# **FCC Test Report**

Report No.: AGC00653170601FE03

| FCC ID                           | : | 2AFD9C9                                 |
|----------------------------------|---|-----------------------------------------|
| APPLICATION PURPOSE              | : | Original Equipment                      |
| PRODUCT DESIGNATION              | : | GSM MOBILE PHONE                        |
| BRAND NAME                       | : | ZOOM                                    |
| MODEL NAME                       | : | С9                                      |
| CLIENT                           | : | MOVEON TECHNOLOGY LIMITED               |
| DATE OF ISSUE                    | : | June 14, 2017                           |
| STANDARD(S)<br>TEST PROCEDURE(S) | : | FCC Part 15 Rules<br>ANSI C63.10 (2013) |
| REPORT VERSION                   | : | V1.0                                    |

Attestation of Global Compliance (Shenzhen) Co., Ltd

# CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.



# **Report Revise Record**

| <b>Report Version</b> | Revise Time | Issued Date   | Valid Version | Notes           |
|-----------------------|-------------|---------------|---------------|-----------------|
| V1.0                  | /           | June 14, 2017 | Valid         | Original Report |

# **TABLE OF CONTENTS**

| 1. VERIFICATION OF CONFORMITY                          | 5 |
|--------------------------------------------------------|---|
| 2. GENERAL INFORMATION                                 | 6 |
| 2.1. PRODUCT DESCRIPTION                               | 6 |
| 2.2. TABLE OF CARRIER FREQUENCYS                       | 6 |
| 2.3. RECEIVER INPUT BANDWIDTH                          | 7 |
| 2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE        | 7 |
| 2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR. | 7 |
| 2.6. RELATED SUBMITTAL(S) / GRANT (S)                  |   |
| 2.7. TEST METHODOLOGY                                  |   |
| 2.8. SPECIAL ACCESSORIES                               |   |
| 2.9. EQUIPMENT MODIFICATIONS                           |   |
| 3. MEASUREMENT UNCERTAINTY                             | 9 |
| 4. DESCRIPTION OF TEST MODES                           | 9 |
| 5. SYSTEM TEST CONFIGURATION                           |   |
| 5.1. CONFIGURATION OF EUT SYSTEM                       |   |
| 5.2. EQUIPMENT USED IN EUT SYSTEM                      |   |
| 5.3. SUMMARY OF TEST RESULTS                           |   |
| 6. TEST FACILITY                                       |   |
| 7. PEAK OUTPUT POWER                                   |   |
| 7.1. MEASUREMENT PROCEDURE                             |   |
| 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)      |   |
| 7.3. LIMITS AND MEASUREMENT RESULT                     |   |
| 8. 20DB BANDWIDTH                                      |   |
| 8.1. MEASUREMENT PROCEDURE                             |   |
| 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)      |   |
| 8.3. LIMITS AND MEASUREMENT RESULTS                    |   |
| 9. CONDUCTED SPURIOUS EMISSION                         |   |
| 9.1. MEASUREMENT PROCEDURE                             |   |
| 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)      |   |
| 9.3. MEASUREMENT EQUIPMENT USED                        |   |
| 9.4. LIMITS AND MEASUREMENT RESULT                     |   |
| 10. RADIATED EMISSION                                  |   |
| 10.1. MEASUREMENT PROCEDURE                            |   |
| 10.2. TEST SETUP                                       |   |
| 10.3. TEST RESULT                                      |   |

#### Report No.: AGC00653170601FE03 Page 4 of 45

| 11. BAND EDGE EMISSION                                      | 30 |
|-------------------------------------------------------------|----|
| 11.1. MEASUREMENT PROCEDURE                                 |    |
| 11.2. TEST SET-UP                                           |    |
| 11.3. Radiated TEST RESULT                                  |    |
| 11.4 Conducted TEST RESULT                                  |    |
| 12. NUMBER OF HOPPING FREQUENCY                             | 36 |
| 12.1. MEASUREMENT PROCEDURE                                 |    |
| 12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)           |    |
| 12.3. MEASUREMENT EQUIPMENT USED                            |    |
| 12.4. LIMITS AND MEASUREMENT RESULT                         |    |
| 13.1. MEASUREMENT PROCEDURE                                 |    |
| 13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)           |    |
| 13.3. MEASUREMENT EQUIPMENT USED                            |    |
| 13.4. LIMITS AND MEASUREMENT RESULT                         |    |
| Test Graph                                                  |    |
| 14. FREQUENCY SEPARATION                                    | 39 |
| 14.1. MEASUREMENT PROCEDURE                                 |    |
| 14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)           |    |
| 14.3. MEASUREMENT EQUIPMENT USED                            |    |
| 14.4. LIMITS AND MEASUREMENT RESULT                         |    |
| 15. FCC LINE CONDUCTED EMISSION TEST                        | 40 |
| 15.1. LIMITS OF LINE CONDUCTED EMISSION TEST                | 40 |
| 15.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST         | 40 |
| 15.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST | 41 |
| 15.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST       | 41 |
| 15.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST           |    |
| APPENDIX A: PHOTOGRAPHS OF TEST SETUP                       | 44 |

| Applicant                | MOVEON TECHNOLOGY LIMITED                              |
|--------------------------|--------------------------------------------------------|
| Address                  | world trade plaza-A block 3201-3201 fuhong road,futian |
| Manufacturer             | MOVEON TECHNOLOGY LIMITED                              |
| Address                  | world trade plaza-A block 3201-3201 fuhong road,futian |
| Product Designation      | GSM MOBILE PHONE                                       |
| Brand Name               | ZOOM                                                   |
| Test Model               | C9                                                     |
| Date of test             | June 05, 2017~June 14, 2017                            |
| Deviation                | None                                                   |
| Condition of Test Sample | Normal                                                 |
| Report Template          | AGCRT-US-BR/RF                                         |

# **1. VERIFICATION OF CONFORMITY**

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

| Tested By   | donjon »rang                                     |               |
|-------------|--------------------------------------------------|---------------|
|             | Donjon Huang(Huang<br>Dongyang)                  | June 14, 2017 |
| Reviewed By | Bong xie                                         |               |
|             | Bart Xie(Xie Xiaobin)                            | June 14, 2017 |
| Approved By | Solya shong                                      |               |
|             | Solger Zhang(Zhang Hongyi)<br>Authorized Officer | June 14, 2017 |

