130F02

Issued for

# MOVEON TECHNOLOGY LIMITED

World Trade Plaza-A block#3201-3202 Fuhong Road, Futian Shenzhen, China

| Product Name:  | mobile phone    |
|----------------|-----------------|
|                |                 |
| Brand Name:    | MYM             |
| Model No.:     | Cooper          |
| Series Model:  | N/A             |
| FCC ID:        | 2AFD9COOPER     |
| Test Standard: | FCC Part 15.247 |

Any reproduction of this document must be done in full. No single part of this document may be permission from STS, All Test Data Presented in this report is only applicable to presented Test



L A B

S T



# **TEST RESULT CERTIFICATION**

| Applicant's Name MOVEON TECHNOLOGY LIMITED |                                                                                        |  |
|--------------------------------------------|----------------------------------------------------------------------------------------|--|
| Address                                    | World Trade Plaza-A block#3201-3202 Fuhong Road, Futian<br>¨Shenzhen, China            |  |
| Manufacture's Name                         | . MOVEON TECHNOLOGY LIMITED                                                            |  |
| Address                                    | World Trade Plaza-A block#3201-3202 Fuhong Road, Futian<br><sup></sup> Shenzhen, China |  |

#### **Product description**

Product name ..... mobile phone

Band name ..... MYM

Model and/or type reference Cooper

Ratings..... DC 5V/500mA

Standards ..... FCC Part 15.247

Test procedure..... ANSI C63.10-2013

This device described above has been tested by STS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests ..... 29 Sep. 2015 ~10 Oct. 2015

Date of Issue ..... 12 Oct. 2015

Test Result ..... Pass

| Testing Engineer     | :   | Imming      |              |
|----------------------|-----|-------------|--------------|
|                      |     | (Jin Ming)  | STING . CONS |
| Technical Manager    | :   | Mati        |              |
|                      |     | (Vita Li)   | APPROVAL 8   |
| Authorized Signatory | y : | honey Juney | BASS . WOL   |
|                      |     |             |              |

(Bovey Yang)

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Report No.: STS1509130F02



Table of Contents

Page 3 of 73

Page

| 1. SUMMARY OF TEST RESULTS                                  | 6        |
|-------------------------------------------------------------|----------|
| 1.1 TEST FACTORY                                            | 7        |
| 1.2 MEASUREMENT UNCERTAINTY                                 | 7        |
| 2. GENERAL INFORMATION                                      | 8        |
| 2.1 GENERAL DESCRIPTION OF EUT                              | 8        |
| 2.2 DESCRIPTION OF TEST MODES                               | 10       |
| 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING            | 10       |
| 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 11       |
| 2.5 DESCRIPTION OF SUPPORT UNITS                            | 12       |
| 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS                      | 13       |
| 3. EMC EMISSION TEST                                        | 14       |
| 3.1 CONDUCTED EMISSION MEASUREMENT                          | 14       |
| 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS                  | 14       |
| 3.1.2 TEST PROCEDURE                                        | 15       |
| 3.1.3 TEST SETUP<br>3.1.4 EUT OPERATING CONDITIONS          | 15<br>15 |
| 3.1.5 TEST RESULTS                                          | 15<br>16 |
| 3.2 RADIATED EMISSION MEASUREMENT                           | 18       |
| 3.2.1 RADIATED EMISSION LIMITS                              | 18       |
| 3.2.2 TEST PROCEDURE                                        | 19       |
| 3.2.3 DEVIATION FROM TEST STANDARD                          | 19       |
| 3.2.4 TEST SETUP<br>3.2.5 EUT OPERATING CONDITIONS          | 20<br>21 |
| 3.2.6 TEST RESULTS                                          | 22       |
| 4. CONDUCTED SPURIOUS EMISSIONS                             | 28       |
| 4.1 REQUIREMENT                                             | 28       |
| 4.2 TEST PROCEDURE                                          | 28       |
| 4.3 TEST SETUP                                              | 28       |
| 4.4 EUT OPERATION CONDITIONS                                | 28       |
| 4.5 TEST RESULTS                                            | 29       |
| 5. NUMBER OF HOPPING CHANNEL                                | 41       |
| 5.1 APPLIED PROCEDURES / LIMIT                              | 41       |
| 5.2 TEST PROCEDURE                                          | 41       |
| 5.3 TEST SETUP                                              | 41       |
| 5.4 EUT OPERATION CONDITIONS                                | 41       |

 Page 4 of 73
 Report No.: STS1509130F02

 Table of Contents
 Page

 5.5 TEST RESULTS
 42

 6. AVERAGE TIME OF OCCUPANCY
 43

 6.1 APPLIED PROCEDURES / LIMIT
 43

 6.2 TEST PROCEDURE
 43

|                                          | 43 |
|------------------------------------------|----|
| 6.2 TEST PROCEDURE                       | 43 |
| 6.3 TEST SETUP                           | 43 |
| 6.4 EUT OPERATION CONDITIONS             | 43 |
| 6.5 TEST RESULTS                         | 44 |
| 7. HOPPING CHANNEL SEPARATION MEASUREMEN | 50 |
| 7.1 APPLIED PROCEDURES / LIMIT           | 50 |
| 7.2 TEST PROCEDURE                       | 50 |
| 7.3 TEST SETUP                           | 50 |
| 7.4 EUT OPERATION CONDITIONS             | 50 |
| 7.5 TEST RESULTS                         | 51 |
| 8. BANDWIDTH TEST                        | 57 |
| 8.1 APPLIED PROCEDURES / LIMIT           | 57 |
| 8.2 TEST PROCEDURE                       | 57 |
| 8.3 TEST SETUP                           | 57 |
| 8.4 EUT OPERATION CONDITIONS             | 57 |
| 8.5 TEST RESULTS                         | 58 |
| 9. PEAK OUTPUT POWER TEST                | 64 |
| 9.1 APPLIED PROCEDURES / LIMIT           | 64 |
| 9.2 TEST PROCEDURE                       | 64 |
| 9.3 TEST SETUP                           | 64 |
| 9.4 EUT OPERATION CONDITIONS             | 64 |
| 9.5 TEST RESULTS                         | 65 |
| 10. ANTENNA REQUIREMENT                  | 71 |
| 10.1 STANDARD REQUIREMENT                | 71 |
| 10.2 EUT ANTENNA                         | 71 |
|                                          |    |



Page 5 of 73

Report No.: STS1509130F02

# **Revision History**

| Rev. | Issue Date   | Report NO.    | Effect Page | Contents      |
|------|--------------|---------------|-------------|---------------|
| 00   | 12 Oct. 2015 | STS1509130F02 | ALL         | Initial Issue |
|      |              |               |             |               |



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com



#### Report No.: STS1509130F02

# **1. SUMMARY OF TEST RESULTS**

# Test procedures according to the technical standards:

| FCC Part15 (15.247) , Subpart C |                             |          |        |  |
|---------------------------------|-----------------------------|----------|--------|--|
| Standard<br>Section             | Test Item                   | Judgment | Remark |  |
| 15.207                          | Conducted Emission          | PASS     |        |  |
| 15.247(a)(1)                    | Hopping Channel Separation  | PASS     |        |  |
| 15.247(b)(1)                    | Peak Output Power           | PASS     |        |  |
| 15.247(c)                       | Radiated Spurious Emission  | PASS     |        |  |
| 15.247(d)                       | Conducted Spurious Emission | PASS     |        |  |
| 15.247(a)(iii)                  | Number of Hopping Frequency | PASS     |        |  |
| 15.247(a)(iii)                  | Dwell Time                  | PASS     |        |  |
| 15.247(a)(1)                    | Bandwidth                   | PASS     |        |  |
| 15.205                          | Band Edge Emission          | PASS     |        |  |
| 15.203                          | Antenna Requirement         | PASS     |        |  |

# NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



# **1.1 TEST FACTORY**

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China CNAS Registration No.: L7649;

FCC Registration No.: 842334; IC Registration No.: 12108A-1

# 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of  $\ k=2$ , providing a level of confidence of approximately 95 %  $^{\circ}$ 

| No. | Item                                       | Uncertainty |
|-----|--------------------------------------------|-------------|
| 1   | Conducted Emission (9KHz-150KHz)           | ±2.88dB     |
| 2   | Conducted Emission (150KHz-30MHz)          | ±2.67dB     |
| 3   | RF power,conducted                         | ±0.70dB     |
| 4   | Spurious emissions,conducted ±1.19d        |             |
| 5   | All emissions,radiated(<1G) 30MHz-200MHz   | ±2.83dB     |
| 6   | All emissions,radiated(<1G) 200MHz-1000MHz | ±2.94dB     |
| 7   | All emissions, radiated (>1G)              | ±3.03dB     |
| 8   | Temperature                                | ±0.5°C      |
| 9   | Humidity                                   | ±2%         |



# 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF EUT

| Equipment                  | mobile phone                              |                                                 |  |  |
|----------------------------|-------------------------------------------|-------------------------------------------------|--|--|
| Trade Name                 | MYM                                       |                                                 |  |  |
| Model Name                 | Cooper                                    |                                                 |  |  |
| Serial Model               | N/A                                       |                                                 |  |  |
| Model Difference           | N/A                                       |                                                 |  |  |
|                            | The EUT is a mobile ph                    | ione                                            |  |  |
|                            | Operation Frequency:                      | 2402~2480 MHz                                   |  |  |
| Product Description        | Modulation Type:                          | GFSK(1Mbps), π/4-DQPSK(2Mbps),<br>8-DPSK(3Mbps) |  |  |
|                            | Number Of Channel                         | 79                                              |  |  |
|                            | Antenna Gain (dBi)                        | 1 dbi                                           |  |  |
| Channel List               | Please refer to the Note                  | e 2.                                            |  |  |
| Adaptor                    | Input:AC 110-240V,50/60Hz,0.15A           |                                                 |  |  |
| Adapter                    | Output:DC 5V,500mA                        |                                                 |  |  |
| Battery                    | Rated Voltage: 3.7V                       |                                                 |  |  |
|                            | capacity :1200mAh                         |                                                 |  |  |
| Hardware version number    | RX3121MMB02                               |                                                 |  |  |
| Software versioning number | RX3121M_OQ_K12_DA_QQVGA_3232_BFC_M131_R02 |                                                 |  |  |
| Connecting I/O Port(s)     | Please refer to the Use                   | r's Manual                                      |  |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.



|         |                    | Channel | List               |         | -                |
|---------|--------------------|---------|--------------------|---------|------------------|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequer<br>(MHz) |
| 00      | 2402               | 27      | 2429               | 54      | 2456             |
| 01      | 2403               | 28      | 2430               | 55      | 2457             |
| 02      | 2404               | 29      | 2431               | 56      | 2458             |
| 03      | 2405               | 30      | 2432               | 57      | 2459             |
| 04      | 2406               | 31      | 2433               | 58      | 2460             |
| 05      | 2407               | 32      | 2434               | 59      | 2461             |
| 06      | 2408               | 33      | 2435               | 60      | 2462             |
| 07      | 2409               | 34      | 2436               | 61      | 2463             |
| 08      | 2410               | 35      | 2437               | 62      | 2464             |
| 09      | 2411               | 36      | 2438               | 63      | 2465             |
| 10      | 2412               | 37      | 2439               | 64      | 2466             |
| 11      | 2413               | 38      | 2440               | 65      | 2467             |
| 12      | 2414               | 39      | 2441               | 66      | 2468             |
| 13      | 2415               | 40      | 2442               | 67      | 2469             |
| 14      | 2416               | 41      | 2443               | 68      | 2470             |
| 15      | 2417               | 42      | 2444               | 69      | 2471             |
| 16      | 2418               | 43      | 2445               | 70      | 2472             |
| 17      | 2419               | 44      | 2446               | 71      | 2473             |
| 18      | 2420               | 45      | 2447               | 72      | 2474             |
| 19      | 2421               | 46      | 2448               | 73      | 2475             |
| 20      | 2422               | 47      | 2449               | 74      | 2476             |
| 21      | 2423               | 48      | 2450               | 75      | 2477             |
| 22      | 2424               | 49      | 2451               | 76      | 2478             |
| 23      | 2425               | 50      | 2452               | 77      | 2479             |
| 24      | 2426               | 51      | 2453               | 78      | 2480             |
| 25      | 2427               | 52      | 2454               |         |                  |
| 26      | 2428               | 53      | 2455               |         |                  |

# 3. Table for Filed Antenna

| A | nt | Brand | Model Name | Antenna Type   | Connector | Gain (dBi) | NOTE          |
|---|----|-------|------------|----------------|-----------|------------|---------------|
| 1 | 1  | MYM   | Cooper     | Dipole Antenna | N/A       | 1          | BT<br>Antenna |

The EUT antenna is Dipole Antenna. no antenna other than that furnished by the responsible party shall be used with the device.





#### 2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description                |
|--------------|----------------------------|
| Mode 1       | CH00                       |
| Mode 2       | CH39                       |
| Mode 3       | CH78                       |
| Mode 4       | Charging + Keeping TX mode |

| For Conducted Emission            |  |  |  |  |
|-----------------------------------|--|--|--|--|
| Final Test Mode Description       |  |  |  |  |
| Mode 4 Charging + Keeping TX mode |  |  |  |  |

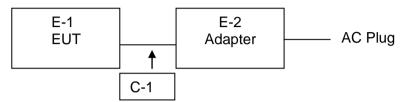
| For Radiated Emission |                            |  |  |  |
|-----------------------|----------------------------|--|--|--|
| Final Test Mode       | Description                |  |  |  |
| Mode 1                | CH00                       |  |  |  |
| Mode 2                | CH39                       |  |  |  |
| Mode 3                | CH78                       |  |  |  |
| Mode 4                | Charging + Keeping TX mode |  |  |  |

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation.

