SAR Test Report

Report No.: AGC00653170603FH01

FCC ID : 2AFD9210

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: GSM MOBILE PHONE

BRAND NAME : ZOOM

MODEL NAME : 210

CLIENT: MOVEON TECHNOLOGY LIMITED

DATE OF ISSUE : July 04,2017

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

REPORT VERSION: V1.0

Attestation of Globa Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC00653170603FH01 Page 2 of 80

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	July 04,2017	Valid	Original Report

Report No.: AGC00653170603FH01 Page 3 of 80

Т	est Report Certification		
Applicant Name	MOVEON TECHNOLOGY LIMITED		
Applicant Address	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian, Shenzhen, China		
Manufacturer Name	MOVEON TECHNOLOGY LIMITED		
Manufacturer Address	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian, Shenzhen, China		
Product Designation	GSM MOBILE PHONE		
Brand Name	ZOOM		
Model Name	210		
Different Description	N/A		
EUT Voltage	DC3.7V by battery		
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005		
Test Date	June 20,2017 to June 23,2017		
	Attestation of Global Compliance(Shenzhen) Co., Ltd.		
Performed Location 2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, C Xixiang Street, Bao'an District, Shenzhen, China			
Report Template	AGCRT-US-2.5G/SAR (2016-01-01)		

	Sun Yin		
Tested By	Sun Yin (Yin Cheng)	June 23,2017	
	Angola li		
Checked By	Angela Li(Li Jiao)	July 04,2017	
Authorized By	Lowers con		
Authorized By	Forrest Lei(Lei Yonggang) Authorized Officer	July 04,2017	

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	6
2. GENERAL INFORMATION	7
2.1. EUT DESCRIPTION	7
3. SAR MEASUREMENT SYSTEM	9
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS	10 11
3.4. VIDEO POSITIONING SYSTEM	12
4. SAR MEASUREMENT PROCEDURE	13
4.1. SPECIFIC ABSORPTION RATE (SAR)	14
5. TISSUE SIMULATING LIQUID	17
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	17
6. SAR SYSTEM CHECK PROCEDURE	19
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	21
7.2. CHEEK POSITION	22
8. SAR EXPOSURE LIMITS	
9. TEST EQUIPMENT LIST	25
10. MEASUREMENT UNCERTAINTY	26
11. CONDUCTED POWER MEASUREMENT	27
12. TEST RESULTS	30
12.1. SAR Test Results Summary	30
APPENDIX A. SAR SYSTEM CHECK DATA	36
APPENDIX B. SAR MEASUREMENT DATA	44
APPENDIX C. TEST SETUP PHOTOGRAPHS	90
APPENDIX D. CALIBRATION DATA	95

Page 5 of 80

Page 6 of 80

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Creationer Bond	Highest R	SAR Test Limit	
Frequency Band	Head	Body-worn(with 5mm separation)	(W/Kg)
GSM 850	1.011	1.345	
PCS 1900	0.594	1.205	1.6
Simultaneous Reported SAR	1.387		1.0
SAR Test Result	PASS		

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01

Page 7 of 80

2. GENERAL INFORMATION

2.1. EUT Description

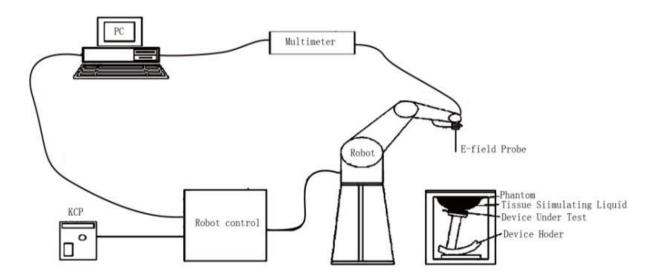
2.1. EUT Description					
General Information	General Information				
Product Designation	GSM MOBILE PHONE				
Test Model	210				
Hardware Version	S690_MB_V1.00_PCB_20170118				
Software Version	S690_OQ_T6_E2_ZX_V3.pac				
Device Category	Portable				
RF Exposure Environment	Uncontrolled				
Antenna Type	Internal				
GSM and GPRS					
Support Band	☑GSM 850 ☑PCS 1900 ☑GSM 900 ☑DCS 1800				
GPRS Type Class B					
GPRS Class Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)					
TX Frequency Range GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;					
RX Frequency Range GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz					
Release Version R99					
Type of modulation	GMSK for GSM/GPRS				
Antenna Gain	0.5dBi				
Max. Average Power	GSM850: 31.62dBm; PCS1900: 26.71dBm				
Bluetooth					
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0 □V4.1				
Operation Frequency	2402~2480MHz				
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK				
Max. Peak Power	-0.467dBm				
Antenna Gain	0.6dBi				

Report No.: AGC00653170603FH01 Page 8 of 80

EUT Description(Continue)

Accessories	
Battery	Brand name: ZOOM Model No. : 210 Voltage and Capacitance: 3.7 V & 500mAh
Adapter	Brand name: ZOOM Model No. : 210 Input: AC 100-240V, 50/60Hz, 0.15A Output: DC 5V, 500mA
Earphone	Brand name: N/A Model No. : N/A

Note:1.CMU200 can measure the average power and Peak power at the same time


2.The sample	e used fo	or testing	is end	product.
--------------	-----------	------------	--------	----------

Product	Type	
Floduct	□ Production unit	☐ Identical Prototype

Page 9 of 80

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

Report No.: AGC00653170603FH01 Page 10 of 80

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5	
Manufacture	MVG	
Identification No.	SN 14/16 EP308	
Frequency	0.3GHz-3.7GHz Linearity:±0.08dB(300MHz -3.7GHz)	
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.08dB	
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm	
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.	

Model	SSE5	
Manufacture	MVG	
Identification No.	SN 14/16 EP307	
Frequency	0.7GHz-3GHz Linearity:±0.05dB(700MHz-3GHz)	ランエチナ
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.05dB	77333
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm	
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.	

Page 11 of 80

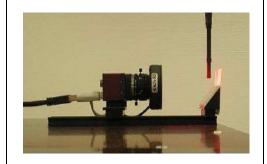
3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- ☐ Low ELF interference (the closed metallic

construction shields against motor control fields)

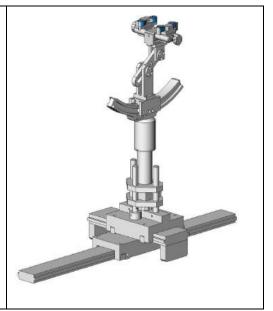

☐ 6-axis controller

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Page 12 of 80


3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- □ Left head
- □ Right head
- ☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Page 13 of 80

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
σ is the conductivity of the tissue in siemens per metre;
ρ is the density of the tissue in kilograms per cubic metre;
c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t=0 is the initial time derivative of temperature in the tissue in kelvins per second

Page 14 of 80

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 15 of 80

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan s	Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	1 st two points closest	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

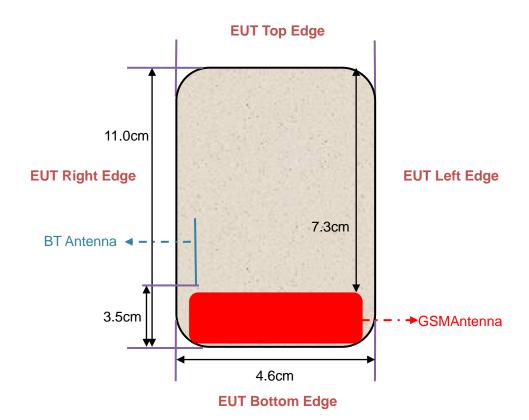
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: AGC00653170603FH01 Page 16 of 80


4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS, BT;

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

Antenna Location: (back view)

Page 17 of 80

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 4.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	1	0.0	15	0.0	30
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	he	ad	k	oody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

Report No.: AGC00653170603FH01 Page 18 of 80

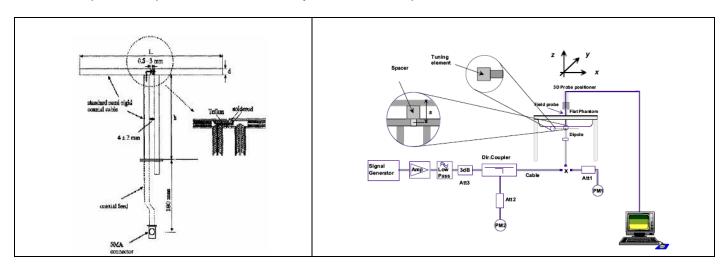
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

	Tissue Stimulant Measurement for 835MHz					
	Fr.	Dielectric Par	Tissue	_		
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time	
Head	824.2	42.67	0.88			
	835	41.56	0.90	21.5	June	
	836.6	41.03	0.91	21.5	20,2017	
	848.8	40.00	0.93			
	Fr.	Dielectric Par	ameters (±5%)	Tissue		
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time	
Body	824.2	56.55	0.93			
	835	55.76	0.94	21.7	June	
	836.6	55.28	0.95	Z1./	20,2017	
	848.8	54.05	0.97			

	Tissue Stimulant Measurement for 1900MHz						
	Fr.	Dielectric Parameters (±5%)			T		
	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time		
Head	1850.2	41.25	1.35				
	1880	40.31	1.38	21.0	June		
	1900	39.69	1.39	21.0	23,2017		
	1909.8	38.77	1.43				
	Fr.	Dielectric Par	Tissue				
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	Test time		
Body	1850.2	54.95	1.46				
	1880	53.78	1.50	21.1	June		
	1900	53.21	1.52] <u> </u>	23,2017		
	1909.8	51.99	1.55				

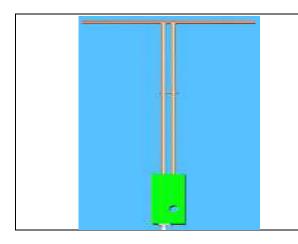
Page 19 of 80


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.


The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Page 20 of 80

6.2. SAR System Check

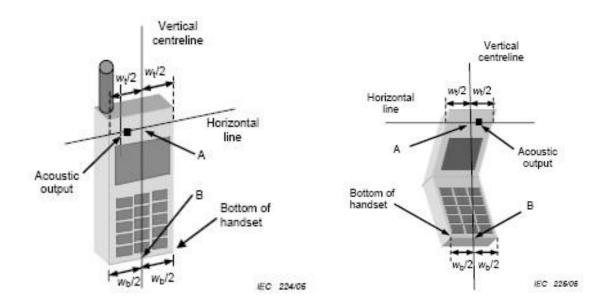
6.2.1. Dipoles

The dipoles used are based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6

6.2.2. System Check Result

System Per	System Performance Check at 835MHz&1900MHz for Head							
Validation K	(it: SN29/	15 DIP 0G	835-383&SN 29/	15 DIP 1G900-38	39			
Frequency	Target Value(W/Kg)			ce Result 0%)		sted (W/Kg)	Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
835	10.04	6.43	9.036-11.044	5.787 -7.073	10.05	6.17	21.5	June 20,2017
1900	41.44	21.33	37.296-45.584	19.197-23.463	39.28	20.64	21.0	June 23,2017
System Per	formance	Check at	835 MHz &1900	MHz for Body				
Frequency	Target Value(W/Kg)			ce Result 0%)		sted (W/Kg)	Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
835	9.85	6.45	8.865-10.835	5.805-7.095	9.59	5.89	21.7	June 20,2017
1900	39.38	20.86	35.442-43.318	18.774-22.946	38.35	20.14	21.1	June 23,2017

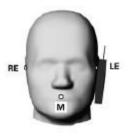

Page 21 of 80

7. EUT TEST POSITION

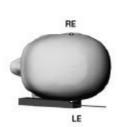
This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front.