# 2. GENERAL INFORMATION

# 2.1. PRODUCT DESCRIPTION

The EUT is "Tablet" designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

| , , ,               | 5                                               |
|---------------------|-------------------------------------------------|
| Operation Frequency | 2.402 GHz to 2.480GHz                           |
| Bluetooth Version   | V2.1+EDR                                        |
| Modulation          | GFSK, π /4-DQPSK, 8DPSK                         |
| Number of channels  | 79(For BR/EDR)                                  |
| Hardware Version    | H28_MB_V1.0                                     |
| Software Version    | sc6531_3232_3110_H28_C41_ZOOM_YX_ N_V4_20170420 |
| Antenna Designation | PIFA Antenna                                    |
| Antenna Gain        | 1.0dBi                                          |
| Power Supply        | DC3.7V by Battery                               |

A major technical description of EUT is described as following

#### 2.2. TABLE OF CARRIER FREQUENCYS

| Frequency Band | Channel Number | Frequency |
|----------------|----------------|-----------|
| 2400~2483.5MHZ | 0              | 2402MHZ   |
|                | 1              | 2403MHZ   |
|                | •              | :         |
|                | 38             | 2440 MHZ  |
|                | 39             | 2441 MHZ  |
|                | 40             | 2442 MHZ  |
|                | •              | :         |
|                | 77             | 2479 MHZ  |
|                | 78             | 2480 MHZ  |

# 2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

# 2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

# 2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values: 1. LAP/UAP of the master of the connection.

2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD\_ADDRESS. The BD\_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD\_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us.The clock has a cycle of about one day(23h30).In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations)are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us).The hopping sequence will always Differ from the first one.

#### 2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AFD9C9** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### 2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

#### 2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

#### 2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

# **3. MEASUREMENT UNCERTAINTY**

Conducted measurement: +/- 2.75dB Radiated measurement: +/- 3.2dB

# 4. DESCRIPTION OF TEST MODES

| NO. | TEST MODE DESCRIPTION         |
|-----|-------------------------------|
| 1   | Low channel GFSK              |
| 2   | Middle channel GFSK           |
| 3   | High channel GFSK             |
| 4   | Low channel π /4-DQPSK        |
| 5   | Middle channel $\pi$ /4-DQPSK |
| 6   | High channel π /4-DQPSK       |
| 7   | Low channel 8DPSK             |
| 8   | Middle channel 8DPSK          |
| 9   | High channel 8DPSK            |
| 10  | Normal Hopping                |

Note:

1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

# **5. SYSTEM TEST CONFIGURATION**

5.1. CONFIGURATION OF EUT SYSTEM Configuration:



#### 5.2. EQUIPMENT USED IN EUT SYSTEM

| ltem | Equipment        | Model No. | ID or Specification | Note      |
|------|------------------|-----------|---------------------|-----------|
| 1    | GSM MOBILE PHONE | C9        | 2AFD9C9             | EUT       |
| 2    | Adapter          | C9        | DC5V /0.5A          | Accessory |
| 3    | Battery          | C9        | DC3.7V/800mAh       | Accessory |
| 4    | Earphone         | N/A       | N/A                 | Accessory |

#### **5.3. SUMMARY OF TEST RESULTS**

| FCC RULES | DESCRIPTION OF TEST         | RESULT    |
|-----------|-----------------------------|-----------|
| §15.247   | Peak Output Power           | Compliant |
| §15.247   | 20 dB Bandwidth             | Compliant |
| §15.247   | Spurious Emission           | Compliant |
| §15.209   | Radiated Emission           | Compliant |
| §15.247   | Band Edges                  | Compliant |
| §15.207   | Conduction Emission         | Compliant |
| §15.247   | Number of Hopping Frequency | Compliant |
| §15.247   | Time of Occupancy           | Compliant |
| §15.247   | Frequency Separation        | Compliant |

# 6. TEST FACILITY

| Site                 | Dongguan Precise Testing Service Co., Ltd.                                                              |
|----------------------|---------------------------------------------------------------------------------------------------------|
| Location             | Building D,Baoding Technology Park,Guangming Road2,Dongcheng District,<br>Dongguan, Guangdong, China,   |
| FCC Registration No. | 371540                                                                                                  |
| Description          | The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.10:2013. |

#### ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

| Radiated Emission Test Site            |                 |              |                  |                     |                    |
|----------------------------------------|-----------------|--------------|------------------|---------------------|--------------------|
| Name of Equipment                      | Manufacturer    | Model Number | Serial<br>Number | Last<br>Calibration | Due<br>Calibration |
| EMI Test Receiver                      | Rohde & Schwarz | ESCI         | 101417           | July 3, 2016        | July 2, 2017       |
| Trilog Broadband<br>Antenna (25M-1GHz) | SCHWARZBECK     | VULB9160     | 9160-3355        | July 3, 2016        | July 2, 2017       |
| Signal Amplifier                       | SCHWARZBECK     | BBV 9475     | 9745-0013        | July 3, 2016        | July 2, 2017       |
| RF Cable                               | SCHWARZBECK     | AK9515E      | 96221            | July 3, 2016        | July 2, 2017       |
| 3m Anechoic Chamber                    | CHENGYU         | 966          | PTS-001          | June 2, 2017        | June 1, 2018       |
| MULTI-DEVICE<br>Positioning Controller | Max-Full        | MF-7802      | MF780208339      | N/A                 | N/A                |
| Active loop antenna<br>(9K-30MHz)      | Schwarzbeck     | FMZB1519     | 1519-038         | June 2, 2017        | June 1, 2018       |
| Spectrum analyzer                      | Agilent         | E4407B       | MY46185649       | June 2, 2017        | June 1, 2018       |
| Power Probe                            | R&S             | NRP-Z23      | 100323           | July 24,2016        | July 23,2017       |
| RF attenuator                          | N/A             | RFA20db      | 68               | N/A                 | N/A                |