# 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS


| Test software Version | Test program: N/A          |     |     |  |  |
|-----------------------|----------------------------|-----|-----|--|--|
| Frequency             | 2402 MHz 2441 MHz 2480 MHz |     |     |  |  |
| Parameters(1Mbps)     | DEF                        | DEF | DEF |  |  |



# 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

**Radiated Spurious Emission Test** 



Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment    | Mfr/Brand | Model/Type No. | Series No. | Note |
|------|--------------|-----------|----------------|------------|------|
| E-1  | mobile phone | MYM       | Cooper         | N/A        | EUT  |
| E-2  | Adapter      | N/A       | N/A            | N/A        | EUT  |
|      |              |           |                |            |      |
|      |              |           |                |            |      |
|      |              |           |                |            |      |
|      |              |           |                |            |      |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
| C-1  | unshielded    | NO           | 80cm   | N/A  |
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in  $\[\]$  Length  $\[\]$  column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



# 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

#### Conduction Test equipment

| Kind of Equipment      | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated<br>until |
|------------------------|--------------|----------|------------|------------------|---------------------|
| EMI Test Receiver      | R&S          | ESPI     | 102086     | 2014.11.20       | 2015.11.19          |
| LISN                   | R&S          | ENV216   | 101242     | 2014.10.25       | 2015.10.24          |
| LISN                   | EMCO         | 3810/2NM | 000-23625  | 2014.10.25       | 2015.10.24          |
| MXA SIGNAL<br>Analyzer | Agilent      | Agilent  | N9020A     | 2014.10.25       | 2015.10.24          |

# Radiation Test equipment

| Kind of<br>Equipment  | Manufacturer | Type No.            | Serial No. | Last calibration | Calibrated until |
|-----------------------|--------------|---------------------|------------|------------------|------------------|
| Spectrum<br>Analyzer  | Agilent      | E4407B              | MY50140340 | 2014.10.25       | 2015.10.24       |
| Test Receiver         | R&S          | ESCI                | 101427     | 2014.10.25       | 2015.10.24       |
| Bilog Antenna         | TESEQ        | CBL6111D            | 34678      | 2014.11.25       | 2015.11.24       |
| Horn Antenna          | Schwarzbeck  | BBHA<br>9120D(1201) | 9120D-1343 | 2015.03.06       | 2016.03.05       |
| 50Ω Coaxial<br>Switch | Anritsu      | MP59B               | 6200264416 | 2015.06.06       | 2016.06.05       |
| PreAmplifier          | Agilent      | 8449B               | 60538      | 2014.10.25       | 2015.10.24       |
| Loop Antenna          | ARA          | PLA-1030/B          | 1029       | 2015.06.08       | 2016.06.07       |

# RF Connected Test equipment

| Kind of<br>Equipment   | Manufacturer | Type No.   | Serial No.    | Last calibration | Calibrated until |
|------------------------|--------------|------------|---------------|------------------|------------------|
| Spectrum<br>Analyzer   | Agilent      | E4407B     | MY50140340    | 2014.10.25       | 2015.10.24       |
| Test Receiver          | R&S          | ESCI       | 101427        | 2014.10.25       | 2015.10.24       |
| MXA SIGNAL<br>Analyzer | Agilent      | N9020A     | MY49100060    | 2014.10.25       | 2015.10.24       |
| 50Ω Coaxial<br>Switch  | Anritsu      | MP59B      | 6200264416    | 2015.06.06       | 2016.06.05       |
| Loop Antenna           | ARA          | PLA-1030/B | 1029          | 2015.06.08       | 2016.06.07       |
| USB RF power<br>sensor | DARE         | RPR3006W   | 15I00041SNO03 | 2014.10.25       | 2015.10.24       |



# 3. EMC EMISSION TEST

# 3.1 CONDUCTED EMISSION MEASUREMENT

# 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 15.247&207(a) limit in the table below has to be followed.

|                 | Class B (dBuV) |           | Standard |  |
|-----------------|----------------|-----------|----------|--|
| FREQUENCY (MHz) | Quasi-peak     | Average   |          |  |
| 0.15 -0.5       | 66 - 56 *      | 56 - 46 * | CISPR    |  |
| 0.50 -5.0       | 56.00          | 46.00     | CISPR    |  |
| 5.0 -30.0       | 60.00          | 50.00     | CISPR    |  |

| 0.15 -0.5 | 66 - 56 * | 56 - 46 * | FCC |
|-----------|-----------|-----------|-----|
| 0.50 -5.0 | 56.00     | 46.00     | FCC |
| 5.0 -30.0 | 60.00     | 50.00     | FCC |

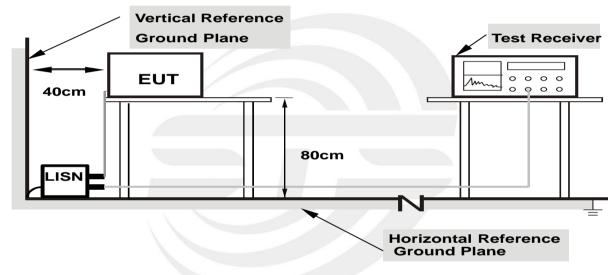
Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |


Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 15 of 73



# 3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.



# 3.1.3 TEST SETUP

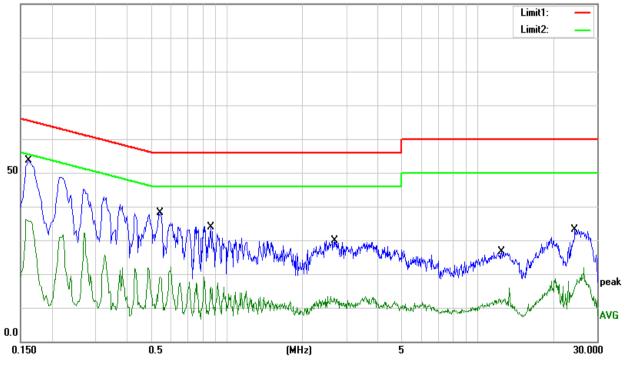
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

# 3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



# 3.1.5 TEST RESULTS


| EUT:          | mobile phone                      | Model Name.:       | Cooper |
|---------------|-----------------------------------|--------------------|--------|
| Temperature:  | <b>26</b> ℃                       | Relative Humidity: | 54%    |
| Pressure:     | 1010hPa                           | Phase:             | L      |
| Test Voltage: | DC 5V from Adapter<br>AC120V/60Hz | Test Mode:         | Mode 4 |

| Frequency | Reading | Correct    | Result | Limit  | Margin | Demerik |
|-----------|---------|------------|--------|--------|--------|---------|
| (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   | Remark  |
| 0.1620    | 43.66   | 10.00      | 53.66  | 65.36  | -11.70 | QP      |
| 0.1620    | 25.72   | 10.00      | 35.72  | 55.36  | -19.64 | AVG     |
| 0.5420    | 28.19   | 9.92       | 38.11  | 56.00  | -17.89 | QP      |
| 0.5420    | 9.10    | 9.92       | 19.02  | 46.00  | -26.98 | AVG     |
| 0.8660    | 23.98   | 9.94       | 33.92  | 56.00  | -22.08 | QP      |
| 0.8660    | 6.12    | 9.94       | 16.06  | 46.00  | -29.94 | AVG     |
| 2.6860    | 19.95   | 10.00      | 29.95  | 56.00  | -26.05 | QP      |
| 2.6860    | 2.70    | 10.00      | 12.70  | 46.00  | -33.30 | AVG     |
| 12.4580   | 16.24   | 10.35      | 26.59  | 60.00  | -33.41 | QP      |
| 12.4580   | 0.83    | 10.35      | 11.18  | 50.00  | -38.82 | AVG     |
| 24.4980   | 22.68   | 10.53      | 33.21  | 60.00  | -26.79 | QP      |
| 24.4980   | 5.30    | 10.53      | 15.83  | 50.00  | -34.17 | AVG     |

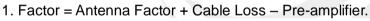
# Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

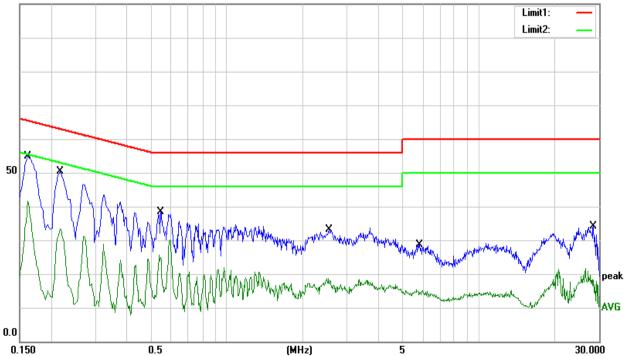
100.0 dBuV



Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com




| EUT:          | mobile phone       | Model Name.:       | Cooper |
|---------------|--------------------|--------------------|--------|
| Temperature:  | <b>26</b> °C       | Relative Humidity: | 54%    |
| Pressure:     | 1010hPa            | Phase:             | N      |
| Test Voltage: | DC 5V from Adapter | Test Mode:         | Mode 4 |

| Frequency | Reading | Correct    | Result | Limit  | Margin | Demerik |
|-----------|---------|------------|--------|--------|--------|---------|
| (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   | Remark  |
| 0.1620    | 44.89   | 10.00      | 54.89  | 65.36  | -10.47 | QP      |
| 0.1620    | 31.54   | 10.00      | 41.54  | 55.36  | -13.82 | AVG     |
| 0.2180    | 40.38   | 9.98       | 50.36  | 62.89  | -12.53 | QP      |
| 0.2180    | 23.46   | 9.98       | 33.44  | 52.89  | -19.45 | AVG     |
| 0.5460    | 28.50   | 9.92       | 38.42  | 56.00  | -17.58 | QP      |
| 0.5460    | 14.93   | 9.92       | 24.85  | 46.00  | -21.15 | AVG     |
| 2.5420    | 23.12   | 10.00      | 33.12  | 56.00  | -22.88 | QP      |
| 2.5420    | 7.22    | 10.00      | 17.22  | 46.00  | -28.78 | AVG     |
| 5.8220    | 18.44   | 10.20      | 28.64  | 60.00  | -31.36 | QP      |
| 5.8220    | 3.83    | 10.20      | 14.03  | 50.00  | -35.97 | AVG     |
| 28.5500   | 23.32   | 10.68      | 34.00  | 60.00  | -26.00 | QP      |
| 28.5500   | 7.43    | 10.68      | 18.11  | 50.00  | -31.89 | AVG     |

### Remark:



100.0 dBuV



 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 18 of 73 Report



# 3.2 RADIATED EMISSION MEASUREMENT

# 3.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on Part 15247&205(a), then the Part 15 247&209(a) limit in the table below has to be followed.

#### LIMITS OF RADIATED EMISSION MEASUREMENT (30MHz - 1000MHz)

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

|                 | Class B (dBuV/m) (at 3M) |         |  |  |
|-----------------|--------------------------|---------|--|--|
| FREQUENCY (MHz) | PEAK                     | AVERAGE |  |  |
| Above 1000      | 74                       | 54      |  |  |

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

| Highest frequency generated or Upper<br>frequency of measurement used in the<br>device or on which the device operates<br>or tunes (MHz) | Range (MHz)                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Below 1.705                                                                                                                              | 30                                                                              |
| 1.705 – 108                                                                                                                              | 1000                                                                            |
| 108 – 500                                                                                                                                | 2000                                                                            |
| 500 – 1000                                                                                                                               | 5000                                                                            |
| Above 1000                                                                                                                               | 5 <sup>th</sup> harmonic of the highest frequency or 40 GHz, whichever is lower |



Page 19 of 73 Report No.: STS1509130F02

| Spectrum Parameter              | Setting                                    |  |
|---------------------------------|--------------------------------------------|--|
| Attenuation                     | Auto                                       |  |
| Detector                        | Peak                                       |  |
| Start Frequency                 | 1000 MHz(Peak/AV)                          |  |
| Stop Frequency                  | 10 <sup>th</sup> carrier harmonic(Peak/AV) |  |
| RB / VB (emission in restricted |                                            |  |
| band)                           | 1 MHz / 1 MHz, AV=1 MHz / 10Hz             |  |

| Receiver Parameter     | Setting                          |  |
|------------------------|----------------------------------|--|
| Attenuation            | Auto                             |  |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |  |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |  |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |  |

# 3.2.2 TEST PROCEDURE

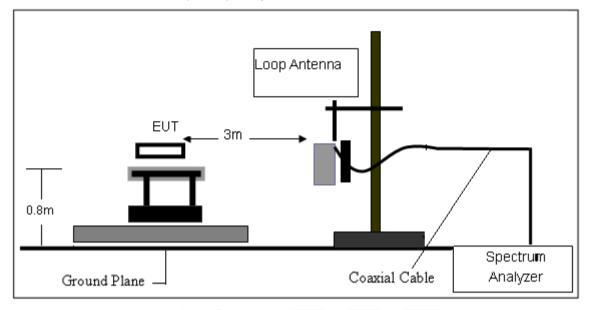
- The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz.
- <sup>a.</sup> For frequencies above 1GHz, any suitable measuring distance may be used.
- The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the b. ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

The height of the equipment or of the substitution antenna shall be 0.8 m (above 1GHz is 1.5

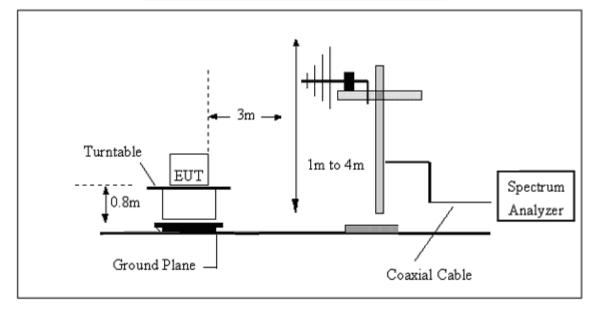
- c. m); the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector d. mode pre-scanning the measurement frequency range. Significant peaks are then marked and
- then Quasi Peak detector mode re-measured. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the
- e. EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

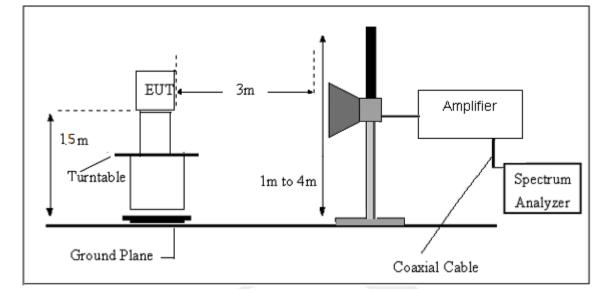

#### 3.2.3 DEVIATION FROM TEST STANDARD

#### No deviation




# 3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz




(B) Radiated Emission Test-Up Frequency 30MHz~1GHz





### (C) Radiated Emission Test-Up Frequency Above 1GHz



# 3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



# 3.2.6 TEST RESULTS

# Below 30MHz

| EUT:         | mobile phone | Model Name.:       | Cooper                             |
|--------------|--------------|--------------------|------------------------------------|
| Temperature: | <b>26</b> ℃  | Relative Humidity: | 54%                                |
| Pressure:    | 1010hPa      | Test Voltage:      | DC 5V from Adapter AC<br>120V/60Hz |
| Test Mode:   | Mode 4       |                    |                                    |

| Freq. | Reading  | Limit    | Margin | State |
|-------|----------|----------|--------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|       |          |          |        | PASS  |
|       |          |          |        | PASS  |

#### NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.





# Between 30-1000MHz

| EUT:          | mobile phone                       | Model Name.:       | Cooper     |
|---------------|------------------------------------|--------------------|------------|
| Temperature:  | <b>26</b> °C                       | Relative Humidity: | 54%        |
| Pressure:     | 1010hPa                            | Phase:             | Horizontal |
| Test Voltage: | DC 5V from Adapter AC<br>120V/60Hz | Test Mode:         | Mode 4     |

| Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----------|---------|--------------|----------|----------|--------|--------|
| (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 31.2893   | 5.32    | 18.04        | 23.36    | 40.00    | -16.64 | QP     |
| 72.5916   | 7.79    | 6.75         | 14.54    | 40.00    | -25.46 | QP     |
| 100.9340  | 7.83    | 10.81        | 18.64    | 43.50    | -24.86 | QP     |
| 140.8351  | 11.11   | 12.05        | 23.16    | 43.50    | -20.34 | QP     |
| 266.6090  | 4.67    | 14.78        | 19.45    | 46.00    | -26.55 | QP     |
| 568.6127  | 4.90    | 22.56        | 27.46    | 46.00    | -18.54 | QP     |

#### Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

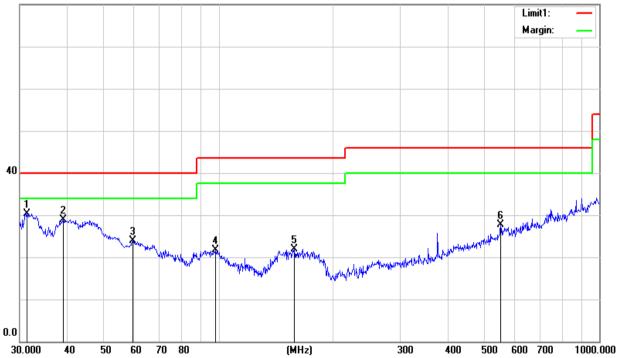
#### 80.0 dBuV/m



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com




| EUT:          | mobile phone                       | Model Name.:       | Cooper   |
|---------------|------------------------------------|--------------------|----------|
| Temperature:  | <b>26</b> ℃                        | Relative Humidity: | 54%      |
| Pressure:     | 1010hPa                            | Phase:             | Vertical |
| Test Voltage: | DC 5V from Adapter AC<br>120V/60Hz | Test Mode:         | Mode 4   |

| Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----------|---------|--------------|----------|----------|--------|--------|
| (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 31.3992   | 12.40   | 17.98        | 30.38    | 40.00    | -9.62  | QP     |
| 39.0245   | 15.00   | 13.99        | 28.99    | 40.00    | -11.01 | QP     |
| 59.4405   | 18.47   | 5.42         | 23.89    | 40.00    | -16.11 | QP     |
| 98.1420   | 11.29   | 10.44        | 21.73    | 43.50    | -21.77 | QP     |
| 158.1123  | 10.18   | 11.69        | 21.87    | 43.50    | -21.63 | QP     |
| 550.9480  | 5.11    | 22.53        | 27.64    | 46.00    | -18.36 | QP     |

#### Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

#### 80.0 dBuV/m





# Above 1000 MHz

| Frequency | Meter Reading          | Factor | Emission Level   | Limits   | Margin | Detector | 0          |  |  |  |  |
|-----------|------------------------|--------|------------------|----------|--------|----------|------------|--|--|--|--|
| (MHz)     | (dBµV)                 | (dB)   | (dBµV/m)         | (dBµV/m) | (dB)   | Туре     | Comment    |  |  |  |  |
|           | Low Channel (2402 MHz) |        |                  |          |        |          |            |  |  |  |  |
| 4804.20   | 62.70                  | -3.62  | 59.08            | 74       | -14.92 | PK       | Vertical   |  |  |  |  |
| 4804.22   | 43.50                  | -3.62  | 39.88            | 54       | -14.12 | AV       | Vertical   |  |  |  |  |
| 7206.13   | 58.66                  | -0.9   | 57.76            | 74       | -16.24 | PK       | Vertical   |  |  |  |  |
| 7206.12   | 38.00                  | -0.9   | 37.1             | 54       | -16.9  | AV       | Vertical   |  |  |  |  |
| 4804.00   | 58.50                  | -3.65  | 54.85            | 74       | -19.15 | PK       | Horizontal |  |  |  |  |
| 4803.98   | 40.98                  | -3.65  | 37.33            | 54       | -16.67 | AV       | Horizontal |  |  |  |  |
|           | Mid Channel (2441 MHz) |        |                  |          |        |          |            |  |  |  |  |
| 4882.08   | 63.62                  | -3.65  | 59.97            | 74       | -14.03 | PK       | Vertical   |  |  |  |  |
| 4882.07   | 48.06                  | -3.65  | 44.41            | 54       | -9.59  | AV       | Vertical   |  |  |  |  |
| 7323.21   | 59.87                  | -0.84  | 59.03            | 74       | -14.97 | PK       | Vertical   |  |  |  |  |
| 7323.21   | 42.50                  | -0.84  | 41.66            | 54       | -12.34 | AV       | Vertical   |  |  |  |  |
| 4882.18   | 60.30                  | -3.68  | 56.62            | 74       | -17.38 | PK       | Horizontal |  |  |  |  |
| 4882.15   | 43.53                  | -3.68  | 39.85            | 54       | -14.15 | AV       | Horizontal |  |  |  |  |
|           |                        | / /    | High Channel (24 | 80 MHz)  |        |          |            |  |  |  |  |
| 4960.26   | 59.96                  | -3.59  | 56.37            | 74       | -17.63 | PK       | Vertical   |  |  |  |  |
| 4960.30   | 44.26                  | -3.59  | 40.67            | 54       | -13.33 | AV       | Vertical   |  |  |  |  |
| 7440.33   | 59.64                  | -0.83  | 58.81            | 74       | -15.19 | PK       | Vertical   |  |  |  |  |
| 7440.30   | 43.69                  | -0.83  | 42.86            | 54       | -11.14 | AV       | Vertical   |  |  |  |  |
| 4960.32   | 60.21                  | -3.59  | 56.62            | 74       | -17.38 | PK       | Horizontal |  |  |  |  |
| 4960.30   | 43.68                  | -3.59  | 40.09            | 54       | -13.91 | AV       | Horizontal |  |  |  |  |

Note:

1) 30MHz~25GHz:(Scan with GFSK,  $\pi$ /4-DQPSK,8DPSK, the worst casw is GFSK Mode)

2) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Limit - Emission Leve



Page 26 of 73

Report No.: STS1509130F02

# Band edge

| Frequency | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector |            |
|-----------|---------------|--------|----------------|----------|--------|----------|------------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     | Comment    |
|           |               |        | GFSK           |          |        |          |            |
| 2399.9    | 66.97         | -12.99 | 53.98          | 74       | -20.02 | PK       | Vertical   |
| 2399.9    | 52.76         | -12.99 | 39.77          | 54       | -14.23 | AV       | Vertical   |
| 2399.9    | 68.29         | -12.99 | 55.30          | 74       | -18.70 | PK       | Horizontal |
| 2399.9    | 51.76         | -12.99 | 38.77          | 54       | -15.23 | AV       | Horizontal |
| 2483.6    | 68.75         | -12.78 | 55.97          | 74       | -18.03 | PK       | Vertical   |
| 2483.6    | 51.96         | -12.78 | 39.18          | 54       | -14.82 | AV       | Vertical   |
| 2483.6    | 68.63         | -12.78 | 55.85          | 74       | -18.15 | PK       | Horizontal |
| 2483.6    | 52.02         | -12.78 | 39.24          | 54       | -14.76 | AV       | Horizontal |
|           |               |        | π/4-DQPSK      |          |        |          |            |
| 2399.9    | 69.27         | -12.99 | 56.28          | 74       | -17.72 | PK       | Vertical   |
| 2399.9    | 52.37         | -12.99 | 39.38          | 54       | -14.62 | AV       | Vertical   |
| 2399.9    | 68.25         | -12.99 | 55.26          | 74       | -18.74 | PK       | Horizontal |
| 2399.9    | 53.11         | -12.99 | 40.12          | 54       | -13.88 | AV       | Horizontal |
| 2483.6    | 68.80         | -12.78 | 56.02          | 74       | -17.98 | PK       | Vertical   |
| 2483.6    | 54.14         | -12.78 | 41.36          | 54       | -12.64 | AV       | Vertical   |
| 2483.6    | 69.09         | -12.78 | 56.31          | 74       | -17.69 | PK       | Horizontal |
| 2483.6    | 52.25         | -12.78 | 39.47          | 54       | -14.53 | AV       | Horizontal |
|           |               |        | 8DPSK          |          |        |          |            |
| 2399.9    | 69.18         | -12.99 | 56.19          | 74       | -17.81 | PK       | Vertical   |
| 2399.9    | 52.85         | -12.99 | 39.86          | 54       | -14.14 | AV       | Vertical   |
| 2399.9    | 67.90         | -12.99 | 54.91          | 74       | -19.09 | PK       | Horizontal |
| 2399.9    | 53.49         | -12.99 | 40.50          | 54       | -13.50 | AV       | Horizontal |
| 2483.6    | 69.11         | -12.78 | 56.33          | 74       | -17.67 | PK       | Vertical   |
| 2483.6    | 52.55         | -12.78 | 39.77          | 54       | -14.23 | AV       | Vertical   |
| 2483.6    | 69.31         | -12.78 | 56.53          | 74       | -17.47 | PK       | Horizontal |
| 2483.6    | 52.56         | -12.78 | 39.78          | 54       | -14.22 | AV       | Horizontal |

Low measurement frequencies is range from 2310 to 2400 MHz, high measurement frequencies is range from 2483.5 to 2500 MHz.

Only show the worst point data of the emissions in the frequency 2310-2400 MHz and 2483.5-2500 MHz.



Page 27 of 73

Report No.: STS1509130F02

# Hopping

| Fraguenas | Motor Pooding | Factor | Emission Loug  | Limits   | Margin | Detector |            |
|-----------|---------------|--------|----------------|----------|--------|----------|------------|
| Frequency | Meter Reading | Factor | Emission Level |          | Ű      | Detector | Comment    |
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |            |
|           |               |        | GFSK           |          |        |          |            |
| 2390.0    | 66.71         | -12.99 | 53.72          | 74       | -20.28 | PK       | Vertical   |
| 2390.0    | 54.32         | -12.99 | 41.33          | 54       | -12.67 | AV       | Vertical   |
| 2390.0    | 65.60         | -12.99 | 52.61          | 74       | -21.39 | PK       | Horizontal |
| 2390.0    | 51.52         | -12.99 | 38.53          | 54       | -15.47 | AV       | Horizontal |
| 2483.5    | 65.85         | -12.78 | 53.07          | 74       | -20.93 | PK       | Vertical   |
| 2483.5    | 51.89         | -12.78 | 39.11          | 54       | -14.89 | AV       | Vertical   |
| 2483.5    | 66.54         | -12.78 | 53.76          | 74       | -20.24 | PK       | Horizontal |
| 2483.5    | 53.03         | -12.78 | 40.25          | 54       | -13.75 | AV       | Horizontal |
|           |               |        | π/4-DQPSK      |          |        |          |            |
| 2390.0    | 66.88         | -12.99 | 53.89          | 74       | -20.11 | PK       | Vertical   |
| 2390.0    | 54.10         | -12.99 | 41.11          | 54       | -12.89 | AV       | Vertical   |
| 2390.0    | 66.08         | -12.99 | 53.09          | 74       | -20.91 | PK       | Horizontal |
| 2390.0    | 51.51         | -12.99 | 38.52          | 54       | -15.48 | AV       | Horizontal |
| 2483.5    | 66.04         | -12.78 | 53.26          | 74       | -20.74 | PK       | Vertical   |
| 2483.5    | 52.04         | -12.78 | 39.26          | 54       | -14.74 | AV       | Vertical   |
| 2483.5    | 66.62         | -12.78 | 53.84          | 74       | -20.16 | PK       | Horizontal |
| 2483.5    | 52.76         | -12.78 | 39.98          | 54       | -14.02 | AV       | Horizontal |
|           |               |        | 8DPSK          |          |        |          |            |
| 2390.0    | 66.36         | -12.99 | 53.37          | 74       | -20.63 | PK       | Vertical   |
| 2390.0    | 54.13         | -12.99 | 41.14          | 54       | -12.86 | AV       | Vertical   |
| 2390.0    | 65.58         | -12.99 | 52.59          | 74       | -21.41 | PK       | Horizontal |
| 2390.0    | 51.35         | -12.99 | 38.36          | 54       | -15.64 | AV       | Horizontal |
| 2483.5    | 65.97         | -12.78 | 53.19          | 74       | -20.81 | PK       | Vertical   |
| 2483.5    | 51.96         | -12.78 | 39.18          | 54       | -14.82 | AV       | Vertical   |
| 2483.5    | 67.12         | -12.78 | 54.34          | 74       | -19.66 | PK       | Horizontal |
| 2483.5    | 52.75         | -12.78 | 39.97          | 54       | -14.03 | AV       | Horizontal |

Low measurement frequencies is range from 2310 to 2400 MHz, high measurement frequencies is range from 2483.5 to 2500 MHz.

Only show the worst point data of the emissions in the frequency 2310-2400 MHz and 2483.5-2500 MHz.



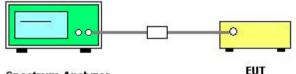
# 4. CONDUCTED SPURIOUS EMISSIONS

# 4.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### 4.2 TEST PROCEDURE

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


| Spectrum Parameter                    | Setting                         |
|---------------------------------------|---------------------------------|
| Detector                              | Peak                            |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |
| Trace-Mode:                           | Max hold                        |

For Band edge

| Spectrum Parameter                    | Setting                          |  |  |
|---------------------------------------|----------------------------------|--|--|
| Detector                              | Peak                             |  |  |
| Stort/Stop Fragueney                  | Lower Band Edge: 2310 – 2404 MHz |  |  |
| Start/Stop Frequency                  | Upper Band Edge: 2478 – 2500 MHz |  |  |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |  |  |
| Trace-Mode:                           | Max hold                         |  |  |

Remark : Hopping on and Hopping off mode all have been tested, only worst case hopping off is reported.

4.3 TEST SETUP



Spectrum Analyzer

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

# 4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



# 4.5 TEST RESULTS

|--|

# 00 CH

| External Gain      | 06:05:21 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P P P P P P | ALIGN AUTO            |                  | Trig: Free<br>#Atten: 30 | PNO: Fast              | 50Ω AC           | RF                    |                       | RL          |
|--------------------|---------------------------------------------------------------------------------|-----------------------|------------------|--------------------------|------------------------|------------------|-----------------------|-----------------------|-------------|
| ExtPrean<br>0.00 c | lkr1 2.402 GHz<br>3.027 dBm                                                     | М                     | U 80             | #Atten: 30               | IFGain:Low             |                  | Ref Offse<br>Ref 8.03 | /div                  | 0 dB        |
| N                  |                                                                                 |                       |                  |                          |                        |                  | X1                    |                       | og<br>1.97  |
| 0.00 c             |                                                                                 |                       |                  |                          |                        |                  |                       |                       | 12.0        |
|                    | -19.74 dBm                                                                      |                       |                  |                          |                        |                  | _                     |                       | 22.0        |
|                    |                                                                                 |                       |                  |                          |                        |                  | _                     |                       | 32.0        |
| B1<br>0.00 d       | <u> </u>                                                                        |                       |                  |                          |                        |                  |                       |                       | 42.0        |
| 0.00 0             |                                                                                 | and the second states | الدرود والسيافين | met one our but tablis   | anda Maria             | . Luc astelluses |                       |                       | 52.0        |
|                    |                                                                                 |                       |                  |                          |                        |                  |                       |                       | 52.0        |
|                    |                                                                                 |                       |                  |                          |                        |                  | _                     |                       | 72.0 -      |
|                    |                                                                                 |                       |                  |                          |                        |                  |                       |                       | 32.0 -      |
|                    | Stop 25.00 GHz<br>2.39 s (8001 pts)                                             | Sweep                 |                  | W 300 kHz                | #VBI                   |                  | Hz<br>00 kHz          | 30 M<br>BW 1          |             |
|                    | FUNCTION VALUE                                                                  | N FUNCTION WIDTH      |                  | 3.027 dl<br>-49.741 dl   | 2.402 GHz<br>4.401 GHz |                  | SCL<br>f<br>f         | ide tri<br>N 1<br>N 1 | 1<br>2<br>3 |
|                    |                                                                                 |                       |                  |                          |                        |                  |                       |                       | 4<br>5      |
|                    |                                                                                 |                       |                  |                          |                        |                  |                       |                       | 6<br>7      |
|                    |                                                                                 |                       |                  |                          |                        |                  |                       |                       | 6           |