7.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

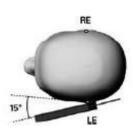


Page 22 of 80


7.2. Cheek Position

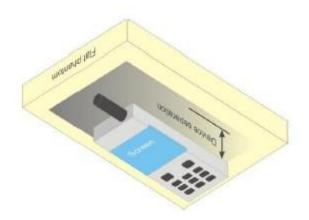
(1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.

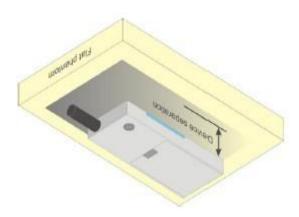
(2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.





Report No.: AGC00653170603FH01 Page 23 of 80

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm.

Page 24 of 80

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-2005 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 25 of 80

9. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 14/16 EP308	12/05/2016	12/04/2017	
SAR Probe	MVG	SN 14/16 EP307	07/05/2016	07/04/2017	
TISSUE Probe	SATIMO	SN 23/16 OCPG 75	07/05/2016	07/04/2017	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	-	Validated. No cal required.	Validated. No cal required.	
Comm Tester	Agilent-8960	GB46310822	03/02/2017	03/01/2018	
Multimeter	Keithley 2000	1188656	03/02/2017	03/01/2018	
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	07/05/2016	07/04/2019	
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	07/05/2016	07/04/2019	
Signal Generator	Agilent-E4438C	US41461365	03/02/2017	03/01/2018	
Vector Analyzer	Agilent / E4440A	US40420298	07/02/2016	07/01/2017	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	03/02/2017	03/01/2018	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	03/02/2017	03/01/2018	
Directional Couple	Werlatone/ C5571-10	SN99463	07/02/2016	07/01/2017	
Directional Couple	Werlatone/ C6026-10	SN99482	07/02/2016	07/01/2017	
Power Sensor	NRP-Z21	1137.6000.02	10/10/2016	10/09/2017	
Power Sensor	NRP-Z23	US38261498	03/02/2017	03/01/2018	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 26 of 80

10. MEASUREMENT UNCERTAINTY

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is< 1.5 W/Kg, the extensive SAR measurement uncertainty analysis described in IEEE 1528-2013 is not required in SAR reports submitted for equipment approval.

Page 27 of 80

11. CONDUCTED POWER MEASUREMENT GSM BAND

Mode	Frequency(MHz)	Avg. Burst	Duty cycle	Frame
	. , ,	Power(dBm)	Factor(dBm)	Power(dBm)
Maximum Power <			1	T
	824.2	31.62	-9	22.62
GSM 850	836.6	31.47	-9	22.47
	848.8	31.49	-9	22.49
GPRS 850	824.2	30.66	-9	21.66
(1 Slot)	836.6	30.45	-9	21.45
(1 0.01)	848.8	30.48	-9	21.48
GPRS 850	824.2	27.75	-6	21.75
(2 Slot)	836.6	27.25	-6	21.25
(2 0101)	848.8	27.29	-6	21.29
0000 050	824.2	25.66	-4.26	21.40
GPRS 850 (3 Slot)	836.6	25.57	-4.26	21.31
(3 3101)	848.8	25.51	-4.26	21.25
000000	824.2	24.49	-3	21.49
GPRS 850 (4 Slot)	836.6	24.56	-3	21.56
(4 3101)	848.8	24.21	-3	21.21
Maximum Power <2	2>		<u>-</u>	
	824.2	31.58	-9	22.58
GSM 850	836.6	31.45	-9	22.45
	848.8	31.41	-9	22.41
0000 050	824.2	30.25	-9	21.25
GPRS 850 (1 Slot)	836.6	30.12	-9	21.12
(1 3101)	848.8	30.26	-9	21.26
000000	824.2	27.33	-6	21.33
GPRS 850 (2 Slot)	836.6	27.12	-6	21.12
(2 3101)	848.8	27.05	-6	21.05
0000000	824.2	25.56	-4.26	21.30
GPRS 850 (3 Slot)	836.6	25.45	-4.26	21.19
(3 3101)	848.8	25.39	-4.26	21.13
0000000	824.2	24.25	-3	21.25
GPRS 850 (4 Slot)	836.6	24.12	-3	21.12
(4 5101)	848.8	24.00	-3	21.00

Page 28 of 80

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	>			
	1850.2	26.28	-9	17.28
PCS1900	1880	26.25	-9	17.25
	1909.8	26.71	-9	17.71
GPRS1900	1850.2	26.54	-9	17.54
(1 Slot)	1880	26.54	-9	17.54
(1 0101)	1909.8	26.85	-9	17.85
CDDC1000	1850.2	24.12	-6	18.12
GPRS1900 (2 Slot)	1880	24.43	-6	18.43
(2 0101)	1909.8	24.68	-6	18.68
ODD04000	1850.2	22.19	-4.26	17.93
GPRS1900 (3 Slot)	1880	22.34	-4.26	18.08
(3 3101)	1909.8	22.55	-4.26	18.29
00004000	1850.2	21.48	-3	18.48
GPRS1900	1880	21.33	-3	18.33
(4 Slot)	1909.8	21.56	-3	18.56
Maximum Power <2	>			1
	1850.2	26.26	-9	17.26
PCS1900	1880	26.24	-9	17.24
	1909.8	26.66	-9	17.66
00004000	1850.2	26.36	-9	17.36
GPRS1900 (1 Slot)	1880	26.41	-9	17.41
(1 3101)	1909.8	26.59	-9	17.59
00004000	1850.2	24.02	-6	18.02
GPRS1900 (2 Slot)	1880	24.33	-6	18.33
(2 3101)	1909.8	24.56	-6	18.56
00004000	1850.2	22.02	-4.26	17.76
GPRS1900 (3 Slot)	1880	22.21	-4.26	17.95
(3 3101)	1909.8	22.44	-4.26	18.18
0000:	1850.2	21.36	-3	18.36
GPRS1900	1880	21.25	-3	18.25
(4 Slot)	1909.8	21.22	-3	18.22

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) – 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

Note 2:

SAR is not required for GPRS (1 Slot) Mode because its output power is less than of Voice Mode

Report No.: AGC00653170603FH01 Page 29 of 80

Bluetooth

Modulation	Channel	Frequency(MHz)	Max. Peak Power (dBm)
	0	2402	-1.141
GFSK	39	2441	-0.467
	78	2480	-0.976
	0	2402	-1.772
π /4-DQPSK	39	2441	-1.369
	78	2480	-2.056
	0	2402	-1.912
8-DPSK	39	2441	-1.537
	78	2480	-1.212

Page 30 of 80

12. TEST RESULTS

12.1. SAR Test Results Summary

12.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 5mm from the phantom.

12.1.2. Operation Mode

output power(mw)]

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is \geq 0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Per KDB 941225 D06 V02r01, When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations.
- 6. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement
- 8. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result.