# FOR RADIATED EMISSION TEST (1GHZ ABOVE)

| Radiated Emission Test Site            |                 |              |                  |                     |                    |  |
|----------------------------------------|-----------------|--------------|------------------|---------------------|--------------------|--|
| Name of Equipment                      | Manufacturer    | Model Number | Serial<br>Number | Last<br>Calibration | Due<br>Calibration |  |
| EMI Test Receiver                      | Rohde & Schwarz | ESCI         | 101417           | July 3, 2016        | July 2, 2017       |  |
| Horn Antenna<br>(1G-18GHz)             | SCHWARZBECK     | BBHA9120D    | 9120D-1246       | July 10, 2016       | July 9, 2017       |  |
| Spectrum Analyzer                      | Agilent         | E4411B       | MY4511453        | July 3, 2016        | July 2, 2017       |  |
| Signal Amplifier                       | SCHWARZBECK     | BBV 9718     | 9718-269         | July 6, 2016        | July 5, 2017       |  |
| RF Cable                               | SCHWARZBECK     | AK9515H      | 96220            | July 7, 2016        | July 6, 2017       |  |
| 3m Anechoic Chamber                    | CHENGYU         | 966          | PTS-001          | June 2, 2017        | June 1, 2018       |  |
| MULTI-DEVICE<br>Positioning Controller | Max-Full        | MF-7802      | MF780208339      | N/A                 | N/A                |  |

| Horn Ant (18G-40GH                | lz) Schwarzbe   | eck   | BBHA 9170    | C    | 9170-181    | June 2, 201         | 7  | June 1, 2018  |
|-----------------------------------|-----------------|-------|--------------|------|-------------|---------------------|----|---------------|
| Power Probe                       | R&S             |       | NRP-Z23      |      | 100323      | July 24,201         | 6  | July 23,2017  |
| RF attenuator                     | N/A             |       | RFA20db      |      | 68          | N/A                 |    | N/A           |
|                                   |                 | Condu | cted Emissio | n Te | st Site     |                     |    |               |
| Name of<br>Equipment              | Manufacturer    | Mo    | del Number   | Se   | rial Number | Last<br>Calibration | Du | e Calibration |
| EMI Test Receiver                 | Rohde & Schwarz |       | ESCI         |      | 101417      | July 3, 2016        | ,  | July 2, 2017  |
| Artificial Mains<br>Network       | Narda           |       | L2-16B       | 00   | 0WX31025    | July 7, 2016        | ,  | July 6, 2017  |
| Artificial Mains<br>Network (AUX) | Narda           |       | L2-16B       | 00   | 0WX31026    | July 7, 2016        |    | July 6, 2017  |
| RF Cable                          | SCHWARZBECK     |       | AK9515E      |      | 96222       | July 3, 2016        |    | July 2, 2017  |
| Shielded Room                     | CHENGYU         |       | 843          |      | PTS-002     | June 2, 2017        | J  | June 1, 2018  |

# 7. PEAK OUTPUT POWER

#### 7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. RBW > the 20 dB bandwidth of the emission being measured, VBW  $\ge$  RBW.
- 4. Record the maximum power from the Spectrum Analyzer.

For average power test:

- 1. Connect EUT RF output port to power probe through an RF attenuator.
- 2. Connect the power probe to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements.

#### 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

# PEAK POWER TEST SETUP

#### **RF** Attenuator





# 7.3. LIMITS AND MEASUREMENT RESULT

| Mode | Frequency<br>(GHz) | Peak Power<br>(dBm) | Applicable Limits<br>(dBm) | Pass or Fail |
|------|--------------------|---------------------|----------------------------|--------------|
|      | 2.402              | -0.549              | 30                         | Pass         |
| GFSK | 2.441              | 0.880               | 30                         | Pass         |
|      | 2.480              | 0.979               | 30                         | Pass         |

| Mode       | Frequency<br>(GHz) | Peak Power<br>(dBm) | Applicable Limits<br>(dBm) | Pass or Fail |
|------------|--------------------|---------------------|----------------------------|--------------|
|            | 2.402              | -1.308              | 30                         | Pass         |
| π /4-DQPSK | 2.441              | -0.032              | 30                         | Pass         |
|            | 2.480              | -0.072              | 30                         | Pass         |

| Mode  | Frequency<br>(GHz) | Peak Power<br>(dBm) | Applicable Limits<br>(dBm) | Pass or Fail |
|-------|--------------------|---------------------|----------------------------|--------------|
|       | 2.402              | -1.353              | 30                         | Pass         |
| 8DPSK | 2.441              | -0.107              | 30                         | Pass         |
|       | 2.480              | -0.091              | 30                         | Pass         |

# 8. 20DB BANDWIDTH

## 8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW  $\geq$  1% of the 20 dB bandwidth, VBW  $\geq$  RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

#### 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)



#### 8.3. LIMITS AND MEASUREMENT RESULTS

| Mode     | Channel. | EBW [KHz] | Verdict |
|----------|----------|-----------|---------|
| GFSK     | LCH      | 832.1     | PASS    |
| GFSK     | MCH      | 827.0     | PASS    |
| GFSK     | НСН      | 827.4     | PASS    |
| π/4DQPSK | LCH      | 1126      | PASS    |
| π/4DQPSK | MCH      | 1127      | PASS    |
| π/4DQPSK | HCH      | 1128      | PASS    |
| 8DPSK    | LCH      | 1121      | PASS    |
| 8DPSK    | MCH      | 1125      | PASS    |
| 8DPSK    | HCH      | 1140      | PASS    |

# **Test Graph**













# 9. CONDUCTED SPURIOUS EMISSION

# 9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
  RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

**Note:** The EUT was tested according for compliance ANSI C63.10 (2013) requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW > RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW > RBW) are conform to the requirement.

# 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

#### 9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

#### 9.4. LIMITS AND MEASUREMENT RESULT

| LIMITS AND MEASUREMENT RESULT                          |                                |          |  |  |  |
|--------------------------------------------------------|--------------------------------|----------|--|--|--|
|                                                        | Measurement Result             |          |  |  |  |
|                                                        | Test Data                      | Criteria |  |  |  |
| In any 100 KHz Bandwidth Outside the                   | At least -20dBc than the limit |          |  |  |  |
| frequency band in which the spread spectrum            | Specified on the BOTTOM        | PASS     |  |  |  |
| intentional radiator is operating, the radio frequency | Channel                        |          |  |  |  |
| power that is produce by the intentional radiator      |                                |          |  |  |  |
| shall be at least 20 dB below that in 100KHz           |                                |          |  |  |  |
| bandwidth within the band that contains the highest    |                                |          |  |  |  |
| level of the desired power.                            | At least -20dBc than the limit | DASS     |  |  |  |
| In addition, radiation emissions which fall in the     | Specified on the TOP Channel   | PASS     |  |  |  |
| restricted bands, as defined in §15.205(a), must also  |                                |          |  |  |  |
| comply with the radiated emission limits specified     |                                |          |  |  |  |
| in§15.209(a))                                          |                                |          |  |  |  |