# 39 CH

| RL   RF   50                  | DQ AC                                                                                                            | SENSE:INT                                          | ALIGN AUTO<br>Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06:06:28 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWWW | External Gain |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------|
|                               | PNO: Fast<br>IFGain:Low                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DETPPPP                                                       | ExtPream      |
| Ref Offset<br>dB/div Ref 8.07 |                                                                                                                  |                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1kr1 2.440 GHz<br>3.069 dBm                                   | 0.00          |
| g 1<br>93                     |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | 1             |
| 9                             |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -16.93 dBm                                                    | 0.00          |
| 9                             |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
| 9                             |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | в             |
| 9                             |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                      | 0.00          |
|                               | and the second | والباح والمحال الجوالة والمحالي والمحالي والمحالية | and the second diversion of th |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
| 9                             |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
| art 30 MHz<br>es BW 100 kHz   | #\/                                                                                                              | 300 kHz                                            | Swoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop 25.00 GHz<br>2.39 s (8001 pts)                           |               |
| NODE TRC SCL                  | * *                                                                                                              |                                                    | INCTION FUNCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FUNCTION VALUE                                                |               |
| N 1 f                         | 2.440 GHz                                                                                                        | 3.069 dBm                                          | Tonenon wom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOREHOR VALUE                                                 |               |
| N 1 f                         | 24.401 GHz                                                                                                       | -49.171 dBm                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |
|                               |                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |               |



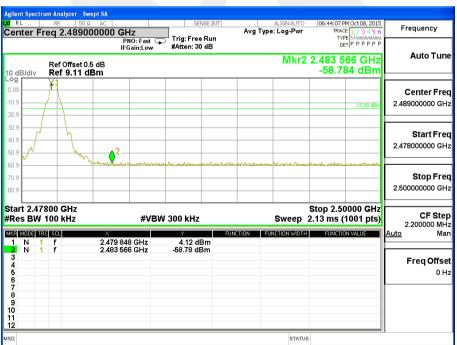


| 1000 |
|------|
|------|

| gilent Spectrum Analyzer - Sv                                                                                                                                          |                              |                                 |                                 |                                                                               |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------------|-------------------------------|
| RL RF 503<br>Center Freq 12.515                                                                                                                                        |                              | Trig: Free Run<br>#Atten: 30 dB | ALIGN AUTO<br>Avg Type: Log-Pwr | 06:45:50 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P P P P P | Frequency                     |
| Ref Offset 0<br>0 dB/div Ref 8.75 d                                                                                                                                    |                              |                                 | N                               | lkr1 2.480 GHz<br>3.750 dBm                                                   | Auto Tun                      |
| 1.25<br>11.3<br>21.3                                                                                                                                                   |                              |                                 |                                 | -16.25 dBm                                                                    | Center Fre<br>12.515000000 GF |
| 41.3                                                                                                                                                                   |                              |                                 |                                 |                                                                               | Start Fre<br>30.000000 MH     |
| 61.3                                                                                                                                                                   |                              |                                 |                                 |                                                                               | Stop Fre<br>25.00000000 GH    |
| tart 30 MHz<br>Res BW 100 kHz                                                                                                                                          |                              | W 300 kHz                       | -                               | Stop 25.00 GHz<br>2.39 s (8001 pts)                                           | CF Ste<br>2.497000000 GF      |
| IXR         MODE         TRC         SCL           1         N         1         f           2         N         1         f           3         4         5         5 | ×<br>2.480 GHz<br>24.700 GHz | ¥ F<br>3.750 dBm<br>-49.502 dBm | FUNCTION FUNCTION WIDTH         | FUNCTION VALUE                                                                | Auto Ma<br>Freq Offs<br>0 H   |
| 6<br>7<br>8<br>9<br>0<br>1<br>2                                                                                                                                        |                              |                                 |                                 |                                                                               | L                             |
| 5G                                                                                                                                                                     |                              |                                 | STATUS                          |                                                                               |                               |



Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



# For Band edge

|                            | rum Analyzer                  |                  |                        |                                         |                 |           |                        |                                               |                |
|----------------------------|-------------------------------|------------------|------------------------|-----------------------------------------|-----------------|-----------|------------------------|-----------------------------------------------|----------------|
| LXIRL                      | RF                            | 50 Ω AC          |                        |                                         | SE:INT          | Avg Type  | ALIGNAUTO<br>: Log-Pwr | 06:04:35 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6 | External Gain  |
|                            |                               |                  | NO: Fast 🗔<br>Gain:Low | Trig: Free<br>#Atten: 30                |                 |           |                        |                                               | ExtPreamp      |
| 10 dB/div                  | Ref Offse<br>Ref 9.19         |                  |                        |                                         |                 |           | Mkr                    | 2 2.401 81 GHz<br>4.191 dBm                   | 0.00 dB        |
| -0.81                      |                               |                  |                        |                                         |                 |           |                        | 2                                             | IVIS           |
| -10.8                      |                               |                  |                        |                                         |                 |           |                        | -15.81 BBm                                    | 0.00 dE        |
| -20.8                      |                               |                  |                        |                                         |                 |           |                        | -15.01 per                                    | 0.00 42        |
| -30.8                      |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| 40.8                       |                               |                  |                        |                                         |                 |           |                        |                                               | BT:<br>0.00 dB |
| -50.8                      |                               |                  |                        |                                         |                 |           |                        | Q' \                                          | 0.00 01        |
| -60.8 400 March 100        | and and a state of the second | entrene allowing | hennen                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | whythelphaneter | - gennade | مهاری را ار رو<br>ا    | tot have my constructed                       |                |
| -70.8                      |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| -80.8                      |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| Start 2.31<br>#Res BW      | 1000 GHz<br>100 kHz           |                  | #VBV                   | V 300 kHz                               |                 |           |                        | Stop 2.40400 GHz<br>9.00 ms (601 pts)         |                |
| MKR MODE T                 |                               | ×<br>2.399 9     | 3 GHz                  | ĭ<br>-54,199 d⊟                         |                 | NCTION FU | NCTION WIDTH           | FUNCTION VALUE                                |                |
| 2 N 1                      | f                             | 2.401 8          |                        | 4.191 dE                                |                 |           |                        |                                               |                |
| 3<br>4                     |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| 5<br>6                     |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| 4<br>5<br>6<br>7<br>8<br>9 |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| 9<br>10                    |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| 11                         |                               |                  |                        |                                         |                 |           |                        |                                               |                |
| 12                         |                               |                  |                        |                                         |                 |           |                        | 1                                             |                |
| SG                         |                               |                  |                        |                                         |                 |           | STATUS                 |                                               |                |

78 CH







# For Hopping Band edge

00 CH

|               | 06:59:59 PM Oct 08, 2015         | ALIGN AUTO             |          | SENSE:INT    |        |            | - Swept SA<br>50 Ω AC | um Analyzer -<br>RF 5 | R L                |
|---------------|----------------------------------|------------------------|----------|--------------|--------|------------|-----------------------|-----------------------|--------------------|
| Marker        | TRACE 1 2 3 4 5 6<br>TYPE MWWWWW | e:Log-Pwr<br>:>100/100 |          | g: Free Run  |        | PNO: Fast  |                       |                       |                    |
| Select Marker | DET PNNNN                        |                        |          | en: 20 dB    | Att    | IFGain:Low |                       |                       |                    |
| 1             | 2.408 000 GHz<br>3.838 dBm       | Mkr1                   |          |              |        |            | 00 dBm                | Ref 10.0              | dB/div             |
|               | 1                                |                        |          |              |        |            |                       | Kei 10.0              | <sup>g</sup>       |
| Norma         | MAN                              |                        |          |              |        |            |                       |                       | .00                |
|               | -16.20 dBm                       |                        |          |              |        |            |                       |                       | 0.0                |
|               |                                  |                        |          |              |        |            |                       |                       | 10                 |
| Del           |                                  |                        |          |              |        |            |                       |                       | 0.0                |
|               |                                  |                        |          |              |        |            |                       |                       | 0.0                |
| Fixed         | <b>♀</b> ∠                       |                        |          |              |        |            |                       |                       | 0.0                |
|               | and a start of the               |                        | ·····    |              | A      |            |                       |                       | ).0 <mark></mark>  |
|               |                                  |                        |          |              |        |            |                       |                       | 0.0                |
|               | Stop 2.40800 GHz                 |                        |          |              |        |            |                       | 000 GHz               |                    |
| C             | 9.40 ms (1001 pts)               | Sweep 9                |          | kHz          | BW 300 | #VB        |                       | 100 kHz               | les BW             |
|               | FUNCTION VALUE                   | NCTION WIDTH           | FUNCTION | 7<br>838 dBm |        | 8 000 GHz  | ×<br>2.409            | C SCL                 | r Mode ti<br>1 n 1 |
|               |                                  |                        |          | 813 dBm      |        | 9 804 GHz  |                       | f                     | 2 N 1              |
| Properties    |                                  |                        |          |              |        |            |                       |                       | 4                  |
| •             |                                  |                        |          |              |        |            |                       |                       | 4<br>5<br>5<br>7   |
|               |                                  |                        |          |              |        |            |                       |                       | 7<br>3<br>9        |
| Мо            |                                  |                        |          |              |        |            |                       |                       | )                  |
| 1 of          |                                  |                        |          |              |        |            |                       |                       | 2                  |
|               |                                  | STATUS                 |          |              |        |            |                       |                       | 3                  |





| Test Mode : | π/4-DQPSK(2Mbps) –00/39/78 CH |
|-------------|-------------------------------|
|-------------|-------------------------------|

# 00 CH

| Agilent Spectrum Analyzer -                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|
| ₩ RL RF 50<br>Center Freq 12.51                                                                                                                                                                                                                                                                                                                                                                                             |                         | SENSE:INT                         | ALIGN AUTO<br>Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07:08:26 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6          | Frequency                           |
| Ref Offset                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | ➡ Trig: Free Run<br>#Atten: 30 dB | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYPE<br>DET P P P P P P<br>Ikr1 2.402 GHz<br>0.340 dBm | Auto Tune                           |
| - <b>og</b> 1<br>-4.66<br>-14.7<br>-24.7                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -19.66 dBm                                             | Center Fre<br>12.515000000 GH       |
| 34.7<br>44.7<br>54.7                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                   | a state and a stat |                                                        | Start Fre<br>30.000000 MH           |
| 64.7<br>74.7<br>34.7                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Stop Fre<br>25.000000000 G⊦         |
| tart 30 MHz<br>Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                               | #VB                     | W 300 kHz                         | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop 25.00 GHz<br>2.39 s (8001 pts)<br>cunction value  | CF Ste<br>2.497000000 GH<br>Auto Ma |
| 1         N         1         f           2         N         1         f           3         -         -         -           4         -         -         -           5         -         -         -           6         -         -         -           7         -         -         -           9         -         -         -           10         -         -         -           12         -         -         - | 2.402 GHz<br>24.426 GHz | 0.340 dBm<br>-50.442 dBm          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Freq Offse<br>0 ⊢                   |
| 3G                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                   | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                     |

|                                   |                                                                                |                          |        |                                                         |          | - Swept SA | pectrum Analyzer     | Agilent S                |
|-----------------------------------|--------------------------------------------------------------------------------|--------------------------|--------|---------------------------------------------------------|----------|------------|----------------------|--------------------------|
| Frequency                         | 07:09:27 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWW<br>DET P P P P P P | ALIGN AUTO<br>e: Log-Pwr | Avg Ty | ig: Free Run<br>tig: 30 dB                              | NO: East | P          | RF<br>Pr Freq 12.5   | a <sub>RL</sub><br>Cente |
| Auto Tur                          | kr1 2.440 GHz<br>2.257 dBm                                                     | M                        |        |                                                         |          |            | Ref Offse            | 0 dB/d                   |
| Center Fre                        |                                                                                |                          |        |                                                         |          |            | ×1                   | 2.74                     |
| 12.515000000 GI                   | -17.74 dBm                                                                     |                          |        |                                                         |          |            |                      | 2.7                      |
| <b>Start Fro</b><br>30.000000 MI  | -                                                                              |                          |        | ر می اندوانده اندواند.<br>رو با از و اندواند و اندواند. |          |            |                      | 12.7<br>12.7<br>52.7     |
| <b>Stop Fro</b><br>25.00000000 GI |                                                                                |                          |        |                                                         |          |            |                      | 2.7 🚧<br>2.7 —<br>2.7 —  |
| <b>CF Ste</b><br>2.497000000 GI   | Stop 25.00 GHz<br>2.39 s (8001 pts)                                            |                          |        |                                                         | #VBW 30  |            | 30 MHz<br>BW 100 kHz | Res                      |
| <u>Auto</u> M                     | FUNCTION VALUE                                                                 | INCTION WIDTH            | NCTION | 2.257 dBm<br>0.217 dBm                                  |          |            |                      | 1 N<br>2 N               |
| Freq Offs<br>01                   |                                                                                |                          |        |                                                         |          |            |                      | 3<br>4<br>5<br>6<br>7    |
|                                   |                                                                                |                          |        |                                                         |          |            |                      | 8<br>9<br>0<br>1         |
|                                   |                                                                                | STATUS                   |        |                                                         |          |            |                      | <b>2</b><br>66           |



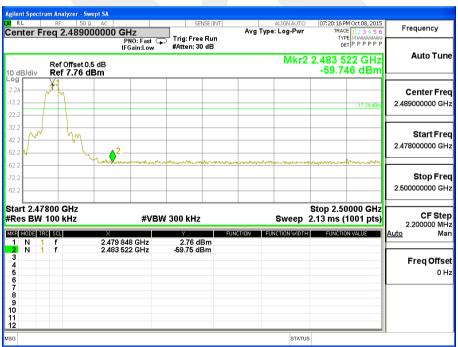
# 78 CH

|                            |                                     |               |         | SENSE:INT                       |                         | n Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|----------------------------|-------------------------------------|---------------|---------|---------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Frequency                  | Avg ippe. Log-Fwi 10002 1 2 3 4 3 0 |               |         |                                 |                         | RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XIRL<br>Center Er |
| Auto Tune                  | DET P P P P P                       |               |         | Trig: Free Run<br>#Atten: 30 dB | PNO: Fast<br>IFGain:Low | q 12.51500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                            | kr1 2.480 GHz<br>2.549 dBm          | М             |         |                                 |                         | Ref Offset 0.5 dB<br>Ref 7.55 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 dB/div         |
| Center Fre                 |                                     |               |         |                                 |                         | X1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.45             |
| 12.515000000 GH            | -17.45 dBm                          |               |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -12.5             |
| Start Fre                  |                                     |               |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32.5             |
| 30.000000 MH               | <u> </u>                            |               |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -42.5             |
|                            |                                     |               |         |                                 |                         | and the product of the last of |                   |
| Stop Fre<br>25.00000000 GH |                                     |               |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -72.5             |
|                            | Stop 25.00 GHz                      |               |         |                                 |                         | lz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Start 30 M        |
| CF Ste<br>2.49700000 GH    | 2.39 s (8001 pts)                   |               |         | 300 kHz                         | #VBW :                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Res BW 1          |
| <u>Auto</u> Ma             | FUNCTION VALUE                      | UNCTION WIDTH | JNCTION | 2.549 dBm<br>-50.535 dBm        | 2.480 GHz<br>4.501 GHz  | f 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 N 1<br>2 N 1    |
| Freq Offs                  |                                     |               |         | -00.000 ubin                    | 1.001 0112              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                 |
| 0 H                        |                                     |               |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>6<br>7       |
|                            |                                     |               |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8<br>9            |
|                            |                                     |               |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>11<br>12    |
|                            | ]                                   | STATUS        |         |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IZ                |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com