Page 31 of 80

12.1.3. Test Result

Body front GPRS-2 slot 128 824.2 1.63 0.796 27.75 27.75 0.796 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.75 1.211 1.6	SAR MEASUREM	/IENT								
Position Mode Ch. Fr. (MHz) Drift (±5%) (W/kg) Power CdBm) (W/kg) CdBm (W/kg) CdB	Depth of Liquid (c	m):>15			Relative H	lumidity (%): 55.8			
Position	Product: GSM MC	DBILE PHONE								
Position	Test Mode: GSM8	350 with GMSK m	nodulatio	on						
Left Cheek voice 128 824.2 0.70 0.816 31.62 31.62 0.816 1.6 Left Cheek voice 190 836.6 -1.43 0.977 31.62 31.47 1.011 1.6 Left Cheek voice 190 836.6 0.52 0.816 31.62 31.47 0.384 1.6 Left Tilt voice 190 836.6 0.53 0.371 31.62 31.47 0.384 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.384 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.501 1.6 Right Tilt voice 190 836.6 -0.32 1.277 31.62 31.47 0.510 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.47 1.352 1.6 Body back <td< th=""><th>Position</th><th>Mode</th><th>Ch.</th><th></th><th>Drift</th><th>(1g)</th><th>Tune-up Power</th><th>Power</th><th>SAR</th><th></th></td<>	Position	Mode	Ch.		Drift	(1g)	Tune-up Power	Power	SAR	
Left Cheek voice 190 836.6 -1.43 0.977 31.62 31.47 1.011 1.6 Left Cheek voice 251 848.8 0.52 0.816 31.62 31.49 0.841 1.6 Left Tilt voice 190 836.6 0.53 0.371 31.62 31.47 0.384 1.6 Right Cheek voice 128 824.2 1.03 0.769 31.62 31.62 0.769 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.881 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.881 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.881 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.811 1.6 Body back voice 128 824.2 0.62 1.727 31.62 31.49 0.749 1.6 Right Cheek voice 128 824.2 0.62 1.735 31.62 31.47 0.510 1.6 Body back voice 128 824.2 0.62 1.345 31.62 31.47 0.510 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.49 0.749 1.6 Body back voice 251 848.8 -1.26 0.964 31.62 31.49 0.993 1.6 Body front voice 251 848.8 -1.26 0.964 31.62 31.49 0.993 1.6 Body front voice 190 836.6 0.36 0.800 31.62 31.47 0.528 1.6 Body front voice 190 836.6 0.36 0.800 31.62 31.49 0.993 1.6 Body back+Ear. voice 190 836.6 0.36 0.800 31.62 31.47 0.828 1.6 Body back+Ear. voice 190 836.6 0.36 0.800 31.62 31.47 0.828 1.6 Body back+Ear. voice 190 836.6 0.36 0.800 31.62 31.47 0.828 1.6 Body back+Ear. voice 190 836.6 0.13 1.051 31.62 31.49 0.698 1.6 Body back+Ear. voice 190 836.6 0.13 1.051 31.62 31.49 0.698 1.6 Body back+Ear. voice 251 848.8 1.66 0.677 31.62 31.49 0.698 1.6 Body back+Ear. voice 251 848.8 1.45 0.848 31.62 31.49 0.698 1.6 Body back+Ear. voice 251 848.8 0.65 0.37 0.775 27.75 0.736 1.6 Left Cheek GPRS-2 slot 190 836.6 0.33 0.861 27.75 27.25 0.955 1.6 Left Cheek GPRS-2 slot 190 836.6 0.33 0.861 27.75 27.75 0.726 0.951 1.6 Body back GPRS-2 slot 190 836.6 0.33 0.691 27.75 27.25 0.956 1.6 Body back GPRS-2 slot 190 836.6 0.06 0.73 0.775 27.75 27.25 0.796 1.6 Body back GPRS-2 slot 190 836.6 0.06 0.774 27.75 27.75 0.725 0.400 1.6 Body back GPRS-2 slot 190 836.6 0.06 0.774 27.75 27.75 0.725 0.400 1.6 Body back GPRS-2 slot 190 836.6 0.06 0.774 27.75 27.75 0.725 0.400 1.6 Body back GPRS-2 slot 251 848.8 0.03 0.865 27.75 27.75 0.755 0.868 1.6 Body fron	SIM 1 Card									
Left Cheek voice 251 848.8 0.52 0.816 31.62 31.49 0.841 1.6 Left Tilt voice 190 836.6 0.53 0.371 31.62 31.47 0.384 1.6 Right Cheek voice 128 824.2 1.03 0.769 31.62 31.47 0.881 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.881 1.6 Right Tilt voice 251 848.8 -0.62 0.727 31.62 31.49 0.749 1.6 Right Tilt voice 190 836.6 -1.33 0.493 31.62 31.49 0.749 1.6 Body back voice 128 824.2 0.62 1.345 31.62 31.49 0.510 1.6 Body back voice 128 824.2 0.52 0.738 31.62 31.47 0.23 1.6 Body back voi	Left Cheek	voice	128	824.2	0.70	0.816	31.62	31.62	0.816	1.6
Left Tilt voice 190 836.6 0.53 0.371 31.62 31.47 0.384 1.6 Right Cheek voice 128 824.2 1.03 0.769 31.62 31.62 0.769 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.881 1.6 Right Cheek voice 251 848.8 -0.62 0.727 31.62 31.49 0.749 1.6 Right Tilt voice 190 836.6 -1.33 0.493 31.62 31.47 0.510 1.6 Body back voice 128 824.2 0.62 1.345 31.62 31.47 1.332 1.6 Body back voice 251 848.8 -1.26 0.964 31.62 31.47 1.332 1.6 Body back voice 251 848.8 -1.26 0.964 31.62 31.47 0.38 1.6 Body front	Left Cheek	voice	190	836.6	-1.43	0.977	31.62	31.47	1.011	1.6
Right Cheek voice 128 824.2 1.03 0.769 31.62 31.62 0.769 1.6 Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.881 1.6 Right Cheek voice 190 836.6 -0.22 0.727 31.62 31.49 0.749 1.6 Right Tilt voice 190 836.6 -1.33 0.493 31.62 31.47 0.510 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.47 1.332 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.47 1.332 1.6 Body back voice 158 824.2 0.52 0.738 31.62 31.47 1.332 1.6 Body broth voice 251 848.8 1.66 0.677 31.62 31.47 0.828 1.6 Body back+Ear.	Left Cheek	voice	251	848.8	0.52	0.816	31.62	31.49	0.841	1.6
Right Cheek voice 190 836.6 -0.22 0.851 31.62 31.47 0.881 1.6 Right Cheek voice 251 848.8 -0.62 0.727 31.62 31.49 0.749 1.6 Right Tilit voice 190 836.6 -1.33 0.493 31.62 31.47 0.510 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.47 0.510 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.47 1.332 1.6 Body back voice 251 848.8 -1.26 0.964 31.62 31.49 0.993 1.6 Body back voice 128 824.2 0.52 0.738 31.62 31.47 0.828 1.6 Body front voice 251 848.8 1.66 0.677 31.62 31.47 0.828 1.6 Body back+Ear.	Left Tilt	voice	190	836.6	0.53	0.371	31.62	31.47	0.384	1.6
Right Cheek voice 251 848.8 -0.62 0.727 31.62 31.49 0.749 1.6 Right Tilt voice 190 836.6 -1.33 0.493 31.62 31.47 0.510 1.6 Body back voice 128 824.2 0.62 1.345 31.62 31.47 1.345 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.47 1.332 1.6 Body back voice 251 848.8 -1.26 0.964 31.62 31.49 0.993 1.6 Body front voice 128 824.2 0.52 0.738 31.62 31.47 0.828 1.6 Body front voice 251 848.8 1.66 0.677 31.62 31.47 0.828 1.6 Body back+Ear. voice 128 824.2 -0.92 1.130 31.62 31.47 1.088 1.6 Body back+Ear.	Right Cheek	voice	128	824.2	1.03	0.769	31.62	31.62	0.769	1.6
Right Tilt voice 190 836.6 -1.33 0.493 31.62 31.47 0.510 1.6 Body back voice 128 824.2 0.62 1.345 31.62 31.47 0.510 1.6 Body back voice 190 836.6 -0.32 1.287 31.62 31.47 1.332 1.6 Body back voice 251 848.8 -1.26 0.964 31.62 31.47 1.332 1.6 Body bront voice 128 824.2 0.52 0.738 31.62 31.47 0.828 1.6 Body front voice 190 836.6 0.36 0.800 31.62 31.47 0.828 1.6 Body back+Ear. voice 251 848.8 1.66 0.677 31.62 31.49 0.698 1.6 Body back+Ear. voice 128 824.2 -0.92 1.130 31.62 31.47 1.088 1.6 Body back+Ear.	Right Cheek	voice	190	836.6	-0.22	0.851	31.62	31.47	0.881	1.6
Body back Voice 128 824.2 0.62 1.345 31.62 31.62 1.345 1.6	Right Cheek	voice	251	848.8	-0.62	0.727	31.62	31.49	0.749	1.6
Body back Voice 190	Right Tilt	voice	190	836.6	-1.33	0.493	31.62	31.47	0.510	1.6
Body back voice 251	Body back	voice	128	824.2	0.62	1.345	31.62	31.62	1.345	1.6
Body front Voice 128 824.2 0.52 0.738 31.62 31.62 0.738 1.6	Body back	voice	190	836.6	-0.32	1.287	31.62	31.47	1.332	1.6
Body front Voice 190 836.6 0.36 0.800 31.62 31.47 0.828 1.6	Body back	voice	251	848.8	-1.26	0.964	31.62	31.49	0.993	1.6
Body front	Body front	voice	128	824.2	0.52	0.738	31.62	31.62	0.738	1.6
Body back+Ear. voice 128 824.2 -0.92 1.130 31.62 31.62 1.130 1.6	Body front	voice	190	836.6	0.36	0.800	31.62	31.47	0.828	1.6
Body back+Ear. voice 190 836.6 0.13 1.051 31.62 31.47 1.088 1.6	Body front	voice	251	848.8	1.66	0.677	31.62	31.49	0.698	1.6
Body back+Ear. Voice 251 848.8 1.45 0.848 31.62 31.49 0.874 1.6	Body back+Ear.	voice	128	824.2	-0.92	1.130	31.62	31.62	1.130	1.6
Left Cheek GPRS-2 slot 128 824.2 -0.58 0.736 27.75 27.75 0.736 1.6 Left Cheek GPRS-2 slot 190 836.6 0.33 0.851 27.75 27.25 0.955 1.6 Left Cheek GPRS-2 slot 251 848.8 0.63 0.691 27.75 27.29 0.768 1.6 Left Tilt GPRS-2 slot 190 836.6 0.55 0.457 27.75 27.25 0.513 1.6 Right Cheek GPRS-2 slot 190 836.6 -0.52 0.708 27.75 27.25 0.513 1.6 Right Tilt GPRS-2 slot 190 836.6 -0.22 0.708 27.75 27.25 0.513 1.6 Body back GPRS-2 slot 190 836.6 0.83 0.383 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 128 824.2 -0.39 1.271 27.75 27.75 1.271 1.6 <td>Body back+Ear.</td> <td>voice</td> <td>190</td> <td>836.6</td> <td>0.13</td> <td>1.051</td> <td>31.62</td> <td>31.47</td> <td>1.088</td> <td>1.6</td>	Body back+Ear.	voice	190	836.6	0.13	1.051	31.62	31.47	1.088	1.6
Left Cheek GPRS-2 slot 190 836.6 0.33 0.851 27.75 27.25 0.955 1.6 Left Cheek GPRS-2 slot 251 848.8 0.63 0.691 27.75 27.29 0.768 1.6 Left Tilt GPRS-2 slot 190 836.6 0.55 0.457 27.75 27.25 0.513 1.6 Right Cheek GPRS-2 slot 190 836.6 -0.22 0.708 27.75 27.25 0.794 1.6 Right Tilt GPRS-2 slot 190 836.6 0.83 0.333 27.75 27.25 0.794 1.6 Body back GPRS-2 slot 190 836.6 0.83 0.333 27.75 27.25 0.794 1.6 Body back GPRS-2 slot 190 836.6 0.83 0.333 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.75 1.146 1.6 <t< td=""><td>Body back+Ear.</td><td>voice</td><td>251</td><td>848.8</td><td>1.45</td><td>0.848</td><td>31.62</td><td>31.49</td><td>0.874</td><td>1.6</td></t<>	Body back+Ear.	voice	251	848.8	1.45	0.848	31.62	31.49	0.874	1.6
Left Cheek GPRS-2 slot 190 836.6 0.33 0.851 27.75 27.25 0.955 1.6 Left Cheek GPRS-2 slot 251 848.8 0.63 0.691 27.75 27.29 0.768 1.6 Left Tilt GPRS-2 slot 190 836.6 0.55 0.457 27.75 27.25 0.513 1.6 Right Cheek GPRS-2 slot 190 836.6 -0.22 0.708 27.75 27.25 0.794 1.6 Right Tilt GPRS-2 slot 190 836.6 0.83 0.333 27.75 27.25 0.794 1.6 Body back GPRS-2 slot 190 836.6 0.83 0.333 27.75 27.25 0.794 1.6 Body back GPRS-2 slot 190 836.6 0.83 0.333 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.75 1.146 1.6 <t< td=""><td></td><td>T ==== .</td><td>1</td><td></td><td>1</td><td>1</td><td>T</td><td></td><td></td><td>1</td></t<>		T ==== .	1		1	1	T			1
Left Cheek GPRS-2 slot 251 848.8 0.63 0.691 27.75 27.29 0.768 1.6 Left Tilt GPRS-2 slot 190 836.6 0.55 0.457 27.75 27.25 0.513 1.6 Right Cheek GPRS-2 slot 190 836.6 -0.22 0.708 27.75 27.25 0.794 1.6 Right Tilt GPRS-2 slot 190 836.6 0.83 0.383 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 190 836.6 0.83 0.383 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.146 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.011 1.6 Body back GPRS-2 slot 128 824.2 1.63 0.796 27.75 27.75 0.796 1.6 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></tr<>							1			
Left Tilt GPRS-2 slot 190 836.6 0.55 0.457 27.75 27.25 0.513 1.6 Right Cheek GPRS-2 slot 190 836.6 -0.22 0.708 27.75 27.25 0.794 1.6 Right Tilt GPRS-2 slot 190 836.6 0.83 0.383 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 128 824.2 -0.39 1.271 27.75 27.75 1.271 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.146 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.011 1.6 Body back GPRS-2 slot 251 848.8 -0.95 0.909 27.75 27.29 1.011 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6							-			
Right Cheek GPRS-2 slot 190 836.6 -0.22 0.708 27.75 27.25 0.794 1.6 Right Tilt GPRS-2 slot 190 836.6 0.83 0.383 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 128 824.2 -0.39 1.271 27.75 27.75 1.271 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.146 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.146 1.6 Body back GPRS-2 slot 251 848.8 -0.95 0.909 27.75 27.29 1.011 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body back+Ear. GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td></td>			+			1	-			
Right Tilt GPRS-2 slot 190 836.6 0.83 0.383 27.75 27.25 0.430 1.6 Body back GPRS-2 slot 128 824.2 -0.39 1.271 27.75 27.75 1.271 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.146 1.6 Body back GPRS-2 slot 251 848.8 -0.95 0.909 27.75 27.29 1.011 1.6 Body front GPRS-2 slot 128 824.2 1.63 0.796 27.75 27.25 0.796 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.25 1.211 1.6			+				1			
Body back GPRS-2 slot 128 824.2 -0.39 1.271 27.75 27.75 1.271 1.6 Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.146 1.6 Body back GPRS-2 slot 251 848.8 -0.95 0.909 27.75 27.29 1.011 1.6 Body front GPRS-2 slot 128 824.2 1.63 0.796 27.75 27.75 0.796 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.25 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.25 1.211 1.6 Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6						!	-			
Body back GPRS-2 slot 190 836.6 0.06 1.021 27.75 27.25 1.146 1.6 Body back GPRS-2 slot 251 848.8 -0.95 0.909 27.75 27.29 1.011 1.6 Body front GPRS-2 slot 128 824.2 1.63 0.796 27.75 27.75 0.796 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6 Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6			1				_			
Body back GPRS-2 slot 251 848.8 -0.95 0.909 27.75 27.29 1.011 1.6 Body front GPRS-2 slot 128 824.2 1.63 0.796 27.75 27.75 0.796 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.75 1.211 1.6 Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6 Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6 SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62			_							
Body front GPRS-2 slot 128 824.2 1.63 0.796 27.75 27.75 0.796 1.6 Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.25 1.211 1.6 Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6 Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6 SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58<	Body back	GPRS-2 slot	190	836.6	0.06	1.021	27.75	27.25	1.146	1.6
Body front GPRS-2 slot 190 836.6 -0.56 0.774 27.75 27.25 0.868 1.6 Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.75 1.211 1.6 Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6 Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6 SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6	Body back		251	848.8	-0.95	0.909	27.75	27.29	1.011	1.6
Body front GPRS-2 slot 251 848.8 -0.72 0.622 27.75 27.29 0.691 1.6 Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.75 1.211 1.6 Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6 Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6 SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6	Body front	+	128	824.2	1.63	0.796	27.75		0.796	
Body back+Ear. GPRS-2 slot 128 824.2 0.13 1.211 27.75 27.75 1.211 1.6 Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6 Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6 SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6	Body front					0.774	•		0.868	1.6
Body back+Ear. GPRS-2 slot 190 836.6 -0.69 1.092 27.75 27.25 1.225 1.6 Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6 SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6		GPRS-2 slot	251		-0.72		27.75	27.29	0.691	
Body back+Ear. GPRS-2 slot 251 848.8 0.23 0.865 27.75 27.29 0.962 1.6 SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6	Body back+Ear.	GPRS-2 slot	128	824.2	0.13				.	1.6
SIM 2 Card Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6	Body back+Ear.	GPRS-2 slot	190	836.6	-0.69	1.092	27.75	27.25	1.225	1.6
Left Cheek voice 190 836.6 -0.59 0.957 31.62 31.45 0.995 1.6 Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6	Body back+Ear.	GPRS-2 slot	251	848.8	0.23	0.865	27.75	27.29	0.962	1.6
Body back voice 128 824.2 -0.36 1.320 31.62 31.58 1.332 1.6	SIM 2 Card		1	T	1	1	1		_	T
	Left Cheek	voice	190	836.6	-0.59	0.957	31.62	31.45	0.995	1.6
		voice	128	824.2	-0.36	1.320	31.62	31.58	1.332	1.6