# **Test Graph**

| GFSK-LCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GFSK-LCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knyight Spectrum Analyzer - Swegt SA     Strotz Firl     RUD Rum To     Strotz Sector     RUD Rum To     Strotz Sector     Firld Rum To     Strotz Sector     Firld Rum To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Knyight Spectrum Analyzer - Swept Sa Kny Spectrum Analyzer - Swept Sa Kn |
| Ref Offset 1 dB Mkr1 2.404 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref Offset 1 dB     Mkr1 788.54 MHz     Next Peak       10 dB/div     Ref 11.00 dBm     -68.284 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.50 Center Freq<br>5.50000000 GHz<br>110 X 5052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 Next Pk Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20 Start Freq<br>310<br>410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200 Next Pk Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 0<br>7 0<br>7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 1.000 GHz Stop 10.000 GHz #VBW 300 kHz Sweep 860.1 ms (1001 pts)<br>#Res BW 100 kHz #VBW 300 kHz Sweep 860.1 ms (1001 pts)<br>Auto Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Start 0.0300 GHz Stop 1.0000 GHz<br>#Res BW 100 kHz #VBW 300 kHz Sweep 92.73 ms (1001 pts) MkrCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NMM     NMM     Y     Function     Function <td>INFINITORY INC. SCU     X     Y     FUNCTION     PUNCTION     <t< td=""></t<></td> | INFINITORY INC. SCU     X     Y     FUNCTION     PUNCTION     PUNCTION <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Scale Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | More<br>1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ASO STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| GFSK-LCH                                                                                                                                                   | GFSK-MCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: Strate Control Advances - Strate Control Advances                                                                                                   | Ch     Start Freq 1.0000000000 GHz     Start Freq 1.0000000000 GHz     Arg Type: Log Perr     Truck pres Turk     Frequency       PB0: part     Frequency     Arg Type: Sog Perr     Truck pres Turk     Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10. dB/div Ref 11.00 dBm -56.477 dBm                                                                                                                       | Peak Ref Offset 1 dB 0.775 dBm 0.775 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 125                                                                                                                                                        | Right 40 Center Freq 5.50000000 GH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 270 Next Pk                                                                                                                                                | 30     Start Freq       40     1.00000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Markert                                                                                                                                                    | Deta 00 Stop Freq 10.00000000 GHz 10.000 Chi 2000 Chi 200 |
| Start 10.000 CHz Stop 25.000 CHz<br>#Res BW 100 KHz #VBW 300 KHz Sweep 1.434 s (1001 pts)<br>Inne wcoler ros cu x y Function Function worth Function worth | CF Start 1.000 CHz #Res BW 100 Hz #VEW 300 Hz Sweep 860.1 ms (1001 Hz) #WEW 300 Hz #VEW 300 Hz #VEW 300 Hz #VEW 400 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2 N 1 T 237/0 UN2 -38.4/7 dbm<br>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                     | erLvi 2 2 40 0n2 07/2 3000 Freq Offset<br>0 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                            | More 8 Scale Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MISC                                                                                                                                                       | MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| GFSK-MCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GFSK-MCH                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knynget Spectra Anlyne - Sen 35 Sen 25 Sen | Arryster     Store Part     Store Part     Arryster     Store Part     Peak Search       Marker 1 24.970000000000 GHz     Store Part     Arry Type: Log-Part     Truck 1 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                    |
| Ref Offset 1 dB     Mk/T1 851.59 MHz       10 dB/div     ef 11.00 dB/m     -68.043 dB/m       100     -68.043 dB/m     Next Pk Right       100     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ref Offset1 dB     MKr1 24,970 GHz       10 dB/dw     -56,797 dBm       100     -56,797 dBm |
| 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
| 800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800 1   800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 600<br>400<br>700                                                                                                                                                                                                                                                                 |
| Start 0.0300 GHz     Stop 1.0000 GHz     Stop 1.0000 GHz       #Res BW 100 Hz     #VEW 300 kHz     Stop 2.73 ms (1001 pts)       MkrCF     Function width     Function width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Start 10.000 GHz     Stop 25.000 GHz       #Res BW 100 KHz     #VBW 300 KHz     Stverep 1.434 s (1001 pts)       #Res BW 100 KHz     #VBW 300 KHz     Stverep 1.434 s (1001 pts)                                                                                                  |
| M I I CONSTANT CONSTANT CONSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A T T ASTOCIAL SOLDANDIN<br>MkrRefLvi                                                                                                                                                                                                                                             |
| More<br>9<br>10<br>11<br>11<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | More<br>10 1 of 2                                                                                                                                                                                                                                                                 |
| MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MSG                                                                                                                                                                                                                                                                               |