#### Report No.: STS1509130F02

# For Band edge

|                            | rum Analyzer - S |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                |                              |
|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|------------------------|------------------------------|----------------|------------------------------|
| Center F                   |                  | DO0000 GH                                                                                                      |                               |                                                                                                                  | SE:INT             | Avg Type               | ALIGNAUTO<br>: Log-Pwr | TRAC                         | M Oct 08, 2015 | Frequency                    |
|                            |                  | PI                                                                                                             | NO: Fast 😱<br>Gain:Low        | Trig: Free<br>#Atten: 30                                                                                         |                    |                        |                        | TYF                          | TPPPPPP        |                              |
|                            | Ref Offset       |                                                                                                                |                               |                                                                                                                  |                    |                        | Mkr2                   | 2.401 8                      | 38 GHz         | Auto Tune                    |
| 10 dB/div                  | Ref 6.73         |                                                                                                                |                               |                                                                                                                  |                    |                        |                        | 1.72                         | 28 dBm         |                              |
| -3.27                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              | 2              | Center Freq                  |
| -13.3                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              | -18.27 dEm     | 2.357000000 GHz              |
| -23.3                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              | -10.27 (404)   |                              |
| -33.3                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                | Otherst Frank                |
| -43.3                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              | 1              | Start Freq<br>2.31000000 GHz |
| -53.3                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              | <del>`</del>   | 2.31000000 GH2               |
| -63.3                      | www.penson.      | adoptional and a second and a se | 1 to all and a second to logo | and the second | h-toorflact strong | wither with the second | *****                  | helefistered and a start was | Landley mind   |                              |
| -73.3                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                | Stop Freq                    |
| -83.3                      |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                | 2.404000000 GHz              |
| Start 2.31                 |                  |                                                                                                                |                               |                                                                                                                  |                    | 1                      |                        | Stop 2.40                    |                |                              |
| #Res BW                    | 100 kHz          |                                                                                                                | #VBW                          | 300 kHz                                                                                                          |                    |                        | Sweep                  | 9.00 ms (                    | 1001 pts)      | CF Step<br>9.400000 MHz      |
| MKB MODE TO                |                  | ×<br>2.399 86                                                                                                  | 4.011-                        | ¥<br>-52.75 d⊟                                                                                                   |                    | NCTION FU              | NCTION WIDTH           | FUNCTIO                      | N VALUE        | <u>Auto</u> Man              |
| 2 N 1                      | f<br>f           | 2.399 86                                                                                                       |                               | -52.75 dE<br>1.73 dE                                                                                             |                    |                        |                        |                              |                |                              |
| 3                          |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                | Freq Offset                  |
| 5                          |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                | 0 Hz                         |
| 4<br>5<br>6<br>7<br>8<br>9 |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                |                              |
| 9                          |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                |                              |
| 10<br>11                   |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                |                              |
| 12                         |                  |                                                                                                                |                               |                                                                                                                  |                    |                        |                        |                              |                |                              |
| MSG                        |                  |                                                                                                                |                               |                                                                                                                  |                    |                        | STATU                  | 5                            |                |                              |

78 CH







# For Hopping Band edge

| 6             |                |                           |                        |              |               |                                 |                           |             | um Analyzer - Sv          |                            |
|---------------|----------------|---------------------------|------------------------|--------------|---------------|---------------------------------|---------------------------|-------------|---------------------------|----------------------------|
| Marker        | 23456          | 07:40:33 PM O<br>TRACE 1  | ALIGNAUTO<br>: Log-Pwr |              | NSE:INT       |                                 |                           | Ω AC        | RF 50 :                   | XI RL                      |
| Select Marker | PPPPP          | DET                       |                        | Avg Hold     |               | Trig: Free<br>#Atten: 3         | PNO: Fast 🕞<br>Gain:Low   | P<br>IF     |                           |                            |
| 1             |                | 2.408 00 2.817            | Mkr1                   |              |               |                                 |                           |             | Ref Offset 0<br>Ref 10.00 | 0 dB/div                   |
|               | MW             |                           |                        |              |               |                                 |                           |             |                           | og<br>0.00                 |
| Norm          | 17.18 dBm      |                           |                        |              |               |                                 |                           |             |                           | 0.0                        |
|               |                |                           |                        |              |               |                                 |                           |             |                           | 20.0                       |
| Delt          | c l            |                           |                        |              |               |                                 |                           |             |                           | 40.0                       |
|               | 2              |                           |                        |              |               |                                 |                           |             |                           | 50.0                       |
|               |                | and a second              | mana mha an            | nanlaskumani | allowedge and | teres and a process of the pro- | لما مثلقه الجومي مع معرمي | ميار محمد م | w                         | 0.0 <mark>04.1000</mark>   |
| Fixed         |                |                           |                        |              |               |                                 |                           |             |                           | 80.0                       |
|               | 00 <b>O</b> U- | No. 0 4004                |                        |              |               |                                 |                           |             | 000 OU-                   | Start 2.31                 |
|               |                | Stop 2.4080<br>9.40 ms (6 |                        |              |               | V 300 kHz                       | #VBV                      |             |                           | Res BW                     |
|               | ALUE           | FUNCTION V                | NCTION WIDTH           | CTION FL     |               | Y<br>2.817 d                    | 00 GHz                    | ×           | C SCL<br>f                | 1 N 1                      |
|               |                |                           |                        |              |               | -54.056 d                       | B4 GHz                    |             | f                         | 2 N<br>3                   |
| Properties    |                |                           |                        |              |               |                                 |                           |             |                           | 4                          |
|               |                |                           |                        |              |               |                                 |                           |             |                           | 4<br>5<br>6<br>7<br>8<br>9 |
| Мо            |                |                           |                        |              |               |                                 |                           |             |                           | 8<br>9                     |
| 1 of          |                |                           |                        |              |               |                                 |                           |             |                           | 10<br>11                   |
|               |                |                           | STATUS                 |              |               |                                 |                           |             |                           | 1 <b>2</b>                 |
|               |                |                           | 0.1.1.00               |              |               |                                 |                           |             |                           | -                          |

78 CH





Test Mode : 8-DPSK(3Mbps)

# 00 CH

| RL                    | RF 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ω AC |                               | SENSE:1                         |                    | ALIGN AUTO              |         | M Oct 08, 2015                               | -                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------|---------------------------------|--------------------|-------------------------|---------|----------------------------------------------|--------------------------|
| nter Fr               | eq 12.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Р    | GHZ<br>NO: Fast G<br>Gain:Low | Trig: Free Ru<br>#Atten: 30 dB  | Avgī               | Гуре: Log-Pwr           | TYP     | E 1 2 3 4 5 6<br>E M WWWWWW<br>T P P P P P P | Frequency                |
| dB/div                | Ref Offset 0<br>Ref 6.69 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                               |                                 |                    | N                       |         | 02 GHz<br>35 dBm                             | Auto Tun                 |
| 9                     | X1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                               |                                 |                    |                         |         |                                              | Center Fre               |
| 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         | -18.32 dBm                                   | 12.515000000 GH          |
| 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              |                          |
| 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              | Start Fre                |
| 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         | <u> </u>                                     | 30.000000 MH             |
| 3<br>3 <b>Japan 1</b> | and a state of the |      | a series and                  | and the second different of the | فللمواطئة المحادثة | No. of Concession, Name |         |                                              |                          |
| 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              | Stop Fre                 |
| 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              | 25.00000000 GH           |
| art 30 M              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         | Oton 3  | 5.00 GHz                                     |                          |
|                       | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | #VBV                          | V 300 kHz                       |                    | Sweep                   |         | 8001 pts)                                    | CF Ste<br>2.497000000 GH |
| NODE TR               | C SCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×    |                               | Y                               | FUNCTION           | FUNCTION WIDTH          | FUNCTIO | N VALUE                                      | <u>Auto</u> Ma           |
| N 1<br>N 1            | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 02 GHz<br>51 GHz              | 1.685 dBm<br>-50.235 dBm        |                    |                         |         |                                              |                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              | Freq Offs                |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              | 0 H                      |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              |                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              |                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              |                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |                                 |                    |                         |         |                                              |                          |

# 39 CH

|                                              | rum Analyzer -        | Swept SA |                    |                        |     |           |                          |          |                                                |                                        |
|----------------------------------------------|-----------------------|----------|--------------------|------------------------|-----|-----------|--------------------------|----------|------------------------------------------------|----------------------------------------|
| Center F                                     |                       | 50 Ω AC  | GHz<br>PNO: Fast G |                        | Bun | Avg Typ   | ALIGN AUTO<br>e: Log-Pwr | TRAC     | M Oct 08, 2015<br>E 1 2 3 4 5 6<br>E M WWWWWWW | Frequency                              |
| 10 dB/div                                    | Ref Offse<br>Ref 5.48 | 10.5 dB  | FGain:Low          | #Atten: 30             |     |           | N                        | lkr1 2.4 | 40 GHz<br>44 dBm                               | Auto Tune                              |
| -4.52                                        | ×1                    |          |                    |                        |     |           |                          |          | -19.52 dBm                                     | Center Freq<br>12.515000000 GHz        |
| -34.5<br>-44.5<br>-54.5                      |                       |          |                    |                        |     |           |                          | where    | ð                                              | Start Freq<br>30.000000 MHz            |
| -64.5<br>-74.5<br>-84.5                      |                       |          |                    |                        |     |           |                          |          |                                                | Stop Fred<br>25.00000000 GH;           |
| Start 30  <br>#Res BW                        | 100 kHz               |          | #VB\               | N 300 kHz              |     |           | · · ·                    |          | 5.00 GHz<br>3001 pts)                          | CF Step<br>2.49700000 GH:              |
| 1 N 2<br>2 N 3<br>4<br>5<br>6<br>7<br>8<br>9 | HU SUL<br>1 f<br>1 f  |          | 40 GHz<br>25 GHz   | 0.484 df<br>-49.872 df | 3m  | NCTION FL | INCTION WIDTH            | FUNCTIO  | N VALUE                                        | <u>Auto</u> Mar<br>Freq Offset<br>0 Hz |
| 10<br>11<br>12<br>MSG                        |                       |          |                    |                        |     |           | STATUS                   |          |                                                |                                        |

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Shenzhen STS Test Services Co., Ltd.



# 78 CH

|                                        |                                                                |                          |                                         |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zer - Swept SA          | it Spectrum Analyz                      |
|----------------------------------------|----------------------------------------------------------------|--------------------------|-----------------------------------------|----------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|
| Frequency                              | 08:09:46 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE M WARMAN | ALIGN AUTO<br>e: Log-Pwr | Avg Ty                                  | SENSE:INT            | TrimE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 Q AC                 | L RF<br>Iter Freq 12                    |
| Auto Tune                              | Ikr1 2.480 GHz<br>-2.490 dBm                                   | M                        |                                         | Free Run<br>n: 30 dB |          | PNO: Fast G<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fset 0.5 dB<br>2.51 dBm |                                         |
| <b>Center Freq</b><br>12.515000000 GHz | -22.49 dBm                                                     |                          |                                         |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                         |
| Start Freq<br>30.000000 MHz            | <u> </u>                                                       |                          | Land Land Land Land Land Land Land Land |                      |          | and the second sec |                         |                                         |
| <b>Stop Freq</b><br>25.000000000 GHz   |                                                                |                          |                                         |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                         |
| CF Step<br>2.497000000 GHz<br>Auto Man | Stop 25.00 GHz<br>2.39 s (8001 pts)                            | Sweep                    | FUNCTION                                | (Hz                  | W 300 ki | #VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lz<br>×                 | t 30 MHz<br>s BW 100 kH<br>MODE TRC SCL |
| Freq Offset<br>0 Hz                    | PORCHOIN VALUE                                                 |                          |                                         | 90 dBm<br>51 dBm     | -2.490   | 2.480 GHz<br>1.700 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                       | N 1 f                                   |
|                                        |                                                                | STATUS                   |                                         |                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                         |



Shenzhen STS Test Services Co., Ltd.





# For Band edge

00 CH

|             | rum Analyzer - Swe         | pt SA                                           |                              |                                    |                                               |                 |
|-------------|----------------------------|-------------------------------------------------|------------------------------|------------------------------------|-----------------------------------------------|-----------------|
| LXIRL       | RF 50 Ω                    |                                                 | SENSE:INT                    | ALIGN AUTO<br>Avg Type: Log-Pwr    | 07:50:50 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6 | Frequency       |
| Center F    | req 2.35700                | PNO: Fast 🕞                                     | Trig: Free Run               | Avg Type. Log-Fwi                  | TYPE MWWWWWW<br>DET P P P P P P               |                 |
|             |                            | IFGain:Low                                      | #Atten: 30 dB                |                                    |                                               | Auto Tune       |
|             | Ref Offset 0.5             | dB                                              |                              | Mkr2                               | 2.401 838 GHz                                 | Auto Tune       |
| 10 dB/div   | Ref 6.73 dE                | sm                                              |                              |                                    | 1.727 dBm                                     |                 |
| -3.27       |                            |                                                 |                              |                                    | 2                                             |                 |
| -13.3       |                            |                                                 |                              |                                    | L III                                         | Center Freq     |
|             |                            |                                                 |                              |                                    | -18.29 dBm                                    | 2.357000000 GHz |
| -23.3       |                            |                                                 |                              |                                    |                                               |                 |
| -33.3       |                            |                                                 |                              |                                    | N 18                                          | Start Freq      |
| -43.3       |                            |                                                 |                              |                                    |                                               | 2.310000000 GHz |
| -53.3       |                            |                                                 |                              |                                    |                                               | 2.0100000000012 |
| -63.3 12mm  | Malour Markland and Marken | white any the state of the second second second | have mark by included of the | www.march.l.herval.annormal.sn.ann | m-procession-splatheterit                     |                 |
| -73.3       |                            |                                                 |                              |                                    |                                               | Stop Freq       |
| -83.3       |                            |                                                 |                              |                                    |                                               | 2.404000000 GHz |
|             |                            |                                                 |                              |                                    |                                               |                 |
|             | 1000 GHz                   |                                                 |                              |                                    | Stop 2.40400 GHz                              | CF Step         |
| #Res BW     | 100 KHZ                    | #VBV                                            | V 300 kHz                    | Sweep                              | 9.00 ms (1001 pts)                            | 9.400000 MHz    |
| MKR MODE T  |                            | ×                                               |                              | JNCTION FUNCTION WIDTH             | FUNCTION VALUE                                | <u>Auto</u> Man |
|             | 1 f<br>1 f                 | 2.399 582 GHz<br>2.401 838 GHz                  | -52.06 dBm<br>1.73 dBm       |                                    |                                               |                 |
| 3           |                            | 2.401 000 0112                                  | in o ubiii                   |                                    |                                               | Freq Offset     |
| 4           |                            |                                                 |                              |                                    |                                               | 0 Hz            |
| 5<br>6<br>7 |                            |                                                 |                              |                                    |                                               |                 |
| 8           |                            |                                                 |                              |                                    |                                               |                 |
| 8<br>9      |                            |                                                 |                              |                                    |                                               |                 |
| 10<br>11    |                            |                                                 |                              |                                    |                                               |                 |
| 12          |                            |                                                 |                              |                                    |                                               |                 |
| MSG         |                            |                                                 |                              | STATUS                             | ,                                             |                 |