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body back and body front is 5mm of all above table.

Page 32 of 80

SAR MEASURE	MENT								
Depth of Liquid (d	cm):>15			Relative H	lumidity (%): 52.9			
Product: GSM M	OBILE PHONE								
Test Mode: PCS	1900 with GMSK	modulat	ion						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card									
Left Cheek	voice	661	1880.0	-0.81	0.431	26.71	26.25	0.479	1.6
Left Tilt	voice	661	1880.0	0.53	0.142	26.71	26.25	0.158	1.6
Right Cheek	voice	661	1880.0	0.33	0.534	26.71	26.25	0.594	1.6
Right Tilt	voice	661	1880.0	0.66	0.147	26.71	26.25	0.163	1.6
Body back	voice	512	1850.2	-1.33	1.090	26.71	26.28	1.203	1.6
Body back	voice	661	1880.0	0.62	1.084	26.71	26.25	1.205	1.6
Body back	voice	810	1909.8	0.23	1.042	26.71	26.71	1.042	1.6
Body front	voice	661	1880.0	0.56	0.629	26.71	26.25	0.699	1.6
Body back+Ear.	voice	512	1850.2	-0.26	0.858	26.71	26.28	0.947	1.6
Body back+Ear.	voice	661	1880.0	0.52	0.803	26.71	26.25	0.893	1.6
Body back+Ear.	voice	810	1909.8	-0.11	0.811	26.71	26.71	0.811	1.6
Left Cheek	GPRS-2 slot	661	1880.0	0.53	0.431	24.68	24.43	0.457	1.6
Left Tilt	GPRS-2 slot	661	1880.0	-1.23	0.140	24.68	24.43	0.148	1.6
Right Cheek	GPRS-2 slot	661	1880.0	0.32	0.355	24.68	24.43	0.376	1.6
Right Tilt	GPRS-2 slot	661	1880.0	0.60	0.127	24.68	24.43	0.135	1.6
Body back	GPRS-2 slot	512	1850.2	-1.33	0.694	24.68	24.12	0.790	1.6
Body back	GPRS-2 slot	661	1880.0	0.92	0.937	24.68	24.43	0.993	1.6
Body back	GPRS-2 slot	810	1909.8	0.63	1.063	24.68	24.68	1.063	1.6
Body front	GPRS-2 slot	661	1880.0	-0.59	0.584	24.68	24.43	0.619	1.6
SIM 2 Card									
Right Cheek	voice	661	1880.0	0.23	0.496	26.71	26.24	0.553	1.6
Body back	voice	512	1850.2	-0.13	0.995	26.71	26.26	1.104	1.6

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
The test separation for body back and body front is 5mm of all above table.

Repeated SAR										
Product: GSM MOBILE PHONE										
Test Mode:	Test Mode: GSM850&PCS1900 with GMSK modulation									
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±5%)	Third SAR (1g) (W/kg)	Limit (W/kg)
Left Cheek	voice	190	836.6	0.23	0.914	-	-	-	-	1.6
Body back	voice	128	824.2	-1.66	1.283	-0.96	1.212	-	•	1.6
Body back	voice	512	1850.2	-0.23	0.999	-	-	-	-	1.6

Page 33 of 80

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

NO	Simultaneous state	Portable Handset				
NO	Simultaneous state	Head	Body-worn	Hotspot		
1	GSM(voice)+Bluetooth(data)	-	Yes	-		
2	GSM (Data) + Bluetooth(data)	-	Yes	-		

NOTE:

- 1. Simultaneous with every transmitter must be the same test position.
- 2. KDB 447498 D01, BT SAR is excluded as below table.
- 3. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 5mm for body-worn SAR.
- 4. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR			luding Tune-up ance	Separation Distance (mm)	Estimated SAR (W/kg)	
		dBm	mW	Distance (min)		
ВТ	Head	0	1.000	0	0.042	
ы	Body	0	1.000	5	0.042	

Page 34 of 80

Sum of the SAR for GSM 850 &BT:

RF Exposure	Test	Simultaneous Transn	nission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	GSM 850	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	1.011	0.042	1.053	No
Head	Left Tilt	0.384	0.042	0.426	No
(voice)	Right Touch	0.881	0.042	0.923	No
	Right Tilt	0.510	0.042	0.552	No
Body-worn	Rear	1.345	0.042	1.387	No
(voice)	Front	0.828	0.042	0.870	No
	Left Touch	0.955	0.042	0.997	No
Head	Left Tilt	0.513	0.042	0.555	No
(Data)	Right Touch	0.794	0.042	0.836	No
	Right Tilt	0.430	0.042	0.472	No
Body-worn	Rear	1.271	0.042	1.313	No
(Data)	Front	0.868	0.042	0.910	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 35 of 80

Sum of the SAR for PCS 1900 & BT:

RF Exposure	Test	Simultaneous Trans	smission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	PCS 1900	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.479	0.042	0.521	No
Head	Left Tilt	0.158	0.042	0.200	No
(voice)	Right Touch	0.594	0.042	0.636	No
	Right Tilt	0.163	0.042	0.205	No
Body-worn	Rear	1.205	0.042	1.247	No
(voice)	Front	0.699	0.042	0.741	No
	Left Touch	0.457	0.042	0.499	No
Head	Left Tilt	0.148	0.042	0.190	No
(Data)	Right Touch	0.376	0.042	0.418	No
	Right Tilt	0.135	0.042	0.177	No
Body-worn	Rear	1.063	0.042	1.105	No
(Data)	Front	0.619	0.042	0.661	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
-SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 36 of 80

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: June 20,2017

System Check Head 835 MHz DUT: Dipole 835 MHz Type: SID 835

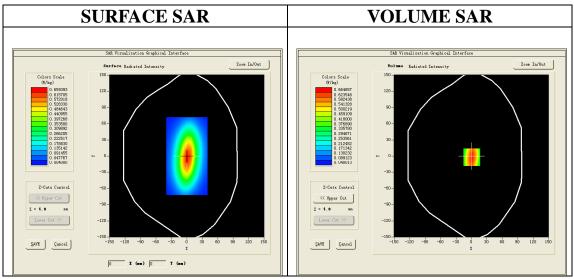
Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.72

Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 41.56$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.3, Liquid temperature (°C): 21.5

SATIMO Configuration

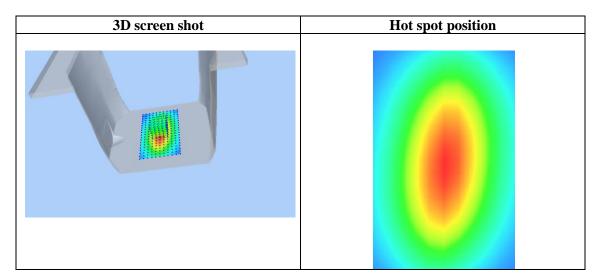

• Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm
Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=1.00, Y=-2.00 SAR Peak: 0.96 W/kg

SAR 10g (W/Kg)	0.389577
SAR 1g (W/Kg)	0.634330

Report No.: AGC00653170603FH01 Page 37 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.9620	0.6647	0.4212	0.2790	0.1882	0.1296	0.0901
(W/Kg)							
	1.0-						
	0.8-	\setminus					
	0.0-						
	-8.0 %						
	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)						
	뙻 0.4-						
	29		$N \sqcup$				
	0.2-						
					<u> </u>		
	0.1-	02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
	0.02.55.07.5 12.5 17.5 22.5 27.5 32.5 40.0 Z (mm)						
				r (IIIII)			

Date: June 20,2017

Page 38 of 80

Test Laboratory: AGC Lab System Check Body 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.94

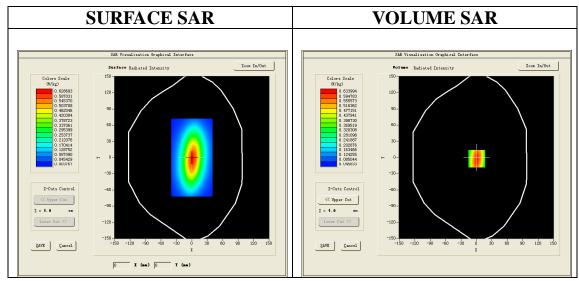
Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\epsilon r = 55.76$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.3, Liquid temperature (°C): 21.7