| GFSK-HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | π/4DQPSK-LCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knjight Spectrum Annjarr-Tungt SA Knjight Spectrum Annjarr-Tungt SP Knjight Spectrum Annjarr-T | Peak Search    | Crystel Spectrum Analyzer - Sweet SA Sever Entr Aug Nurro III 2013 AN bin 16, 2017 Start Frag 1,00000000 GHz Fize Run Fize Run Avg Type: Log-Pwr Trig: Free Run AvgType: Log-Pwr Trig: Free Run AvgTy |
| Ref Offset 1 dB     Mkr1 25.000 GHz       10 dB/div     Ref 11.00 dBm     -56.133 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Next Peak      | Ber Offset 1 dB     Mkr1 2.404 GHz     Auto Tune       10 dB/div     Ref 11.00 dBm     -0.570 dBm     Auto Tune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 120<br>200<br>110<br>110<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Next Pk Right  | 100 Center Freq<br>00 71.510.0000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 200<br>200<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Next Pk Left   | 20 Start Freq<br>20 1.00000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marker Delta   | OD     Stop Freq       10.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Start     10.000 GHz     Stop 25.000 GHz       #Res BW 100 kHz     #VBW 300 kHz     Sweep     1.434 s (1001 pts)       Mex Mode Trol Sci.     X     Y     Fauction Hot Hardware       N 1     2 2000 GHz     Fauction Hot Hardware     Fauction Hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mkr→CF         | Start 1.000 GHz     Stop 10.000 GHz     CF Step       #Res BW 100 kHz     #VBW 300 kHz     Sweep 860.1 ms (1001 pts)     900.00000 MHz       Imm Mode Tre, St.L     X     Y     FARCTON HDTH     FARCTON HDTH     FARCTON HDTH     FARCTON HDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mkr→RefLvl     | FreqOffset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | More<br>1 of 2 | Scale Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Kana kana kana kana kana kana kana kana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | e status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| π/4DQPSK-LCH                                                                                          | π/4DQPSK-LCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regist Spectrum, Analyse::                                                                            | By sight Servers Allowers - benef 5A     Servers Allowers - benef 5A       By Sight Servers Allowers - benef 5A     Servers Allowers - benef 5A       Marker 1 24.91000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 dialay ker 11.00 dam -00.01 r 40.01<br>10                                                          | 16 geladi Ker 11.00 dem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 201                                                                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30 1   30 1   31 1   32 1                                                                             | (%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%) |
| Start 0.0300 GHz Stop 1.0000 GHz<br>#Res BW 100 kHz #VBW 300 kHz Sweep 92.73 ms (1001 pts)<br>Mkr.→CF | Start 10.000 GHz     Stop 25.000 GHz       #Res BW 100 kHz     #VBW 300 kHz     Sweep 1.3.34 s (1001 pts)       Mikr—CF     #VBW 300 kHz     Sweep 1.3.44 s (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N 1 1 7 738.10 MHz 458.911 dBm<br>2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                             | N     1     7     24910 GHz     -55-311 dBm       2     4     4     4     4       3     4     4     4     4       6     4     4     4     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| More 1 of 2                                                                                           | 8 More<br>10 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ASC STATUS                                                                                            | NG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| π/4DQPSK-MCH                                                                                                                                                                                                                                                                                             |                | π/4DQPSK-HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trysight Spectrum Analyzer: Swegt SA     SERIES.2011     ALION AUTO     11:47:32 Million 12:02       W     Markker: 1 244,993500000000 GHz     Frig: Free Run     Avg Type: Log-Pwr     Tricd: 2 2 2 2 2 2 3       PIO: Fau: Composition     Frig: Free Run     Avg Type: Log-Pwr     Tricd: 2 2 2 2 2 3 | Peak Search    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ref Offset 1 dB Mkr1 24.985 GHz<br>10 dB/div Ref 11.00 dBm -56.340 dBm                                                                                                                                                                                                                                   | Next Peak      | Ref Offset1 dB     Mkr1 2.476 GHz     Auto Tune       10 dBddiv     Ref 11.00 dBm     -1.572 dBm     Auto Tune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 100<br>000<br>000                                                                                                                                                                                                                                                                                        | Next Pk Right  | 100 Center Freq<br>800 State Sta |
| 00<br>00<br>00                                                                                                                                                                                                                                                                                           | Next Pk Left   | 30 Start Freq<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                          | Marker Delta   | 000     Stop Freq       73 0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 10.000 GHz     Stop 25.000 GHz     Stop 25.000 GHz       #Res BW 100 kHz     #VBW 300 kHz     Sweep 1.434 s (1001 pts)       Mwi tooging Ficilistic     x     y     Function     Function                                                                                                          | Mkr→CF         | Start 1.000 CHz     Stop 10.000 CHz     Stop 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N 1 7 24985 GHz -66,340 dBm                                                                                                                                                                                                                                                                              | Mkr→RefLvl     | N     1     f     2.476 GHz     -1.572 dBm       3     -     -     -     -     -       4     -     -     -     -     -     -       5     -     -     -     -     -     0 Hz     0 Hz       6     -     -     -     -     -     0 Hz     0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                          | More<br>1 of 2 | Scale Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MSG                                                                                                                                                                                                                                                                                                      |                | ISG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



|             | 11-48-32 AM Jun 10, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UGN AUTO                                                                                                        |                     | ENSE-INT |                  |                       | um Analyzer - Swept SA           | Keysight Spec |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|----------|------------------|-----------------------|----------------------------------|---------------|
| Peak Search | TRACE 1 2 3 4 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Log-Pwr<br>10/10                                                                                                | Avg Type            | ee Run   | Tria: Fr         | IHz                   | 89.510000000 N                   | Marker 1      |
| NextPa      | DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                     | 20 dB    | #Atten:          | IFGain:Low            |                                  |               |
| Nextre      | 1 789.51 MHz<br>-68.242 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mkr                                                                                                             |                     |          |                  |                       | Ref Offset 1 dB<br>Ref 11 00 dBm | 10 dB/div     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | Ť        |                  |                       |                                  | Log           |
| Next Pk Rig |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  |                       |                                  |               |
|             | EL1-21-60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                     |          |                  |                       |                                  | -19.0         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  |                       |                                  | -29.0         |
| Next Pk L   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  |                       |                                  | -39.0         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  |                       |                                  | -49.0         |
| Markey D.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •1-                                                                                                             |                     |          |                  |                       |                                  | -59.0         |
| MarkerDe    | and a stand of the | had for the second shadowed as the second | موستهما وترسيم مسمو |          | والسلام والمحافظ | As an a she had a set |                                  | -89.0         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  |                       |                                  |               |
| Mkr→        | 73 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | weep 92.                                                                                                        | \$                  | z        | N 300 kH         | #VB                   | 00 kHz                           | #Res BW       |
|             | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TION WIDTH                                                                                                      | CTION FUN           | R.       | Y                |                       | SCL X                            | MKR MODE TRI  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | IBm      | -68.242          | 9.51 MHz              | f 78                             | 1 N 1<br>2    |
| Mkr→Ref     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  |                       |                                  | 3             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  | _                     |                                  | 6             |
| M           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  | _                     |                                  | 8             |
| 4.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |          |                  |                       |                                  | 10            |

#### Report No.: AGC00653170601FE03 Page 22 of 45



| 8DPSK-LCH                                                                                                                                                                                                                                                                                                                                |                | 8DPSK-MCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weight Spectrum Adapter:     Solid State     Strict Strift     ALLOR AUTO     11.54 52 AHAo 18, 2817       Warker 1 24,255000000000 CHz     Trig: Free Rung     Avg Type: Log-Evr     Trict: Free Rung     Avg Type: Log-Evr       With Fact Strift     Trig: Free Rung     Avg Type: Log-Evr     Trict: Free Rung     Avg Type: Log-Evr | Peak Search    | Start Freq 1.00000000 GHz     Strict Intl     Autor Auto     119739.4k/bn 19,307       Start Freq 1.00000000 GHz     Tig: Pre Ban     Avg Type Log-Pwr     Tig: Strate Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ref Offset 1 dB<br>10 dB/div Ref 11.00 dBm -55.770 dBm                                                                                                                                                                                                                                                                                   | Next Peak      | Ref Offset 1 dB     Mkr1 2.440 GHz     Auto Tune       10 dBldiv     Ref 11.00 dBm     -0.998 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                          | Next Pk Right  | 100 Center Freq<br>000 No.21000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 200<br>.90<br>.00                                                                                                                                                                                                                                                                                                                        | Next Pk Left   | 23.0 Start Freq<br>33.0 10000000 GHz<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                          | Marker Delta   | Stop Freq<br>Stop Freq<br>Stop Freq<br>10.00000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Start 10.000 CHz     Stop 25.000 GHz       #Res BW 100 kHz     #VBW 300 kHz     Sweep 1.434 s (1001 pts)       Wm M00E Hr Sk1     x     y     Farcton Verbill     Participation                                                                                                                                                          | Mkr→CF         | Start 1.000 CHz     Stop 10.000 CHz     CF step<br>900 coccord Hz       RFK SEW 100 KHz     #VEW 300 KHz     Sweep 860.11ms (1001 pts)     Auto     Auto     Auto       MM IOSE (FS SL)     x     Y     FACTOR:     Factors with |
| N 1 1 7 24265 GHz -55.770 dBm                                                                                                                                                                                                                                                                                                            | Mkr→RefLvl     | N     1     f     2.440 GHz     -0.999 dBm       2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                          | More<br>1 of 2 | Scale Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                          |                | 4 TATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