## 78 CH





# For Hopping Band edge

:03 PM Oct 08, 2015 Marker Avg Type: Log-Pwr Avg|Hold:>100/100 TRACE 1 2 3 4 5 6 TYPE M Trig: Free Run #Atten: 30 dB PNO: Fast 😱 IFGain:Low Select Marker Mkr1 2.405 844 GHz Ref Offset 0.5 dB Ref 10.00 dBm 2.640 dBm 10 dB/div Log 0.0 Norma -10.0 17.36 d 20.0 -30.0 40.0 Delta -50.0 -60.0 -70.0 Fixed 80.0 Start 2.31000 GHz #Res BW 100 kHz Stop 2.40800 GHz Sweep 9.40 ms (1001 pts) #VBW 300 kHz Off MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 2.405 844 GHz 2.399 804 GHz 2.640 dBm -55.835 dBm N N f 2 3 4 5 6 7 8 9 10 11 12 Properties) More 1 of 2 SG STATUS

### 00 CH

# 78 CH





# 5. NUMBER OF HOPPING CHANNEL

# 5.1 APPLIED PROCEDURES / LIMIT

|                       | FCC Part15 (15.247), Subpart C |       |                          |        |  |  |  |
|-----------------------|--------------------------------|-------|--------------------------|--------|--|--|--|
| Section               | Test Item                      | Limit | Frequency Range<br>(MHz) | Result |  |  |  |
| 15.247<br>(a)(1)(iii) | Number of Hopping<br>Channel   | ≥15   | 2400-2483.5              | PASS   |  |  |  |

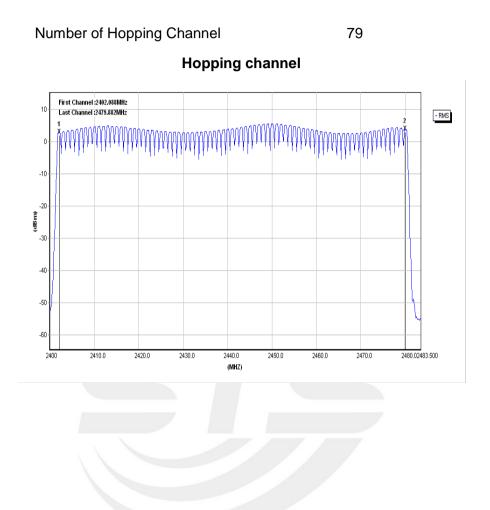
| Spectrum Parameters | Setting                     |  |  |  |
|---------------------|-----------------------------|--|--|--|
| Attenuation         | Auto                        |  |  |  |
| Span Frequency      | > Operating Frequency Range |  |  |  |
| RB                  | 100 KHz                     |  |  |  |
| VB                  | 100 KHz                     |  |  |  |
| Detector            | Peak                        |  |  |  |
| Trace               | Max Hold                    |  |  |  |
| Sweep Time          | Auto                        |  |  |  |

# 5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100K, VBW=100K, Sweep time = Auto.

#### 5.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |


## 5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



Page 42 of 73 Report No.: STS1509130F02

# 5.5 TEST RESULTS



Shenzhen STS Test Services Co., Ltd.



# 6. AVERAGE TIME OF OCCUPANCY

# 6.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247), Subpart C |                              |        |                          |        |  |  |
|--------------------------------|------------------------------|--------|--------------------------|--------|--|--|
| Section                        | Test Item                    | Limit  | Frequency Range<br>(MHz) | Result |  |  |
| 15.247<br>(a)(1)(iii)          | Average Time<br>of Occupancy | 0.4sec | 2400-2483.5              | PASS   |  |  |

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.

DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time

i. slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6
 = 106.6 within 31.6 seconds.

DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time

j. slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6
 = 160 within 31.6 seconds.

DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time

k. slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6
 = 320 within 31.6 seconds.

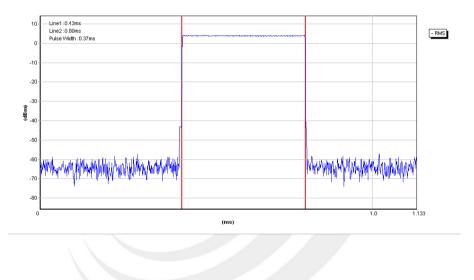
6.3 TEST SETUP



# 6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

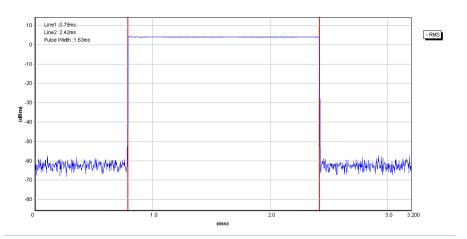
Shenzhen STS Test Services Co., Ltd.

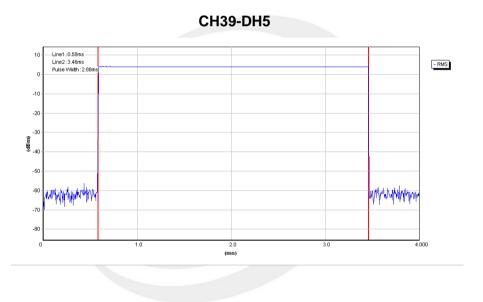



Page 44 of 73 Report No.: STS1509130F02

# 6.5 TEST RESULTS

| Data Packet | Frequency | Pulse Duration<br>(ms) | Dwell Time<br>(s) | Limits(s) |
|-------------|-----------|------------------------|-------------------|-----------|
| DH1         | 2441 MHz  | 0.370                  | 0.118             | 0.4       |
| DH3         | 2441 MHz  | 1.630                  | 0.261             | 0.4       |
| DH5         | 2441 MHz  | 2.880                  | 0.307             | 0.4       |


# CH39-DH1



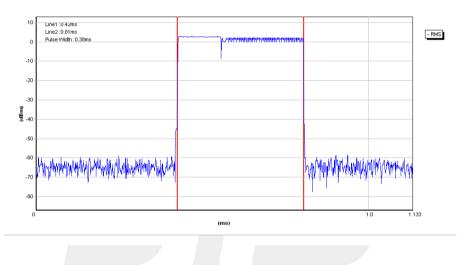

Shenzhen STS Test Services Co., Ltd.



## CH39-DH3



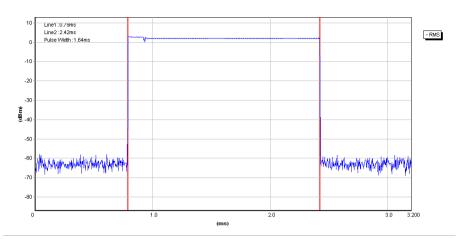


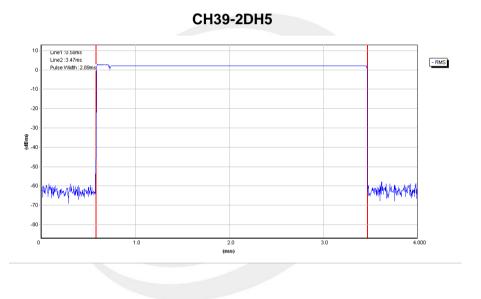

Shenzhen STS Test Services Co., Ltd.



Page 46 of 73 Report No.: STS1509130F02

| Data Packet | Frequency | Pulse Duration<br>(ms) | Dwell Time<br>(s) | Limits(s) |
|-------------|-----------|------------------------|-------------------|-----------|
| 2DH1        | 2441 MHz  | 0.380                  | 0.122             | 0.4       |
| 2DH3        | 2441 MHz  | 1.640                  | 0.262             | 0.4       |
| 2DH5        | 2441 MHz  | 2.890                  | 0.308             | 0.4       |


# CH39-2DH1



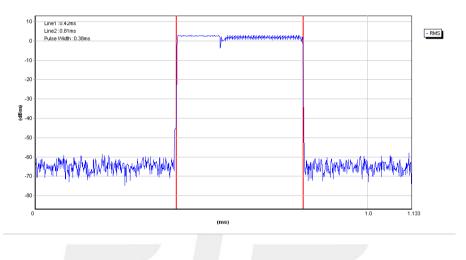

Shenzhen STS Test Services Co., Ltd.



## CH39-2DH3



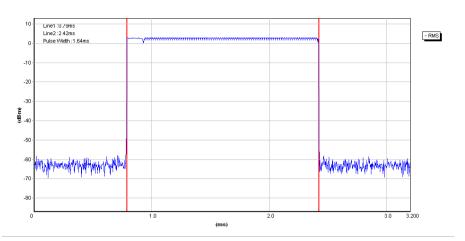


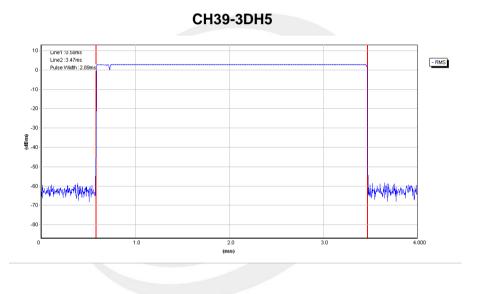

Shenzhen STS Test Services Co., Ltd.



Page 48 of 73 Report No.: STS1509130F02

| Data Packet | Frequency | Pulse Duration<br>(ms) | Dwell Time<br>(s) | Limits(s) |
|-------------|-----------|------------------------|-------------------|-----------|
| 3DH1        | 2441 MHz  | 0.380                  | 0.122             | 0.4       |
| 3DH3        | 2441 MHz  | 1.640                  | 0.262             | 0.4       |
| 3DH5        | 2441 MHz  | 2.890                  | 0.308             | 0.4       |


# CH39-3DH1




Shenzhen STS Test Services Co., Ltd.



## CH39-3DH3



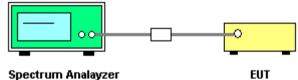


Shenzhen STS Test Services Co., Ltd.



# 7. HOPPING CHANNEL SEPARATION MEASUREMEN

# 7.1 APPLIED PROCEDURES / LIMIT


Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 20 dB bandwidth of the hopping channel, whichever is greater.

| Spectrum Parameter                                           | Setting                                                 |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Attenuation                                                  | Auto                                                    |  |  |  |
| Span Frequency > Measurement Bandwidth or Channel Separation |                                                         |  |  |  |
| RB 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separatio       |                                                         |  |  |  |
| VB                                                           | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |  |  |  |
| Detector                                                     | Peak                                                    |  |  |  |
| Trace                                                        | Max Hold                                                |  |  |  |
| Sweep Time                                                   | Auto                                                    |  |  |  |

## 7.2 TEST PROCEDURE

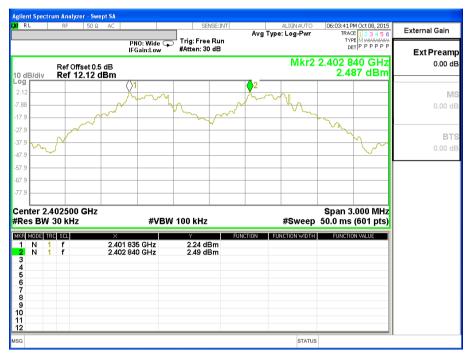
- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

## 7.3 TEST SETUP



# 7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

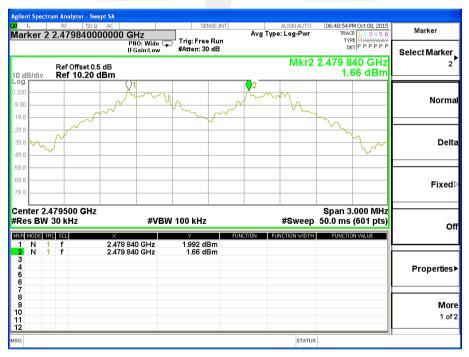



# 7.5 TEST RESULTS

| Frequency | Ch. Separation<br>(MHz) | Limit | Result   |
|-----------|-------------------------|-------|----------|
| 2402 MHz  | 1.005                   | 0.891 | Complies |
| 2441 MHz  | 1.005                   | 0.892 | Complies |
| 2480 MHz  | 1.000                   | 0.849 | Complies |

# For GFSK: Ch. Separation Limits: >20dB bandwidth

## CH00 -1Mbps






#### CH39 -1Mbps



#### CH78 -1Mbps



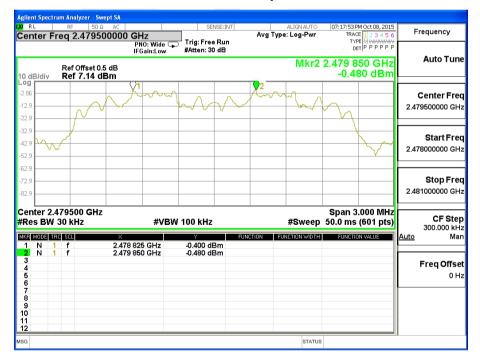




| Frequency | Ch. Separation<br>(MHz) | Limit | Result   |
|-----------|-------------------------|-------|----------|
| 2402 MHz  | 1.015                   | 0.857 | Complies |
| 2441 MHz  | 1.005                   | 0.857 | Complies |
| 2480 MHz  | 1.025                   | 0.856 | Complies |

For  $\pi$ /4-DQPSK(2Mbps): Ch. Separation Limits: > two-thirds 20dB bandwidth

| RF 50 Ω                            | AC                                     | SENSE:INT                       | ALIGN AUTO             | 07:06:46 PM Oct 08, 2015                         | _                       |
|------------------------------------|----------------------------------------|---------------------------------|------------------------|--------------------------------------------------|-------------------------|
| ter Freq 2.40250                   | DOOOO GHz<br>PNO: Wide C<br>IFGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Type: Log-Pwr      | TRACE 1 2 3 4 5 6<br>TYPE MWWWW<br>DET P P P P P | Frequency               |
| Ref Offset 0.4<br>B/div Ref 4.46 d |                                        |                                 | Mkr2                   | 2.402 850 GHz<br>-1.104 dBm                      | Auto T                  |
|                                    | X1~~~~                                 |                                 | A <sup>2</sup>         | $\sim$                                           | Center F<br>2.402500000 |
| ~~                                 |                                        |                                 |                        |                                                  | Start F<br>2.401000000  |
|                                    |                                        |                                 |                        |                                                  | Stop F<br>2.404000000   |
| nter 2.402500 GHz<br>es BW 30 kHz  | #VB                                    | W 100 kHz                       | #Sweep                 | Span 3.000 MHz<br>50.0 ms (601 pts)              | CF S<br>300.000         |
| MODE TRC SCL<br>N 1 f<br>N 1 f     | ×<br>2.401 835 GHz<br>2.402 850 GHz    | -0.185 dBm<br>-1.104 dBm        | JNCTION FUNCTION WIDTH | FUNCTION VALUE                                   | Auto                    |
|                                    | 2.402 850 GH2                          | -1.104 dBm                      |                        |                                                  | Freq Of                 |
|                                    |                                        |                                 |                        |                                                  |                         |
|                                    |                                        |                                 |                        |                                                  |                         |