SATIMO Configuration

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

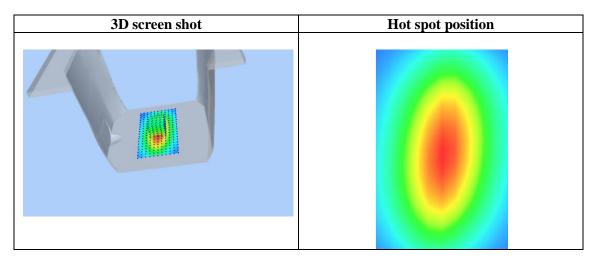

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=1.00, Y=-2.00 SAR Peak: 0.91 W/kg

SAR 10g (W/Kg)	0.371525
SAR 1g (W/Kg)	0.605072

Report No.: AGC00653170603FH01 Page 39 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.9176	0.6340	0.4018	0.2659	0.1797	0.1233	0.0861
(W/Kg)							
	0.9-						
	0.8-	\longrightarrow		\perp			
		X					
	(%/) (%/} (%)	+					
	€	-1.1					
	뙻 0.4-	\rightarrow	++++	+++	+		
	N		$N \mid 1$				
	0.2-						
	0.2-						
	0.1-				▝		
		02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
				Z (mm)			

Date: June 23,2017

Page 40 of 80

Test Laboratory: AGC Lab System Check Head 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.14

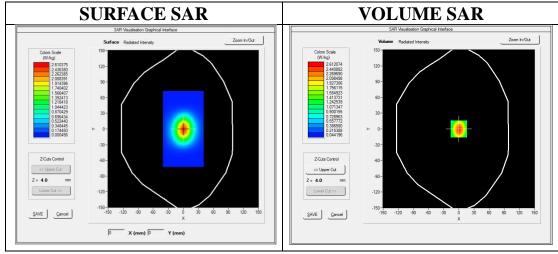
Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.69$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.8, Liquid temperature ($^{\circ}$ C): 21.0

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

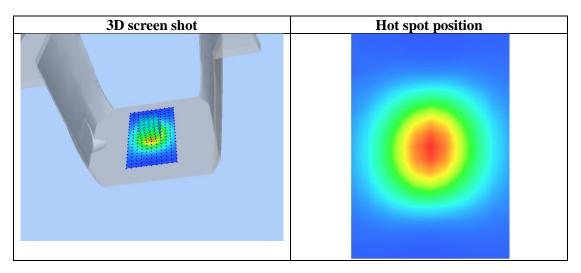

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=0.00, Y=0.00 SAR Peak: 4.14 W/kg

SAR 10g (W/Kg)	1.302281
SAR 1g (W/Kg)	2.478673

Report No.: AGC00653170603FH01 Page 41 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	4.1704	2.6121	1.4177	0.7986	0.4546	0.2641	0.1524
(W/Kg)							
	4.2-						
	2.5						
	3.5-						
	3.0-	$\overline{}$					
	© 2.5-	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	 		+++		
	≥ 2.0-	+	++++	+++	+++		
	VS 1.5-	++					
		`	lacksquare				
	1.0-						
	0.5-			+++			
	0.1-	25 50 75 10	150	20.0 25.0	20.0 25	400	
	0.0	2.5 5.0 7.5 10		20.0 25.0	30.0 35	.0 40.0	
				Z (mm)			

Date: June 23,2017

Page 42 of 80

Test Laboratory: AGC Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.34

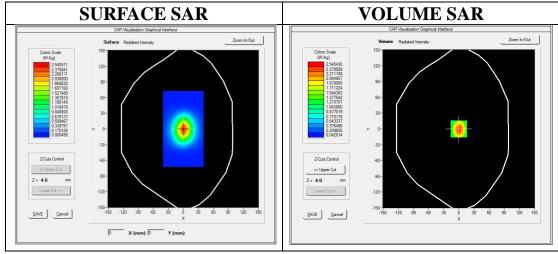
Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 53.21$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.8, Liquid temperature (°C): 21.1

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

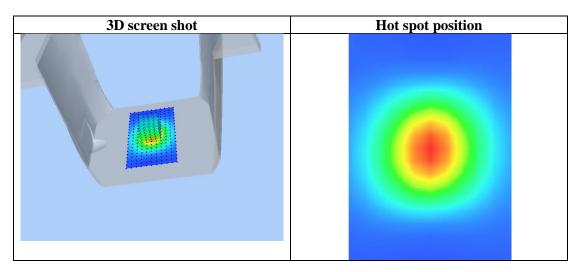

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=0.00, Y=0.00 SAR Peak: 4.09 W/kg

SAR 10g (W/Kg)	1.271023
SAR 1g (W/Kg)	2.419934

Report No.: AGC00653170603FH01 Page 43 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	4.0604	2.5457	1.3835	0.7765	0.4427	0.2565	0.1481
(W/Kg)							
	4.1-		 		111		
	3.5-	+++			\perp		
	3.0-						
		$ \mathbf{M} $					
	Ø 2.5- ≥ 2.0-						
	2.0-						
	S 1.5-	 					
	1.0-						
	0.5-						
	0.1-				┿┿┷		
	0.0	2.5 5.0 7.5 10		20.0 25.0	30.0 35	.0 40.0	
				Z (mm)			

Page 44 of 80

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: June 20,2017

GSM 850 Mid-Touch-Left <SIM 1> DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.72;

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 41.03$; $\rho = 1000$ kg/m³;

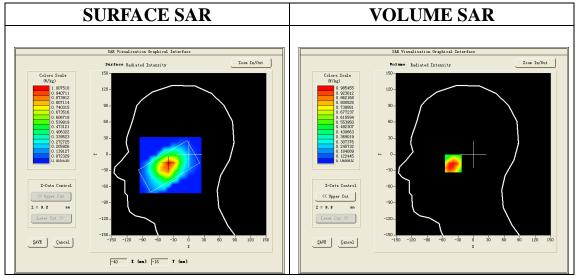
Phantom section: Left Section

Ambient temperature (°C): 22.3, Liquid temperature (°C): 21.5

SATIMO Configuration:

• Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

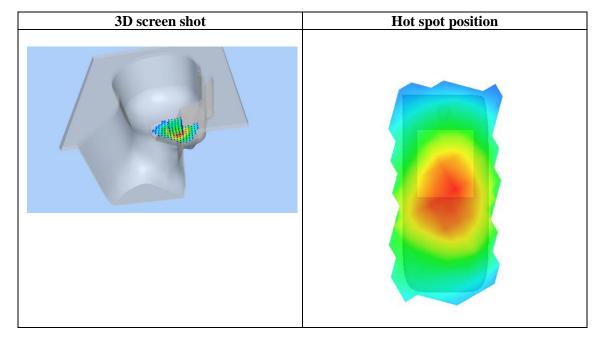

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/GSM 850 Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Left head		
Device Position	Cheek		
Band	GSM 850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=-39.00, Y=-17.00

Report No.: AGC00653170603FH01 Page 45 of 80

SAR Peak: 1.48 W/kg

SAR 10g (W/Kg)	0.610342
SAR 1g (W/Kg)	0.977351

0.00	4.00	9.00	14.00	19.00	24.00	29.00
1.5083	0.9855	0.5978	0.4910	0.3312	0.2245	0.1696
1.5-						
İ	H					
1.2-	\ 	++++		+		
⊋ 1.0-	\rightarrow	\perp	\rightarrow			
	-1×1					
		\Box				
ೆ≴ 0.6-	- 	+		+++		
0.4-						
			+			
0.1-				+		
	02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
Z (mm)						
	1.5- 1.2- 2.1.0- 8W (%) 8W (%) 0.8- 0.4-	1.5- 1.2- 1.0- 8.0 % 8.8- 0.6- 0.4-	1.5- 1.2- 1.0-	1.5- 1.2- 1.0- 2.5 1.0- 2.5 0.6- 0.4- 0.1- 0.02.55.07.5 12.5 17.5 22.5 2	1.5- 1.2- 1.0-	1.5- 1.2- 1.0- 2.5 1.0- 2.5 0.6- 0.4- 0.1- 0.02.55.07.5 12.5 17.5 22.5 27.5 32.5 40.0

Page 46 of 80

Test Laboratory: AGC Lab Date: June 20,2017

GSM 850 Low- Body- Back (MS)<SIM 1> DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.94;

Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 56.55$; $\rho = 1000$ kg/m³;

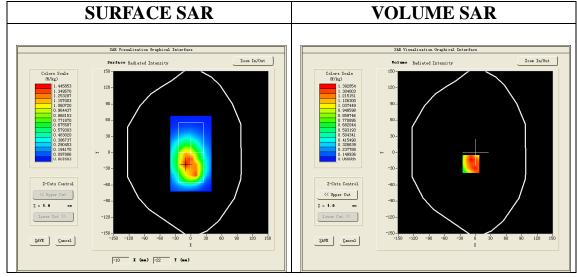
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

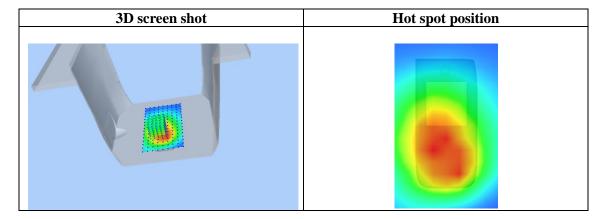

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm

Configuration/GSM 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan 5x5x7,dx=8mm dy=8mm dz=5mm,Cor			
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=-9.00, Y=-21.00

Report No.: AGC00653170603FH01 Page 47 of 80

SAR Peak: 2.04 W/kg

SAR 10g (W/Kg)	0.868668
SAR 1g (W/Kg)	1.344624

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	2.1770	1.3929	0.8364	0.5923	0.3884	0.3012	0.1733
(W/Kg)							
	2.18-						
	2.00-	+++	+++		++++		
	1.75-	+++	+++	+++	++++		
	⊕ 1.50 -	\longrightarrow	\perp				
	1.50- 1.25-						
	, 1.00-						
	0.75-				++++		
	0.50-		+++	\longleftarrow	++++		
	0.10		+		\bot		
	0.16 - 0	'	12.5 17	.5 22.5 2	27.5 32.5	40.0	
	Z (nm)						
				r (IIIII)			

Date: June 20,2017

Page 48 of 80

Test Laboratory: AGC Lab

GPRS 850 Mid-Touch-Left (2up) <SIM 1> DUT: GSM MOBILE PHONE; Type: 210

Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=5.72

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 41.03$; $\rho = 1000$ kg/m³;

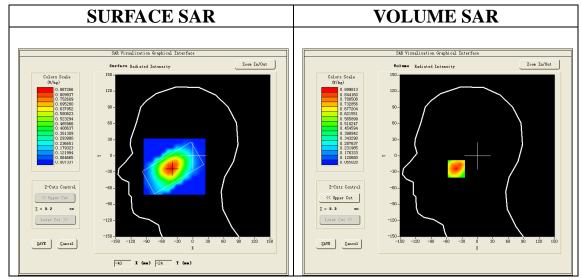
Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