| 8DPSK-HCH                                                                                                                                                                                                     |                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Repute Spectrum Analysis     See 15 So AC     SERVED IT     ALLON AUTO     11 SP 59 A       Warrkor 1 24.5550000000000 GHz     Trig: Free Run<br>PNDC Fast     Arrg Type: Log-Pur<br>Aug/Holds >1010     Tray | All Jun 10, 2017<br>Peak Search<br>DET PHILING |
| Ref Offset 1 dB Mkr1 24.<br>10 dBlolv Ref 11.00 dBm -56.7<br>10                                                                                                                                               | 955 GHz<br>701 dBm<br>Next Pk Right            |
| 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                      | Next Pk Left                                   |
|                                                                                                                                                                                                               | Marker Delta                                   |
| Start 10.000 GHz     Stop 25       #Res BW 100 kHz     #VBW 300 kHz     Sweep 1.434 s       IMM MODE TRC: SCI     X     Y     Function     Function     Function                                              | 5.000 GHz<br>(1001 pts) Mkr→CF                 |
| 2 N I I A ANY OTA 90.771000                                                                                                                                                                                   | Mkr→RefLvi                                     |
| 7<br>9<br>10<br>11                                                                                                                                                                                            | More<br>1 of 2                                 |
| MSC STATUS                                                                                                                                                                                                    |                                                |

# **10. RADIATED EMISSION**

#### **10.1. MEASUREMENT PROCEDURE**

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter    | Setting                                   |  |
|-----------------------|-------------------------------------------|--|
| Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP               |  |
| Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP               |  |
| Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP            |  |
| Start Stan Fraguanay  | 1GHz~26.5GHz                              |  |
| Start ~Stop Frequency | 1MHz/1MHz for Peak, 1MHz/10Hz for Average |  |

| Receiver Parameter    | Setting                        |
|-----------------------|--------------------------------|
| Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP    |
| Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP    |
| Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP |

#### 10.2. TEST SETUP



#### RADIATED EMISSION TEST SETUP 30MHz-1000MHz





#### 10.3. TEST RESULT

#### RADIATED EMISSION BELOW 30MHZ

# No emission found between lowest internal used/generated frequencies to 30MHz.

#### RADIATED EMISSION BELOW 1GHZ

#### RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL



| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|     | ·  | MHz      | dBuV    | dB/m   | dBuV/m      | dBuV/m | dB     | cm       | degree            |                 |         |
| 1   |    | 52.6333  | 7.84    | 8.41   | 16.25       | 40.00  | -23.75 | peak     |                   |                 |         |
| 2   |    | 139.9333 | 1.77    | 15.17  | 16.94       | 43.50  | -26.56 | peak     |                   |                 |         |
| 3   |    | 353.3333 | 2.15    | 18.76  | 20.91       | 46.00  | -25.09 | peak     |                   |                 |         |
| 4   |    | 602.3000 | 3.03    | 23.74  | 26.77       | 46.00  | -19.23 | peak     |                   |                 |         |
| 5   | *  | 835.1000 | 3.48    | 27.31  | 30.79       | 46.00  | -15.21 | peak     |                   |                 |         |
| 6   |    | 964.4333 | 2.59    | 29.86  | 32.45       | 54.00  | -21.55 | peak     |                   |                 |         |

**RESULT: PASS** 



#### RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

#### **RESULT: PASS**

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. All test modes had been pre-tested. The GFSK mode at low channel is the worst case and recorded in the report.

| Frequency | Meter Reading | Factor | Emission Level    | Limits   | Margin | Detector | Comment    |
|-----------|---------------|--------|-------------------|----------|--------|----------|------------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     | Common     |
|           |               |        | Low Channel (2402 | 2 MHz)   |        |          |            |
| 4804      | 63.97         | -3.62  | 60.35             | 74       | -13.65 | Pk       | Vertical   |
| 4804      | 46.95         | -3.62  | 43.33             | 54       | -10.67 | AV       | Vertical   |
| 7206      | 61.83         | -0.9   | 60.93             | 74       | -13.07 | pk       | Vertical   |
| 7206      | 43.72         | -0.9   | 42.82             | 54       | -11.18 | AV       | Vertical   |
| 4804      | 63.54         | -3.64  | 59.90             | 74       | -14.10 | Pk       | Horizontal |
| 4804      | 47.32         | -3.64  | 43.68             | 54       | -10.32 | AV       | Horizontal |
|           |               |        | Mid Channel (2441 | l MHz)   |        |          |            |
| 4882      | 63.04         | -3.65  | 59.39             | 74       | -14.61 | Pk       | Vertical   |
| 4882      | 46.65         | -3.65  | 43.00             | 54       | -11.00 | AV       | Vertical   |
| 7323      | 59.72         | -0.82  | 58.90             | 74       | -15.10 | Pk       | Vertical   |
| 7323      | 43.51         | -0.82  | 42.69             | 54       | -11.31 | AV       | Vertical   |
| 4882      | 64.63         | -3.68  | 60.95             | 74       | -13.05 | Pk       | Horizontal |
| 4882      | 46.10         | -3.68  | 42.42             | 54       | -11.58 | AV       | Horizontal |
|           |               |        | High Channel (248 | 0 MHz)   |        | -        |            |
| 4960      | 64.95         | -3.59  | 61.36             | 74       | -12.64 | pk       | Vertical   |
| 4960      | 46.52         | -3.59  | 42.93             | 54       | -11.07 | AV       | Vertical   |
| 4960      | 63.79         | -3.59  | 60.20             | 74       | -13.80 | pk       | Horizontal |
| 4960      | 44.62         | -3.59  | 41.03             | 54       | -12.97 | AV       | Horizontal |

#### RADIATED EMISSION TEST- (ABOVE 1GHZ)

Note:

1) 30MHz~25GHz:(Scan with GFSK,  $\pi$ /4-DQPSK,8DPSK, the worst casw is GFSK Mode)

2) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Meter Reading + Factor Margin = Emission Leve - Limit

**RESULT: PASS** 

# **11. BAND EDGE EMISSION**

#### **11.1. MEASUREMENT PROCEDURE**

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100kHz. The video bandwidth is set to 300kHz.
- 2. Transmitter set to the normal hopping mode at 2.4 and 2.4835 GHz.