CH00 -2Mbps



## CH39 -2Mbps

| L                | RF 50 Ω AC                        |                                        | SENSE: INT             |             | ALIGN AUTO | 07:13:18 P | M Oct 08, 2015                               | -                                   |
|------------------|-----------------------------------|----------------------------------------|------------------------|-------------|------------|------------|----------------------------------------------|-------------------------------------|
| nter F           | req 2.44150000                    | PNO: Wide 😱                            | Trig: Free Run         | Avg Type    | e: Log-Pwr | TYP        | E 1 2 3 4 5 6<br>E M WWWWWW<br>T P P P P P P | Frequency                           |
| B/div            | Ref Offset 0.5 dB<br>Ref 8.07 dBm | IFGain:Low                             | #Atten: 30 dB          |             | Mkr2       | 2.441 8    | 40 GHz<br>56 dBm                             | Auto Tu                             |
| 9                |                                   | X-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~                   | ×2          | w.         | $\sim$     |                                              | <b>Center Fr</b><br>2.441500000 G   |
|                  |                                   |                                        |                        |             |            |            |                                              | <b>Start Fr</b><br>2.440000000 G    |
| 9<br>9<br>9      |                                   |                                        |                        |             |            |            |                                              | <b>Stop Fr</b><br>2.443000000 G     |
| es BW<br>Node Tr |                                   |                                        | 100 kHz                | FUNCTION FU | #Sweep     | 50.0 ms    | .000 MHz<br>(601 pts)                        | CF St<br>300.000 k<br><u>Auto</u> M |
| N 1              |                                   | 40 835 GHz<br>41 840 GHz               | 0.823 dBm<br>1.056 dBm |             |            |            |                                              | Freq Offs<br>0                      |
|                  |                                   |                                        |                        |             | STATUS     |            |                                              |                                     |

## CH78 -2Mbps





Page 55 of 73 Report No.: STS1509130F02

| Frequency | Ch. Separation<br>(MHz) | Limit | Result   |
|-----------|-------------------------|-------|----------|
| 2402 MHz  | 1.005                   | 0.852 | Complies |
| 2441 MHz  | 1.000                   | 0.852 | Complies |
| 2480 MHz  | 1.000                   | 0.851 | Complies |

For 8-DPSK(3Mbps):

3.3

23.4

-43 /

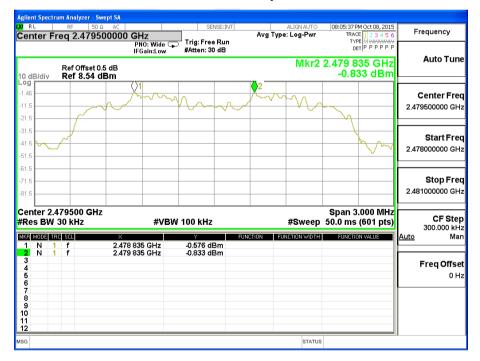
-53.4 -63.4

-83.

SG

# Ch. Separation Limits: > two-thirds 20dB bandwidth

CH00 -3Mbps nalyzer ADDEDUE DESERVICE RF 50 Ω AC | I Center Freq 2.402500000 GHz PN0: Wide ↓ IFGain:Low 0 PM Oct 08, 2015 Frequency Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB DET P P P P P Mkr2 2.402 840 GHz -1.533 dBm Auto Tune Ref Offset 0.5 dB Ref 6.65 dBm 10 dB/div Log Center Freq 2.402500000 GHz Start Freq  $\mathcal{A}$ 2.401000000 GHz Stop Freq 2.404000000 GHz Center 2.402500 GHz #Res BW 30 kHz Span 3.000 MHz CF Step 300.000 kHz Man #Sweep 50.0 ms (601 pts) #VBW 100 kHz 
 MXR
 MXR</th FUNCTION VALUE FUNCTION WIDTH EUNCTION ۱uto 2.401 835 GHz 2.402 840 GHz -1.755 dBm -1.533 dBm Freq Offset 0 Hz


STATUS



## CH39 -3Mbps

|                           | 3 PM Oct 08, 2015 | 08:00:18 F | ALIGN AUTO   |          | SENSE:INT  |          |                  | OΩ AC  | 50               | RF |             |        |
|---------------------------|-------------------|------------|--------------|----------|------------|----------|------------------|--------|------------------|----|-------------|--------|
| Frequency                 | ACE 1 2 3 4 5 6   | TYP        | : Log-Pwr    | Avg Typ  | : Free Run | Tria: Fr | GHz<br>PNO: Wide | 500000 | 2.441            | eq | Fre         | ter    |
| Auto Tur                  | B35 GHZ           |            | Micro        |          | en: 30 dB  |          | IFGain:Low       |        |                  |    |             |        |
|                           | 639 dBm           |            |              |          |            |          |                  |        | Offset<br>f 8.05 |    |             | 3/di   |
| Center Fre                |                   |            | ~~~~         | 2        |            | A 4.     | Xin.             |        |                  | _  |             |        |
| 2.441500000 Gł            |                   | - N        | VV           |          | $\sim$     | YUN      |                  | $\sim$ | ~                | -  |             | -      |
|                           | V                 | 1          |              |          |            |          |                  |        | /                |    |             |        |
| Start Fr<br>2.440000000 G | hno               |            |              |          |            |          |                  |        |                  | ~  | had a start | $\sim$ |
| 2.11000000000             | ~                 |            |              |          |            |          |                  |        |                  |    |             |        |
| Stop Fre                  |                   |            |              |          |            |          |                  |        |                  |    |             |        |
| 2.443000000 GI            |                   |            |              |          |            |          |                  |        |                  | _  |             |        |
| CF Ste                    | 3.000 MHz         |            |              |          |            |          |                  | Ηz     | 00 GH            |    |             |        |
| 300.000 ki                | s (601 pts)       |            | · ·          |          |            | W 100 kH | #VBV             |        |                  |    | W 3         |        |
| Auto M                    | TION VALUE        | FUNCTIO    | NCTION WIDTH | NCTION F | 55 dBm     |          | 0 835 GHz        |        |                  | f  | TRC<br>1    | Ν      |
| Freq Offs                 |                   |            |              |          | 39 dBm     | -0.639   | 1 835 GHz        | 2.441  |                  | f  | 1           | N      |
| 01                        |                   |            |              |          |            |          |                  |        |                  |    |             |        |
|                           |                   |            |              |          |            |          |                  |        |                  |    |             |        |
|                           |                   |            |              |          |            |          |                  |        |                  |    |             |        |
|                           |                   |            |              |          |            |          |                  |        |                  |    |             |        |
|                           |                   |            | STATUS       |          |            |          |                  |        |                  |    |             |        |

## CH78 -3Mbps





# 8. BANDWIDTH TEST

# 8.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247), Subpart C |           |                  |                          |        |  |  |
|--------------------------------|-----------|------------------|--------------------------|--------|--|--|
| Section                        | Test Item | Limit            | Frequency Range<br>(MHz) | Result |  |  |
| 15.247<br>(a)(1)               | Bandwidth | (20dB bandwidth) | 2400-2483.5              | PASS   |  |  |

| Spectrum Parameter | Setting                                                 |  |  |  |  |  |
|--------------------|---------------------------------------------------------|--|--|--|--|--|
| Attenuation        | Auto                                                    |  |  |  |  |  |
| Span Frequency     | > Measurement Bandwidth or Channel Separation           |  |  |  |  |  |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |  |  |  |  |  |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |  |  |  |  |  |
| Detector           | Peak                                                    |  |  |  |  |  |
| Trace              | Max Hold                                                |  |  |  |  |  |
| Sweep Time         | Auto                                                    |  |  |  |  |  |

# 8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

## 8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

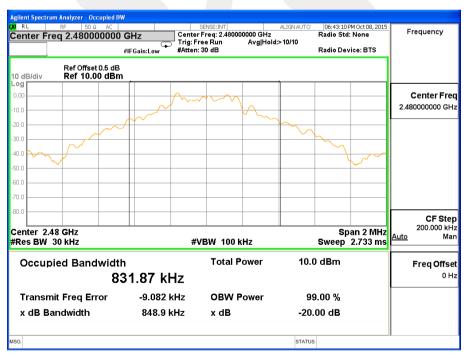


# 8.5 TEST RESULTS

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 0.891                   | PASS   |
| 2441 MHz  | 0.892                   | PASS   |
| 2480 MHz  | 0.849                   | PASS   |

# CH00 -1Mbps

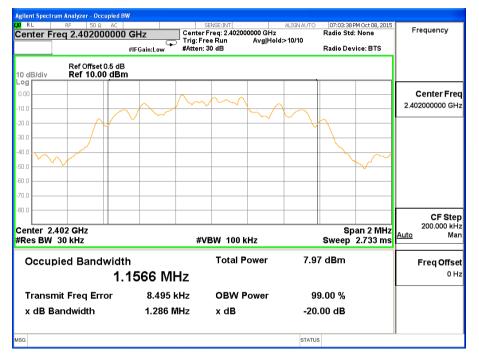
| gilent Spectrum Anal<br>RL RF<br>Center Freq 2. | 50 Ω AC  <br>402000000 GH |           | SENSE:INT<br>Iter Freq: 2.40200<br>g: Free Run |            | ALIGN AUTO | 02:45:48 AM Oct 08, 201<br>Radio Std: None | 5 Frequency                    |
|-------------------------------------------------|---------------------------|-----------|------------------------------------------------|------------|------------|--------------------------------------------|--------------------------------|
| Re                                              | #IFG                      |           | en: 30 dB                                      | Avginoid.> | 10/10      | Radio Device: BTS                          |                                |
|                                                 | ef 10.00 dBm              |           |                                                |            |            |                                            |                                |
| 10.0                                            |                           | ~^^       |                                                | M          |            |                                            | Center Free<br>2.402000000 GH: |
| 80.0                                            |                           |           |                                                | <u> </u>   | $\sim$     | ~~                                         | -                              |
|                                                 | ~                         |           |                                                |            |            | $\sim$                                     | 2                              |
| 0.0                                             |                           |           |                                                |            |            |                                            | _                              |
| 0.0                                             |                           |           |                                                |            |            |                                            | CF Ste                         |
| enter 2.402 G<br>Res BW 30 kH                   |                           |           | #VBW 100 k                                     | :Hz        |            | Span 2 MH<br>Sweep 2.733 m                 | Z 200.000 kH                   |
| Occupied                                        | Bandwidth<br>840          | .98 kHz   | Total P                                        | ower       | 10.2       | 2 dBm                                      | Freq Offse<br>0 H              |
| Transmit Fr                                     | eq Error                  | -168 Hz   | OBW F                                          | ower       | 99         | 0.00 %                                     |                                |
| x dB Bandw                                      | idth                      | 891.0 kHz | x dB                                           |            | -20.       | 00 dB                                      |                                |
| G                                               |                           |           |                                                |            | STATUS     |                                            |                                |


Shenzhen STS Test Services Co., Ltd.



# CH39 -1 Mbps

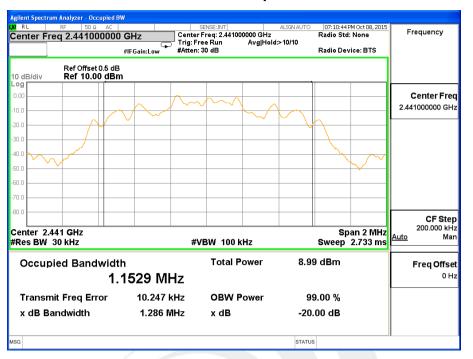



## CH78 -1Mbps

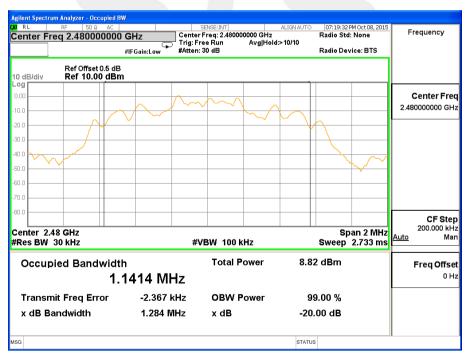




| Frequency | 20dB Bandwidth(MHz) | Result |
|-----------|---------------------|--------|
| 2402 MHz  | 1.286               | PASS   |
| 2441 MHz  | 1.286               | PASS   |
| 2480 MHz  | 1.284               | PASS   |


## CH00 -2Mbps




Shenzhen STS Test Services Co., Ltd.



# CH39 -2Mbps



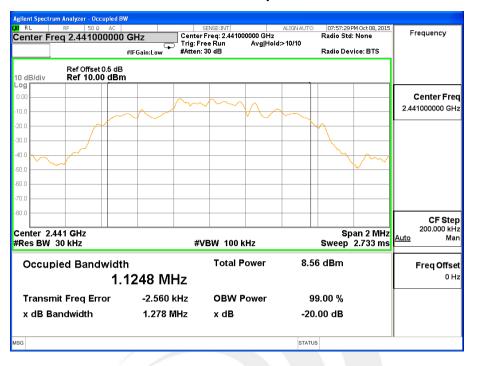
### CH78 -2Mbps



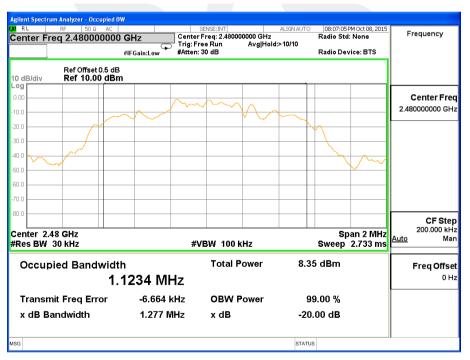
Page 62 of 73 Report No.: STS1509130F02



| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.278                   | PASS   |
| 2441 MHz  | 1.278                   | PASS   |
| 2480 MHz  | 1.277                   | PASS   |


# CH00 -3Mbps

| Agilent Spectrun        | n Analyzer - Occupier<br>RF 50 Q AC |                             | CF.                                        | N KOTO IN IT  |          |        | 07:45:40                                             | DM (0++ 00, 2015      | ſ                              |
|-------------------------|-------------------------------------|-----------------------------|--------------------------------------------|---------------|----------|--------|------------------------------------------------------|-----------------------|--------------------------------|
|                         | eq 2.4020000                        |                             | Center Freq: 2.402000000 GHz Radio Std: No |               |          |        | or:45:42 PM Oct 08, 2015<br>Idio Std: None Frequency |                       |                                |
|                         |                                     | #IFGain:Low                 | Trig: Fre<br>#Atten: 3                     | e Run<br>0 dB | Avg Hold | >10/10 | Radio De                                             | vice: BTS             |                                |
| 10 dB/div               | Ref Offset 0.5 d                    |                             |                                            |               |          |        |                                                      |                       |                                |
| 0.00                    |                                     |                             | $\sim$                                     | $\sim$        |          |        |                                                      |                       | Center Freq<br>2.402000000 GHz |
| -20.0                   |                                     |                             |                                            |               |          |        | $\overline{\mathbf{v}}$                              |                       |                                |
| -40.0                   |                                     |                             |                                            |               |          |        |                                                      | $\sim$                |                                |
| -60.0                   |                                     |                             |                                            |               |          |        |                                                      |                       |                                |
| -80.0                   |                                     |                             |                                            |               |          |        |                                                      |                       | <b>CF Step</b><br>200.000 kHz  |
| Center 2.4<br>#Res BW 3 |                                     |                             | #VE                                        | 3W 100 k      | Hz       |        | Sp<br>Sweep                                          | oan 2 MHz<br>2.733 ms | <u>Auto</u> Man                |
| Occupi                  | ied Bandwid<br>1                    | <sup>ժքի</sup><br>I.1257 Mł | Ηz                                         | Total P       | ower     | 7.9    | 54 dBm                                               |                       | Freq Offset<br>0 Hz            |
| Transmi                 | it Freq Error                       | -2.464 I                    | Hz                                         | OBW P         | ower     | 9      | 99.00 %                                              |                       |                                |
| x dB Ba                 | ndwidth                             | 1.278 N                     | IHz                                        | x dB          |          | -20    | 0.00 dB                                              |                       |                                |
| MSG                     |                                     |                             |                                            |               |          | STAT   | us                                                   |                       |                                |


Shenzhen STS Test Services Co., Ltd.