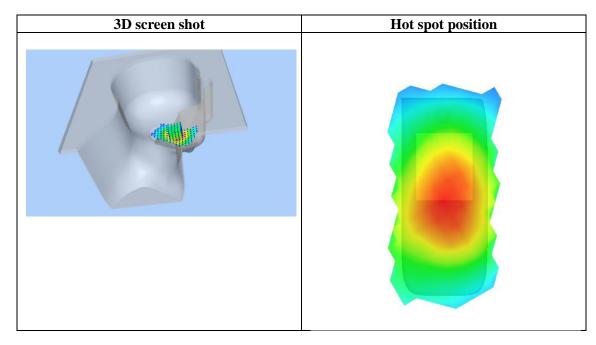

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GPRS 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/GPRS 850 Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
Phantom	Left head	
Device Position	Cheek	
Band	GSM 850	
Channels	Middle	
Signal	TDMA (Crest factor: 4.0)	


Maximum location: X=-41.00, Y=-24.00 SAR Peak: 1.21 W/kg

Report No.: AGC00653170603FH01 Page 49 of 80

SAR 10g (W/Kg)	0.562251	
SAR 1g (W/Kg)	0.850651	

Report No.: AGC00653170603FH01 Page 50 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.2198	0.8998	0.6254	0.4684	0.3340	0.2382	0.1714
(W/Kg)							
	1.2-		+++		 		
		\setminus					
	1.0-	$\overline{}$					
	% 0.8−						
	SAR (W/kg) - 9.0	$ \cdot $					
	g 0.6-		+				
	0.4-						
	0.1-			_ _ _ .		10,0	
	0.02.55.07.5 12.5 17.5 22.5 27.5 32.5 40.0						
				Z (mm)			

Page 51 of 80

Test Laboratory: AGC Lab Date: June 20,2017

GPRS 850 Low- Body- Back (2up) <SIM 1> DUT: GSM MOBILE PHONE; Type: 210

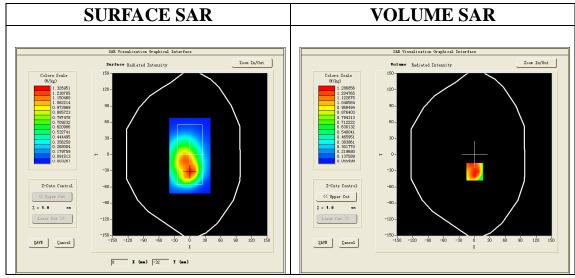
Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=5.94; Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 56.55$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308


· Sensor-Surface: 4mm (Mechanical Surface Detection)

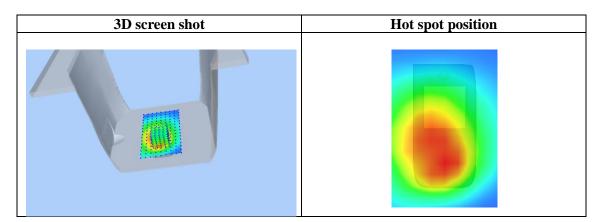
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GPRS 850 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/GPRS 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Low		
Signal	TDMA (Crest factor: 4.0)		

Maximum location: X=1.00, Y=-32.00


Report No.: AGC00653170603FH01 Page 52 of 80

SAR Peak: 1.94 W/kg

SAR 10g (W/Kg)	0.808687
SAR 1g (W/Kg)	1.270602

Report No.: AGC00653170603FH01 Page 53 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.7301	1.2869	0.8908	0.5090	0.4611	0.2138	0.2201
(W/Kg)							
	1.7-						
	ı						
	1.4-	$\overline{}$	+ + + + +	+++	 		
	G 1.2-	+ $+$ $+$	+	\longrightarrow	+		
	1.2- \$\frac{1}{8} 1.0-						
	≥		.				
	æ ₩ 0.8- 0.6-						
	^Ω 0.6−			_			
	0.4-	+++	+ + + -	\rightarrow	+++		
			+	\rightarrow	+		
	0.1-		' '		1 1 1	100	
	0.02.55.07.5 12.5 17.5 22.5 27.5 32.5 40.0						
	Z (mm)						

Page 54 of 80

Test Laboratory: AGC Lab

Date: June 20,2017
GSM 850 Mid-Touch-Left <SIM 2>

DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.72;

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 41.03$; $\rho = 1000$ kg/m³;

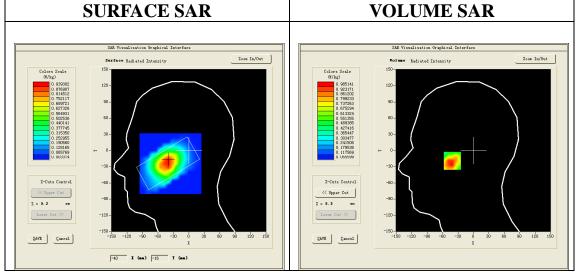
Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

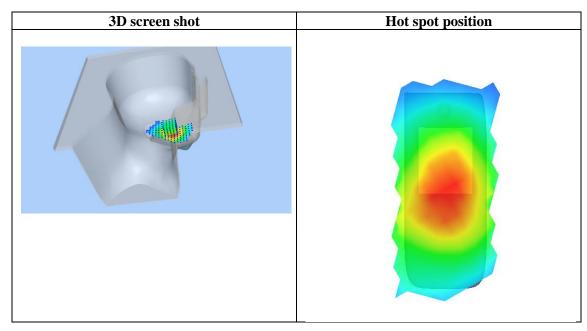

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/GSM 850 Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Left head
Device Position	Cheek
Band	GSM 850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)


Maximum location: X=-41.00, Y=-19.00 SAR Peak: 1.40 W/kg

Report No.: AGC00653170603FH01 Page 55 of 80

SAR 10g (W/Kg)	0.598657	
SAR 1g (W/Kg)	0.956627	

Report No.: AGC00653170603FH01 Page 56 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.6305	0.9851	0.5429	0.4630	0.2988	0.2110	0.1490
(W/Kg)							
	1.6-				1 1 1 1		
	1.4-	$\overline{}$					
		$\mathbf{N} + \mathbf{I}$	\perp				
	1.2-						
	(20 1.0- (8)	+	+++	+++			
		+N $+$	++++				
	₩ 0.6-	+	\bot				
	0.4-		++-1				
	0.4-						
	0.1-		+ + + + +				
		02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
			:	Z (mm)			

Page 57 of 80

Test Laboratory: AGC Lab Date: June 20,2017

GSM 850 Low- Body- Back (MS)<SIM 2> DUT: GSM MOBILE PHONE; Type: 210

 $Communication \ System: \ Generic \ GSM; \ Communication \ System \ Band: \ GSM \ 850; \ Duty \ Cycle: \ 1:8.3; \ Conv.F=5.94;$

Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 56.55$; $\rho = 1000$ kg/m³;

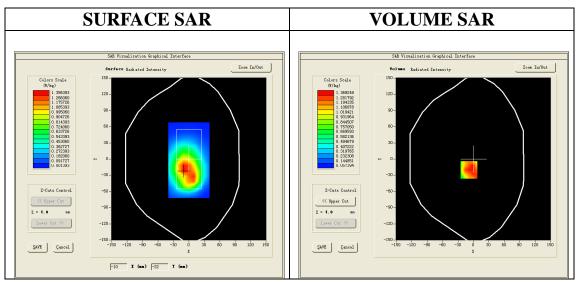
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)


Phantom: SAM twin phantom

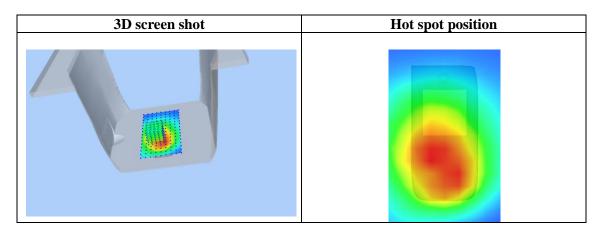
Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm

Configuration/GSM 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-9.00, Y=-20.00


SAR Peak: 2.05 W/kg

Report No.: AGC00653170603FH01 Page 58 of 80

SAR 10g (W/Kg)	0.848101	
SAR 1g (W/Kg)	1.319670	

Report No.: AGC00653170603FH01 Page 59 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	2.2551	1.3692	0.7219	0.6768	0.2791	0.3301	0.1434
(W/Kg)							
	2.26-	<u> </u>					
	2.00-	\longrightarrow					
	1.75-						
		\					
	(2) 1.50 - (2) 1.25 -						
	평 1.00-						
	°° 0.75-						
	0.50-		++				
	0.14	\longrightarrow	+	\rightarrow			
	0.14 - n	'	12.5 17	.5 22.5 :	27.5 32.5	40.0	
	Z (mm)						
				Z (IIIII)			

Page 60 of 80

Test Laboratory: AGC Lab Date: June 23,2017

PCS 1900 Mid-Touch-Right <SIM 1> DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.14;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon r = 40.31$; $\rho = 1000$ kg/m³;

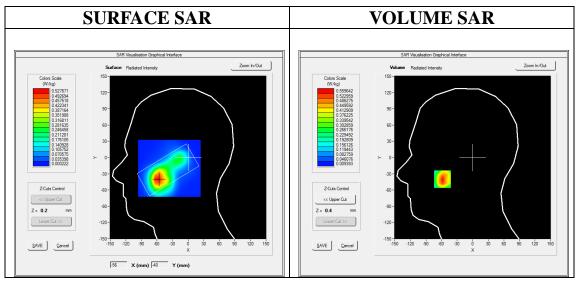
Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.0

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

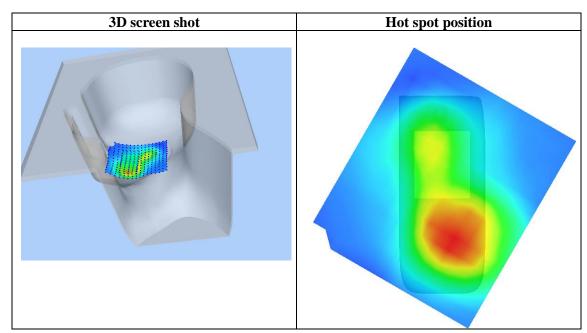

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/PCS1900 Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Right head		
Device Position	Cheek		
Band	PCS 1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=-58.00, Y=-40.00 SAR Peak: 0.90 W/kg

Report No.: AGC00653170603FH01 Page 61 of 80

SAR 10g (W/Kg)	0.294162	
SAR 1g (W/Kg)	0.533564	

Report No.: AGC00653170603FH01 Page 62 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.8459	0.5596	0.3340	0.1938	0.1233	0.0855	0.0489
(W/Kg)	0.8- 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0-						
	0.0	2.5 5.0 7.5 1		20.0 25.0 Z (mm)	30.0 35.	0 40.0	

Page 63 of 80

Test Laboratory: AGC Lab Date: June 23,2017

PCS 1900 Low-Body-Back (MS)<SIM 1> DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.34; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon r = 54.95$; $\rho = 1000 \text{ kg/m}^3$;