#### 11.2. TEST SET-UP

Radiated same as 10.2

Conducted set up



| Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Detector | Comment    |
|-----------|------------------|--------|-------------------|----------|--------|----------|------------|
| (MHz)     | (dBµV)           | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     |            |
|           |                  |        | GF                | SK       |        |          |            |
| 2399.9    | 61.20            | -12.99 | 48.21             | 74       | -25.79 | peak     | Vertical   |
| 2399.9    | 55.51            | -12.99 | 42.52             | 54       | -11.48 | AVG      | Vertical   |
| 2399.9    | 62.17            | -12.99 | 49.18             | 74       | -24.82 | peak     | Horizontal |
| 2399.9    | 53.43            | -12.99 | 40.44             | 54       | -13.56 | AVG      | Horizontal |
| 2483.6    | 61.98            | -12.78 | 49.20             | 74       | -24.80 | peak     | Vertical   |
| 2483.6    | 52.58            | -12.78 | 39.80             | 54       | -14.20 | AVG      | Vertical   |
| 2483.6    | 63.59            | -12.78 | 50.81             | 74       | -23.19 | peak     | Horizontal |
| 2483.6    | 51.54            | -12.78 | 38.76             | 54       | -15.24 | AVG      | Horizontal |
|           |                  |        | π/4-D             | QPSK     |        |          |            |
| 2399.9    | 63.46            | -12.99 | 50.47             | 74       | -23.53 | peak     | Vertical   |
| 2399.9    | 55.37            | -12.99 | 42.38             | 54       | -11.62 | AVG      | Vertical   |
| 2399.9    | 64.88            | -12.99 | 51.89             | 74       | -22.11 | peak     | Horizontal |
| 2399.9    | 52.16            | -12.99 | 39.17             | 54       | -14.83 | AVG      | Horizontal |
| 2483.6    | 62.27            | -12.78 | 49.49             | 74       | -24.51 | peak     | Vertical   |
| 2483.6    | 51.56            | -12.78 | 38.78             | 54       | -15.22 | AVG      | Vertical   |
| 2483.6    | 61.22            | -12.78 | 48.44             | 74       | -25.56 | peak     | Horizontal |
| 2483.6    | 51.20            | -12.78 | 38.42             | 54       | -15.58 | AVG      | Horizontal |
|           |                  |        | 8DF               | PSK      |        |          |            |
| 2399.9    | 62.77            | -12.99 | 49.78             | 74       | -24.22 | peak     | Vertical   |
| 2399.9    | 54.78            | -12.99 | 41.79             | 54       | -12.21 | AVG      | Vertical   |
| 2399.9    | 62.65            | -12.99 | 49.66             | 74       | -24.34 | peak     | Horizontal |
| 2399.9    | 52.89            | -12.99 | 39.90             | 54       | -14.10 | AVG      | Horizontal |
| 2483.6    | 62.67            | -12.78 | 49.89             | 74       | -24.11 | peak     | Vertical   |
| 2483.6    | 51.54            | -12.78 | 38.76             | 54       | -15.24 | AVG      | Vertical   |
| 2483.6    | 62.62            | -12.78 | 49.84             | 74       | -24.16 | peak     | Horizontal |
| 2483.6    | 53.59            | -12.78 | 40.81             | 54       | -13.19 | AVG      | Horizontal |

# 11.3. Radiated TEST RESULT

#### **RESULT: PASS**

Note: The other modes radiation emission have enough 20dB margin.

Factor=Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

#### **11.4 Conducted TEST RESULT**

#### **Test Graph**



#### Report No.: AGC00653170601FE03 Page 33 of 45



#### Report No.: AGC00653170601FE03 Page 34 of 45



#### Report No.: AGC00653170601FE03 Page 35 of 45



Note: All modes were tested, only the worst case record in the report.

# **12. NUMBER OF HOPPING FREQUENCY**

#### **12.1. MEASUREMENT PROCEDURE**

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz
- 4. Set the Spectrum Analyzer as RBW>=1%span, VBW>=RBW.

#### 12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

#### **12.3. MEASUREMENT EQUIPMENT USED**

The same as described in section 6

#### **12.4. LIMITS AND MEASUREMENT RESULT**

| Mode | Channel. | Number of Hopping Channel | Verdict |
|------|----------|---------------------------|---------|
| GFSK | Нор      | 79                        | PASS    |

Note: All modes were tested, only the worst case record in the report.

#### **Test Graph**



# 13. TIME OF OCCUPANCY (DWELL TIME)

#### **13.1. MEASUREMENT PROCEDURE**

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Zero span, centered on a hopping channel.

2. RBW shall be  $\leq$  channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

4. Detector function: Peak. Trace: Max hold.

5. Use the marker-delta function to determine the transmit time per hop.

6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer)  $\times$  (period specified in the requirements / analyzer sweep time)

7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

# 13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

#### 13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

#### **13.4. LIMITS AND MEASUREMENT RESULT**

| Channel. | Burst Width [ms/hop/ch] | Number of hops in<br>the period<br>specified in the<br>requirements | Dwell Time[ms] | Verdict | Limit<br>(ms) |
|----------|-------------------------|---------------------------------------------------------------------|----------------|---------|---------------|
| LCH      | 2.875                   | 14*6.32                                                             | 254.38         | PASS    | 400           |
| MCH      | 2.880                   | 14*6.32                                                             | 254.8224       | PASS    | 400           |
| HCH      | 2.880                   | 12*6.32                                                             | 218.4192       | PASS    | 400           |

Note: The 8-DPSK modulation is the worst case and recorded in the report.