## CH39 -3Mbps



CH78 -3Mbps





# 9. PEAK OUTPUT POWER TEST


# 9.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247), Subpart C |                 |                                                                                                                                      |                          |        |  |  |
|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|--|--|
| Section                        | Test Item       | Limit                                                                                                                                | Frequency Range<br>(MHz) | Result |  |  |
| 15.247                         | Peak            | 1 W or 0.125W                                                                                                                        |                          |        |  |  |
| (b)(i)                         | Output<br>Power | Or if channel separation ><br>2/3 bandwidthprovided the<br>systems operatewith an<br>output power no greater<br>than125 mW(20.96dBm) | 2400-2483.5              | PASS   |  |  |

# 9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : GFSK(1Mbps):RBW= 1MHz, VBW= 3MHz, Sweep time = Auto.
- <sup>c.</sup> Spectrum Setting :  $\pi/4$ -DQPSK(2Mbps):RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.
- d. Spectrum Setting : 8-DPSK(3Mbps):RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

## 9.3 TEST SETUP



## 9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



# 9.5 TEST RESULTS

| Test Channel | Frequency | Peak Output Power | LIMIT |
|--------------|-----------|-------------------|-------|
|              | (MHz)     | (dBm)             | (dBm) |
| CH00         | 2402      | 4.400             | 30    |
| CH39         | 2441      | 3.924             | 30    |
| CH78         | 2480      | 4.189             | 30    |


Note : the channel separation > bandwidth

| IFGain:Low<br>Ref Offset 0.5 dB<br>0 dB/div Ref 14.36 dBm<br>9<br>4.36<br>6.64<br>5.6<br>5.6<br>5.6 | #Atten: 30 dB  | Mkr1  | 2.402 142 GHz<br>4.400 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Tur<br>Center Fro<br>2.40200000 Gl<br>Start Fro<br>2.39950000 Gl |
|-----------------------------------------------------------------------------------------------------|----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                     | ▲ <sup>1</sup> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.402000000 GI                                                        |
| 5.6                                                                                                 |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |
| 5.6                                                                                                 |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |
| 5.6                                                                                                 |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Stop Fr</b><br>2.404500000 G                                       |
| 56 <b>6441111111111111111111111111111111111</b>                                                     |                |       | Marine Mari | CF Ste<br>500.000 k<br><u>Auto</u> M                                  |
| .6                                                                                                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Freq Offs<br>0                                                        |
| 5.6                                                                                                 |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |
| enter 2.402000 GHz<br>Res BW 1.0 MHz #VE                                                            | BW 3.0 MHz     | Sweep | Span 5.000 MHz<br>1.00 ms (601 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |


# CH00 -1Mbps



#### CH39 -1Mbps



#### CH78 -1Mbps



## Shenzhen STS Test Services Co., Ltd.

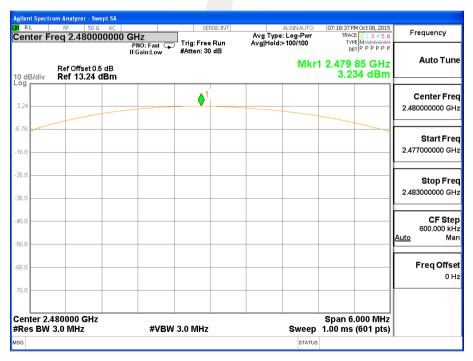


| Test Channel | Frequency | Peak Output Power | LIMIT |
|--------------|-----------|-------------------|-------|
|              | (MHz)     | (dBm)             | (dBm) |
| CH00         | 2402      | 2.345             | 20.96 |
| CH39         | 2441      | 3.379             | 20.96 |
| CH78         | 2480      | 3.234             | 20.96 |

Note : the channel separation >2/3 bandwidth

| enter Freq 2.402000000 GHz<br>PN0: Fast<br>IFGain:Low       Trig: Free Run<br>#Atten: 30 dB       Avg Type: Log.PWr<br>AvgHold>100/100       Trace [1:2:3:3:6]<br>PP P P P P<br>Vor PP Vor PP Vor PP P<br>Vor PP Vor PP P<br>Vor PP Vor P | ilent Spectrum Analyzer - Swept SA |                        |                 |       |                               |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|-----------------|-------|-------------------------------|----------------------|
| Pho: Fast<br>IFGain:Low         Trig: Free Run<br>#Atten: 30 dB         Autol<br>AvglHold>100/r00         Trig: Free Run<br>ber P P P P P<br>2.345 dBm         Autol           Ref Offset 0.5 dB         Mkr1 2.401 84 GHz<br>2.345 dBm         Autol         Center<br>2.40200000         Start           33<br>67<br>77         1         1         1         1         1         1         1         2.345 dBm         Start         2.39900000         Start         2.40500000         Start         2.40500000         Start         2.40500000         CF         600.00         Auto         Start         2.40500000         Start         2.40500000         Start         2.40500000         Start         2.40500000         Start         2.40500000         Start         Star         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RL RF 50Ω AC                       |                        |                 |       | 07:03:09 PM Oct 08, 2015      |                      |
| Ref Offset 0.5 dB     101KT 2.40 To 4 GFR 2.345 dBm       2.345 dBm     2.345 dBm       33     1       34     1       37     1       38     1       39     1       31     1       32     1       33     1       34     1       36     1       37     1       38     1       39     1       39     1       39     1       39     1       39     1       30     1       31     1       32     1       33     1       34     1       35     1       36     1       37     1       38     1       39     1       39     1       39     1       39     1       30     1       31     1       32     1       33     1       34     1       35     1       36     1       37     1       38     1       39     1       39     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | enter Freq 2.40200000              | PNO: Fast 🖵 Trig: Free | eRun Avg Hold:> |       | TYPE MWWWWWW<br>DET P P P P P |                      |
| 33     1     Center       33     1     1     1       67     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1     1       77     1     1       77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB/div Ref 12.33 dBm               |                        |                 | Mkr   |                               | Auto Tun             |
| 67<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | <b>↓</b> <sup>1</sup>  |                 |       |                               | Center Fre           |
| 7.7     Start       7.7     Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                        |                 |       |                               | 2.402000000 GH       |
| 7.7     1     1     1     1     1     1       7.7     1     1     1     1     1     1       7.7     1     1     1     1     1     1       7.7     1     1     1     1     1     1       7.7     1     1     1     1     1     1       7.7     1     1     1     1     1     1       7.7     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                 |                        |                 |       |                               | Start Fre            |
| Stop         2.40500000           7.7         CF         600.00           Auto         CF         600.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /.7                                |                        |                 |       |                               | 2.399000000 GH       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7                                |                        |                 |       |                               | Stop Fre             |
| 500.00 Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.7                                |                        |                 |       |                               | 2.405000000 GH       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7                                |                        |                 |       |                               | CF Ste<br>600.000 kH |
| Freq C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.7                                |                        |                 |       |                               | <u>Auto</u> Ma       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7                                |                        |                 |       |                               | Freq Offs            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                 |                        |                 |       |                               | 0 +                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                 |       |                               |                      |
| enter 2.402000 GHz Span 6.000 MHz<br>Res BW 3.0 MHz #VBW 3.0 MHz Sweep 1.00 ms (601 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | #VBW 3.0 MHz           |                 | Sweep |                               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                 |       |                               |                      |

# CH00 -2Mbps






## CH39 -2Mbps

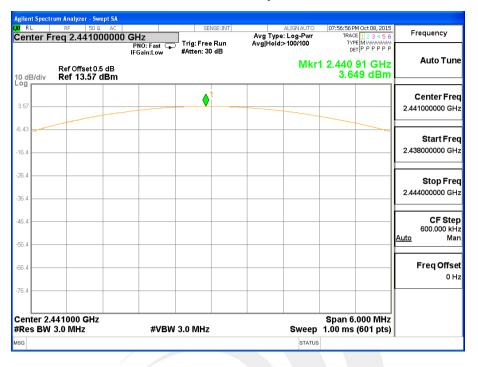
|                          | Analyzer - Swept SA                |                      |                       |                                                      |                                                         |                                            |
|--------------------------|------------------------------------|----------------------|-----------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|
| enter Fre                | RF 50 Ω AC<br>q 2.441000000        | ) GHz<br>PNO: Fast 😱 | SENSE:INT             | ALIGN AUTO<br>Avg Type: Log-Pwr<br>Avg Hold:>100/100 | 07:10:12 PM Oct 08, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE M | Frequency                                  |
|                          | Ref Offset 0.5 dB<br>Ref 12.97 dBm | IFGain:Low           | #Atten: 30 dB         | Mkr1                                                 | 2.440 80 GHz<br>3.379 dBm                               | Auto Tur                                   |
| .97                      |                                    |                      | <b>●</b> <sup>1</sup> |                                                      |                                                         | Center Fre<br>2.441000000 GH               |
| .0                       |                                    |                      |                       |                                                      |                                                         | <b>Start Fre</b><br>2.438000000 GH         |
| .0                       |                                    |                      |                       |                                                      |                                                         | <b>Stop Fr</b><br>2.444000000 G            |
| 0                        |                                    |                      |                       |                                                      |                                                         | <b>CF St</b><br>600.000 k<br><u>Auto</u> M |
|                          |                                    |                      |                       |                                                      |                                                         | Freq Offs<br>0                             |
| .0                       |                                    |                      |                       |                                                      |                                                         |                                            |
| enter 2.44<br>Res BW 3.4 | 1000 GHz<br>0 MHz                  | #VBW                 | 3.0 MHz               | Sweep                                                | Span 6.000 MHz<br>1.00 ms (601 pts)                     |                                            |
| G                        |                                    |                      |                       | STATUS                                               | ,                                                       | 0                                          |

## CH78 -2Mbps

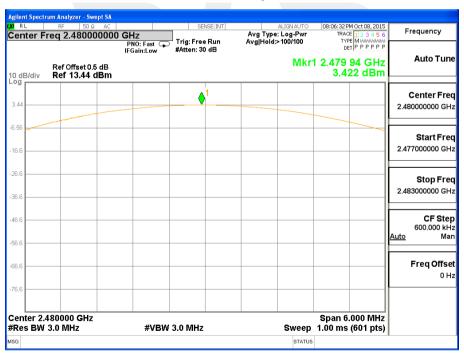




| Test Channel | Frequency<br>(MHz) | Peak Output Power<br>(dBm) | LIMIT<br>(dBm) |
|--------------|--------------------|----------------------------|----------------|
| CH00         | 2402               | 2.563                      | 20.96          |
| CH39         | 2441               | 3.649                      | 20.96          |
| CH78         | 2480               | 3.422                      | 20.96          |


Note : the channel separation >2/3 bandwidth

|                                |                                     |                                        |                                 |                                  | um Analyzer - Swept SA             |                      |
|--------------------------------|-------------------------------------|----------------------------------------|---------------------------------|----------------------------------|------------------------------------|----------------------|
| Frequency                      | 07:43:52 PM Oct 08, 2015            | ALIGN AUTO                             | SENSE:INT                       |                                  | RF 50.Ω AC                         | LXI RL               |
|                                | TRACE 1 2 3 4 5 6<br>TYPE M         | Avg Type: Log-Pwr<br>Avg Hold:>100/100 | Trig: Free Run<br>#Atten: 30 dB | GHz<br>PNO: Fast 😱<br>IFGain:Low | req 2.402000000                    | Center F             |
| Auto Tune                      | 2.401 94 GHz<br>2.563 dBm           | Mkr1                                   |                                 |                                  | Ref Offset 0.5 dB<br>Ref 12.55 dBm | 10 dB/div<br>Log     |
| Center Fred<br>2.402000000 GHz |                                     |                                        | <sup>1</sup>                    |                                  |                                    | 2.55                 |
| 2.402000000 GH2                |                                     |                                        |                                 |                                  |                                    | -7.45                |
| Start Fred                     |                                     |                                        |                                 |                                  |                                    | 7.40                 |
| 2.399000000 GHz                |                                     |                                        |                                 |                                  |                                    | -17.5                |
| Stop Free                      |                                     |                                        |                                 |                                  |                                    | -27.5                |
| 2.405000000 GH                 |                                     |                                        |                                 |                                  |                                    | -37.5                |
| CF Step<br>600.000 kH          |                                     |                                        |                                 |                                  |                                    | 47.5                 |
| <u>Auto</u> Mai                |                                     |                                        |                                 |                                  |                                    | 57.5                 |
| <b>Freq Offse</b>              |                                     |                                        |                                 |                                  |                                    | .67.5                |
| 0 H:                           |                                     |                                        |                                 |                                  |                                    | -77.5                |
|                                |                                     |                                        |                                 |                                  |                                    |                      |
|                                | Span 6.000 MHz<br>1.00 ms (601 pts) | Sweep                                  | 3.0 MHz                         | #VBW                             | 102000 GHz<br>3.0 MHz              | Center 2.<br>#Res BW |
|                                |                                     | STATUS                                 |                                 |                                  |                                    | MSG                  |


# CH00 -3Mbps



#### CH39 -3Mbps



CH78 -3Mbps





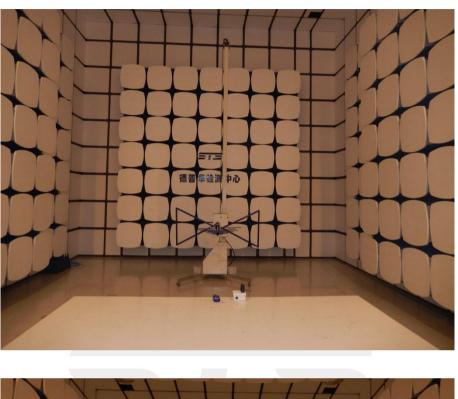
# **10. ANTENNA REQUIREMENT**

# **10.1 STANDARD REQUIREMENT**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

## 10.2 EUT ANTENNA

The EUT antenna is Dipole Antenna. It comply with the standard requirement.




Shenzhen STS Test Services Co., Ltd.



Page 72 of 73

# **APPENDIX- PHOTOS OF TEST SETUP**



#### **Radiated Measurement Photos**



Shenzhen STS Test Services Co., Ltd.



# **Conducted Measurement Photos**



\*\* \*\* \*\* \*\* END OF THE REPORT \*\* \*\* \*\* \*\*

Shenzhen STS Test Services Co., Ltd.