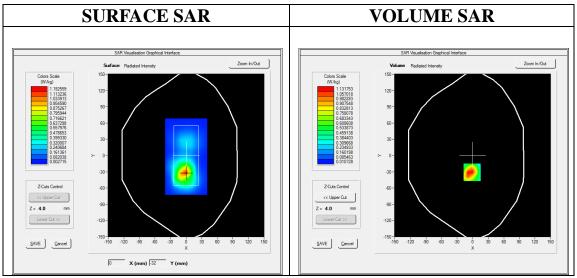
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.1

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

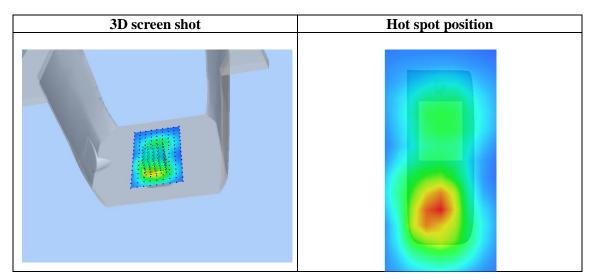

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm

Configuration/PCS1900 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Low
Signal	TDMA (Crest factor: 8.0)


Maximum location: X=-1.00, Y=-31.00 SAR Peak: 1.76 W/kg

Report No.: AGC00653170603FH01 Page 64 of 80

SAR 10g (W/Kg)	0.578644	
SAR 1g (W/Kg)	1.090030	

Report No.: AGC00653170603FH01 Page 65 of 80

.5185	1.1318	0 -0 40				29.00
	1.1310	0.7343	0.4122	0.2335	0.1417	0.0845
1.5-						
1.4-		+++	+++	 		
1.2-	\longrightarrow	\Box	\perp	+		
	\perp					
\$ 1.0-						
≥ 0.8-	+					
¥ 06-		\downarrow				
0.4-						
0.2-	+		+++	+		
0.0-	+ $+$ $+$	1111		┿╼┿╼┷╴┆		
	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35.	0 40.0	
Z (mm)						
	1.4- 1.2 (5) 1.0 0.8 0.6 0.4 0.2 0.0-	1.4- 1.2- (5) 1.0- 0.8- 0.4- 0.4- 0.2- 0.0-	1.4- 1.2- (g) 1.0- 0.8- 0.6- 0.4- 0.2- 0.0- 0.0 2.5 5.0 7.5 10.0 15.0	1.4 1.2- 1.0- 0.8- 0.6- 0.4- 0.2- 0.0- 0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0	1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.4- 1.2- 1.0- 0.8- 0.6- 0.4- 0.2- 0.0- 0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Date: June 23,2017

Page 66 of 80

Test Laboratory: AGC Lab

GPRS1900 Mid-Touch- Left (2up) <SIM 1> DUT: GSM MOBILE PHONE; Type: 210

Communication System: GPRS-2Slot; Communication System Band: PCS 1900; Duty Cycle: 1:4.2; Conv.F=5.14;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon r = 40.31$; $\rho = 1000$ kg/m³;

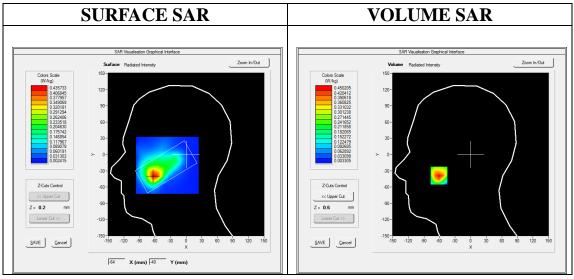
Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.0

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

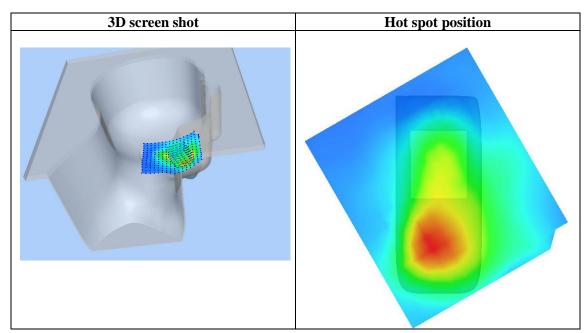

Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/GPRS1900 Mid-Touch- Left /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/GPRS1900 Mid-Touch- Left /Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
Phantom	Left head	
Device Position	Cheek	
Band	PCS 1900	
Channels	Middle	
Signal	TDMA (Crest factor: 4.0)	


Maximum location: X=-61.00, Y=-39.00 SAR Peak: 0.68 W/kg

Report No.: AGC00653170603FH01 Page 67 of 80

SAR 10g (W/Kg)	0.237867
SAR 1g (W/Kg)	0.431356

Report No.: AGC00653170603FH01 Page 68 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.6436	0.4502	0.2858	0.1881	0.1177	0.0743	0.0445
	0.6-						
	0.4 SAR (W/kg) 0.3						
	0.1	2.5 5.0 7.5 1		20.0 25.0	30.0 35.	0 40.0	
				Z (mm)			

Page 69 of 80

Test Laboratory: AGC Lab Date: June 23,2017

GPRS 1900 High-Body-Back (2up) <SIM 1> DUT: GSM MOBILE PHONE; Type: 210

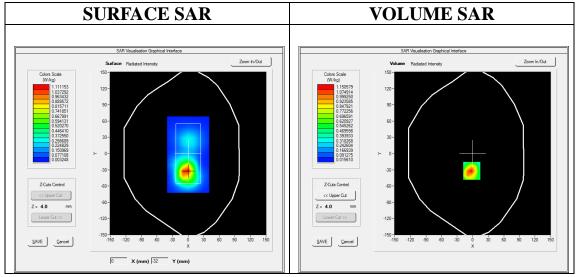
Communication System: GPRS-2Slot; Communication System Band: PCS 1900; Duty Cycle: 1:4.2; Conv.F=5.34; Frequency: 1909.8 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.55$ mho/m; $\epsilon r = 51.99$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.1

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

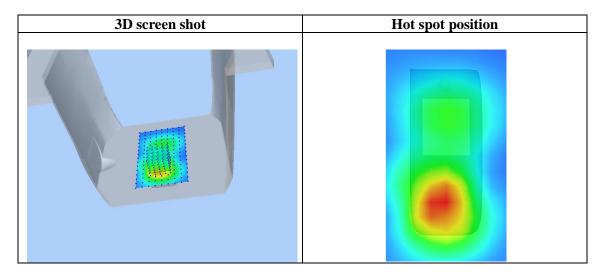

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/GPRS1900 High -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/GPRS1900 High -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	High
Signal	TDMA (Crest factor: 4.0)


Maximum location: X=-2.00, Y=-32.00 SAR Peak: 1.63 W/kg

Report No.: AGC00653170603FH01 Page 70 of 80

SAR 10g (W/Kg)	0.591021
SAR 1g (W/Kg)	1.062507

Report No.: AGC00653170603FH01 Page 71 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.6240	1.1506	0.7227	0.4483	0.2608	0.1561	0.0924
(W/Kg)							
	1.6-	-	 	- 	1 1 1 1		
	1.4-	\longrightarrow	\square				
	1.2-						
	0.1 (W/kg)						
	€ 0.8-	+					
	ర్లు 0.6		\overline{N}	+++			
	0.4-	+++		+++	+		
	0.2-			\downarrow			
	0.1-		\cdots		╇╼╪╼┷┶╴┆		
	0.0	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35.	0 40.0	
				Z (mm)			

Page 72 of 80

Test Laboratory: AGC Lab Date: June 23,2017

PCS 1900 Mid-Touch-Right <SIM 2> DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.14;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon r = 40.31$; $\rho = 1000$ kg/m³;

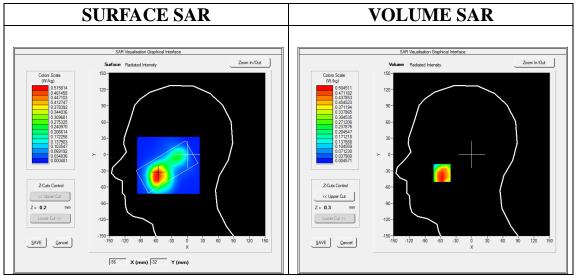
Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.0

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

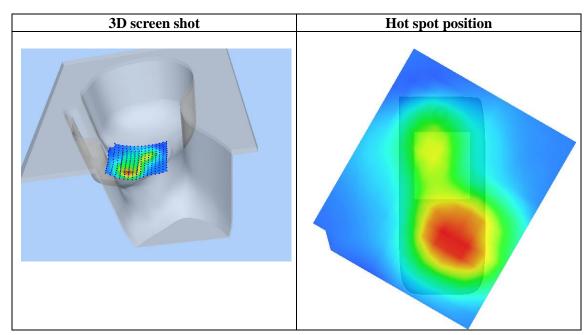

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/PCS1900 Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Right head		
Device Position	Cheek		
Band	PCS 1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=-57.00, Y=-34.00 SAR Peak: 0.86 W/kg

Report No.: AGC00653170603FH01 Page 73 of 80

SAR 10g (W/Kg)	0.293149	
SAR 1g (W/Kg)	0.496254	

Report No.: AGC00653170603FH01 Page 74 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	1.1130	0.5045	0.1452	0.1361	0.0650	0.0506	0.0243
	0.8 0.8 0.6 0.4 0.2 0.0	2.5 5.0 7.5 1		20.0 25.0 Z (mm)	30.0 35	.0 40.0	

Page 75 of 80

Test Laboratory: AGC Lab Date: June 23,2017

PCS 1900 Low-Body-Back (MS)<SIM 2> DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.34;

Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; σ = 1.46 mho/m; ϵ r =54.95; ρ = 1000 kg/m³;

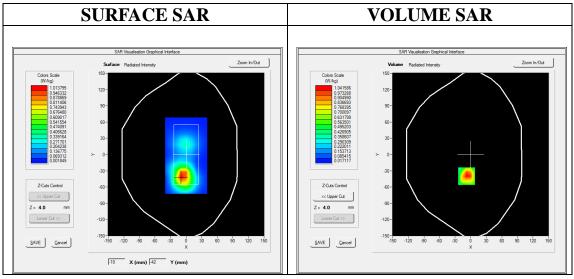
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.1

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)


Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm

Configuration/PCS1900 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
Phantom	Validation plane	
Device Position	Body Back	
Band	PCS 1900	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

Maximum location: X=-8.00, Y=-40.00 SAR Peak: 1.59 W/kg

Report No.: AGC00653170603FH01 Page 76 of 80

SAR 10g (W/Kg)	0.544850	
SAR 1g (W/Kg)	0.994958	

Report No.: AGC00653170603FH01 Page 77 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.4413	1.0416	0.6773	0.3963	0.2506	0.1449	0.0831
(W/Kg)							
	1.4-						
	1.2-						
	<u></u> 1.0-	+		-			
	6 1.0 0.8						
	€ v.o _						
	SS 0.6-		$\overline{}$				
	0.4-						
	0.2-		 				
	0.0-]_		T-	_ ' .J _	
	0.0	2.5 5.0 7.5 1		20.0 25.0	30.0 35.	.0 40.0	
				Z (mm)			

Page 78 of 80

Repeated SAR

Test Laboratory: AGC Lab Date: June 20,2017

GSM 850 Mid-Touch-Left <SIM 1>- Repeated SAR

DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.72;

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 41.03$; $\rho = 1000$ kg/m³;