(period specified in the requirements / analyzer sweep time)=(79\*0.4)/5=6.32

(Number of hops in the period specified in the requirements)=6.32\* number of hops on spectrum analyzer

Dwell Time= Burst Width\*( Number of hops in the period specified in the requirements)

# **Test Graph**





| GFSK                                                                                           | -HCH                                                                                                     | GFSK-HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Keylight Spectrum Analyzer - Swept SA For Sec. AC Sec. AC Sec. Sec. Sec. Sec. Sec. Sec. Sec. S | ALIGN AUTO 0445747 PH Jun 10, 2017<br>Avg Type: Log-Pwr Trace 12.2 1 Frequency<br>Trace 12.2 1 Frequency | Conter Freq 2.480000000 GHz: Fast ++-<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequency<br>Frequ |  |  |  |  |  |  |
| Ref Offset 1 dB<br>10 dB/div Ref 11.00 dBm                                                     | ΔMkr1 2.880 ms Auto Tune<br>-1.15 dB                                                                     | 10 dB/div Ref 0ffset 1 dB<br>Log dB/div Ref 11.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 1.00 Xz                                                                                        | 1∆2 ★ Center Freq<br>2.480000000 GHz                                                                     | Center Freq     Center Freq     2.48000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| -9 00                                                                                          | Start Freq<br>2.480000000 GHz                                                                            | 0.00 Start Freq<br>(30) 2.480000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 38.0                                                                                           | Stop Freq<br>2.48000000 GHz                                                                              | 320 - Stop Freq<br>2.48000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| -690                                                                                           | CF Step<br>1.00000 MHz<br>Auto Man                                                                       | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                                                                                | Freq Offset<br>0 Hz                                                                                      | 0 D Freq Offset<br>0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                | Scale Type                                                                                               | Scale Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Center 2.480000000 GHz<br>Res BW 1.0 MHz #VBW 3.0 MHz                                          | Span 0 Hz<br>Sweep 5.000 ms (1001 pts)                                                                   | Center 2.480000000 GHz Span 0 Hz Lo<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 5.000 s (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

# **14. FREQUENCY SEPARATION**

#### 14.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- Set Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold

#### 14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

#### 14.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

#### 14.4. LIMITS AND MEASUREMENT RESULT

| Mode  | Channel. | Carrier Frequency Separation [MHz] | Verdict |
|-------|----------|------------------------------------|---------|
| 8DPSK | Нор      | 0.999                              | PASS    |

Note: All modes were tested, only the worst case record in the report.

#### **Test Graph**



# **15. FCC LINE CONDUCTED EMISSION TEST**

# **15.1. LIMITS OF LINE CONDUCTED EMISSION TEST**

| Frequency     | Maximum RF Line Voltage |                |  |  |  |  |  |  |
|---------------|-------------------------|----------------|--|--|--|--|--|--|
| Frequency     | Q.P.( dBuV)             | Average( dBuV) |  |  |  |  |  |  |
| 150kHz~500kHz | 66-56                   | 56-46          |  |  |  |  |  |  |
| 500kHz~5MHz   | 56                      | 46             |  |  |  |  |  |  |
| 5MHz~30MHz    | 60                      | 50             |  |  |  |  |  |  |

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

# 15.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST



#### 15.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received 120V/60Hzpower by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

#### 15.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

#### 15.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST



Line Conducted Emission Test Line 1-L

| No. | Freq.<br>(MHz) | Reading_Level<br>(dBuV) |    |       | Correct<br>Factor | Measurement<br>(dBuV) |    |       | Limit<br>(dBuV) |       | Margin<br>(dB) |        | P/F | Comment |
|-----|----------------|-------------------------|----|-------|-------------------|-----------------------|----|-------|-----------------|-------|----------------|--------|-----|---------|
|     |                | Peak                    | QP | AVG   | dB                | Peak                  | QP | AVG   | QP              | AVG   | QP             | AVG    |     |         |
| 1   | 0.2580         | 40.84                   |    | 28.00 | 10.27             | 51.11                 |    | 38.27 | 61.49           | 51.49 | -10.38         | -13.22 | Р   |         |
| 2   | 0.5620         | 37.98                   |    | 29.51 | 10.34             | 48.32                 |    | 39.85 | 56.00           | 46.00 | -7.68          | -6.15  | Р   |         |
| 3   | 1.7019         | 36.98                   |    | 24.70 | 10.32             | 47.30                 |    | 35.02 | 56.00           | 46.00 | -8.70          | -10.98 | Р   |         |
| 4   | 3.6299         | 36.40                   |    | 24.06 | 10.49             | 46.89                 |    | 34.55 | 56.00           | 46.00 | -9.11          | -11.45 | Р   |         |
| 5   | 4.2857         | 37.23                   |    | 24.12 | 10.30             | 47.53                 |    | 34.42 | 56.00           | 46.00 | -8.47          | -11.58 | Р   |         |
| 6   | 18.1018        | 40.18                   |    | 26.92 | 10.12             | 50.30                 |    | 37.04 | 60.00           | 50.00 | -9.70          | -12.96 | Р   |         |



#### Line Conducted Emission Test Line 2-N

| No. Freq.<br>(MHz) | Reading_Level<br>(dBuV) |       |    | Correct<br>Factor | Measurement<br>(dBuV) |       |    | Limit<br>(dBuV) |       | Margin<br>(dB) |        | P/F    | Comment |  |
|--------------------|-------------------------|-------|----|-------------------|-----------------------|-------|----|-----------------|-------|----------------|--------|--------|---------|--|
|                    | (MHz)                   | Peak  | QP | AVG               | dB                    | Peak  | QP | AVG             | QP    | AVG            | QP     | AVG    |         |  |
| 1                  | 0.5700                  | 37.13 |    | 26.23             | 10.34                 | 47.47 |    | 36.57           | 56.00 | 46.00          | -8.53  | -9.43  | Р       |  |
| 2                  | 1.7420                  | 37.78 |    | 25.25             | 10.30                 | 48.08 |    | 35.55           | 56.00 | 46.00          | -7.92  | -10.45 | Р       |  |
| 3                  | 2.3820                  | 37.19 |    | 24.38             | 10.38                 | 47.57 |    | 34.76           | 56.00 | 46.00          | -8.43  | -11.24 | Р       |  |
| 4                  | 4.3659                  | 36.32 |    | 24.68             | 10.27                 | 46.59 |    | 34.95           | 56.00 | 46.00          | -9.41  | -11.05 | Ρ       |  |
| 5                  | 5.2979                  | 39.42 |    | 26.67             | 10.25                 | 49.67 |    | 36.92           | 60.00 | 50.00          | -10.33 | -13.08 | Р       |  |
| 6                  | 20.2380                 | 39.42 |    | 25.75             | 10.11                 | 49.53 |    | 35.86           | 60.00 | 50.00          | -10.47 | -14.14 | Р       |  |

# **APPENDIX A: PHOTOGRAPHS OF TEST SETUP**

FCC LINE CONDUCTED EMISSION TEST SETUP



FCC RADIATED EMISSION TEST SETUP





----END OF REPORT----