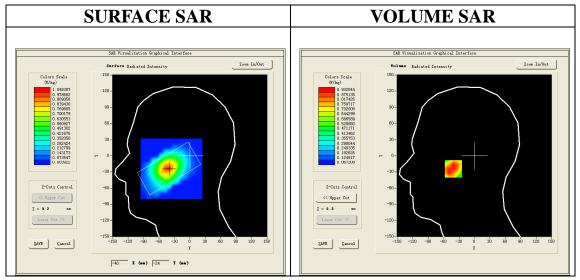
Phantom section: Left Section

Ambient temperature (°C): 22.3, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

Sensor-Surface: 4mm (Mechanical Surface Detection)

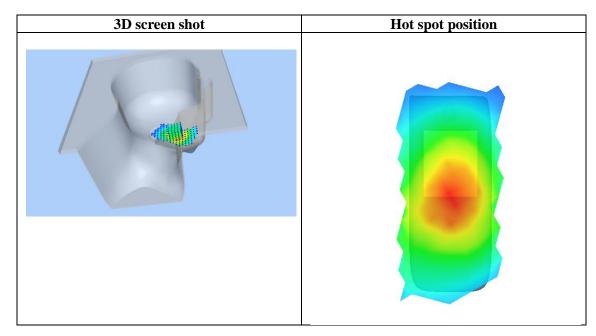

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/GSM 850 Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Left head		
Device Position	Cheek		
Band	GSM 850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=-41.00, Y=-24.00 SAR Peak: 1.39 W/kg

Report No.: AGC00653170603FH01 Page 79 of 80

SAR 10g (W/Kg)	0.593333	
SAR 1g (W/Kg)	0.914471	

Report No.: AGC00653170603FH01 Page 80 of 80

0.00	4.00	9.00	14.00	19.00	24.00	29.00
1.4124	0.9328	0.5633	0.4430	0.2914	0.2112	0.1622
1.4-		1111		1111		
1.2	$\setminus \mid \cdot \mid \cdot \mid$					
⊋ 1.0-	$\overline{}$					
\$ 0.8-	$+\lambda+$					
	-11					
₹ U.6-						
0.4-						
0.1-						
0.	02.55.07.5			27.5 32.5	40.0	
			Z (mm)			
	1.4124 1.4- 1.2- 1.0- 34 0.8- 45 0.6- 0.4- 0.1-	1.4124 0.9328 1.4- 1.2- 1.0- 28 0.8- 28 0.6- 0.4-	1.4124 0.9328 0.5633 1.4- 1.2- 1.0- 2.004- 0.1- 0.02.55.07.5 12.5 17.	1.4124 0.9328 0.5633 0.4430 1.4- 1.2- 1.0- 3 0.8- 3 0.6- 0.4- 0.1-	1.4124 0.9328 0.5633 0.4430 0.2914 1.4- 1.2- 1.0- 2 0.8- 2 0.6- 0.4- 0.1- 0.02.55.07.5 12.5 17.5 22.5 27.5 32.5	1.4124 0.9328 0.5633 0.4430 0.2914 0.2112

Page 81 of 80

Test Laboratory: AGC Lab Date: June 20,2017

GSM 850 Low- Body- Back (MS)<SIM 1>- Once Repeated SAR

DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.94;

Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 56.55$; $\rho = 1000$ kg/m³;

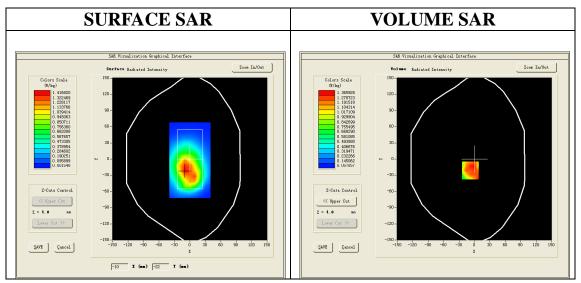
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

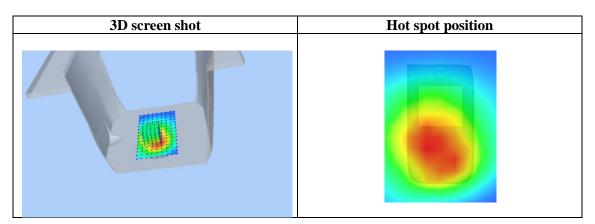
Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm

Configuration/GSM 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-8.00, Y=-21.00


SAR Peak: 2.08 W/kg

Report No.: AGC00653170603FH01 Page 82 of 80

SAR 10g (W/Kg)	0.853972	
SAR 1g (W/Kg)	1.283412	

Report No.: AGC00653170603FH01 Page 83 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	2.4223	1.3659	0.6742	0.6173	0.2970	0.3434	0.1467
(W/Kg)							
	2.4-		1 1 1 1				
	2.0-	$\setminus \mid \cdot \mid \cdot \mid$					
	2.0-	1					
	ا الخ 1.5-	$\Lambda \sqcup \Box$					
	æ 1.5-						
	뙳 1.0-	$\perp \lambda \perp$					
	22	-11					
	0.5-						
				\leftarrow	\bot \bot \bot \bot		
	0.1- 0	02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
	0.	02.00.01.0		υ 22.υ 2 Ζ (mm)	02.0	13.0	
				4 (11117			

Page 84 of 80

Test Laboratory: AGC Lab Date: June 20,2017

GSM 850 Low- Body- Back (MS)<SIM 1>- Twice Repeated SAR

DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.94;

Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 56.55$; $\rho = 1000$ kg/m³;

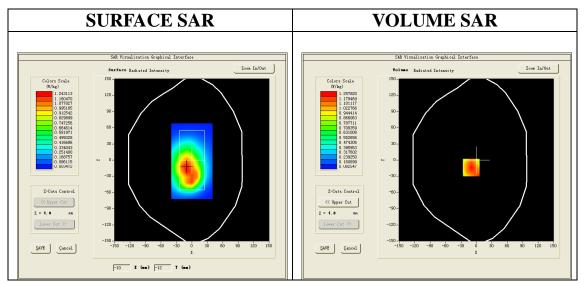
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

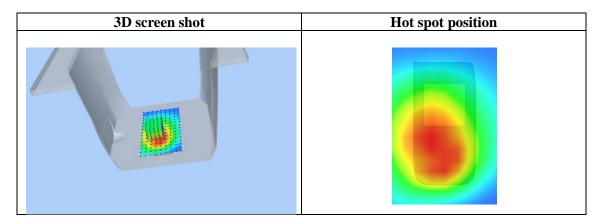

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm

Configuration/GSM 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=-10.00, Y=-14.00 SAR Peak: 1.73 W/kg

Report No.: AGC00653170603FH01 Page 85 of 80

SAR 10g (W/Kg)	0.818573		
SAR 1g (W/Kg)	1.212471		

Report No.: AGC00653170603FH01 Page 86 of 80

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	1.7451	1.2579	0.8585	0.6351	0.4651	0.3268	0.2414
	1.7- 1.6- 1.4- (3//K) 1.2- (3//E) 0.8- 0.6- 0.4- 0.2- 0.	02.55.07.5	12.5 17.	5 22.5 2 Z (mm)	27.5 32.5	40.0	

Page 87 of 80

Test Laboratory: AGC Lab Date: June 23,2017

PCS 1900 Low-Body-Back (MS)<SIM 1> Repeated SAR

DUT: GSM MOBILE PHONE; Type: 210

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.34;

Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon r = 54.95$; $\rho = 1000 \text{ kg/m}^3$;

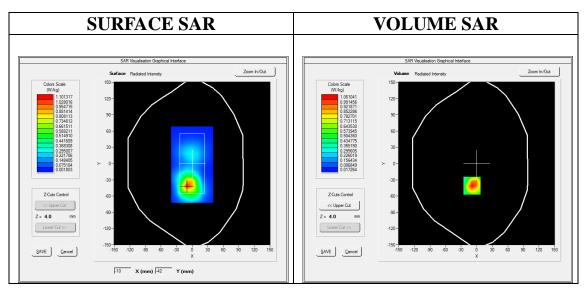
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.1

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

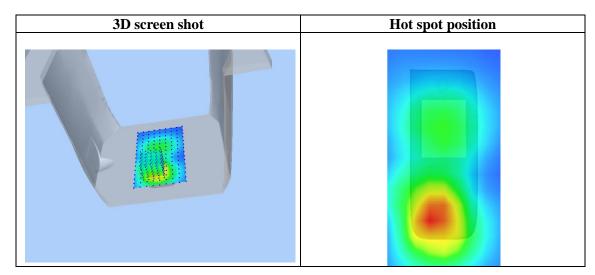

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm

Configuration/PCS1900 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Validation plane			
Device Position	Body Back			
Band	PCS 1900			
Channels	Low			
Signal	TDMA (Crest factor: 8.0)			


Maximum location: X=-9.00, Y=-41.00 SAR Peak: 1.53 W/kg

Report No.: AGC00653170603FH01 Page 88 of 80

SAR 10g (W/Kg)	0.553960		
SAR 1g (W/Kg)	0.998907		

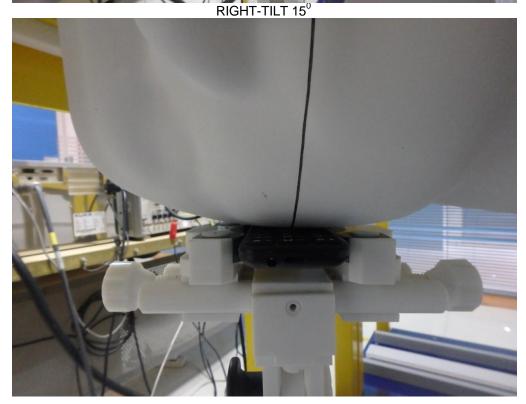
Report No.: AGC00653170603FH01 Page 89 of 80

0.00	4.00	9.00	14.00	19.00	24.00	29.00	
1.5197	1.0610	0.6596	0.3991	0.2391	0.1371	0.0823	
1.5-							
1.4-	\ 						
1.2-	\longrightarrow	++++	\rightarrow	+			
\$ 1.0-							
≥ 0.8-	++	++++	+++	++++			
¥ 06-							
		$N \mid 1$					
0.4-							
0.2-	+++	+++7	+	+			
				* ┾┷┷┷			
	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35.	0 40.0		
Z (mm)							
	1.5197 1.5-1.4-1.4-1.2 (by 1.0 W) 0.8 84 0.6 0.4 0.2 0.1	1.5197 1.0610 1.5- 1.4- 1.2- \$\$\text{\$\exititt{\$\text{\$\e	1.5197 1.0610 0.6596 1.5197 1.0610 0.6596 1.5197 1.0610 0.6596	1.5197 1.0610 0.6596 0.3991 1.5197 1.0610 0.6596 0.3991 1.5197 1.0610 0.6596 0.3991	1.5197 1.0610 0.6596 0.3991 0.2391 1.5 1.4 1.2 0.8 0.8 0.6 0.4 0.2 0.1 0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 35.	1.5197 1.0610 0.6596 0.3991 0.2391 0.1371 1.5 1.4 1.2 0.8 0.8 0.6 0.4 0.2 0.1 0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 35.0 40.0	

Report No.: AGC00653170603FH01 Page 90 of 80

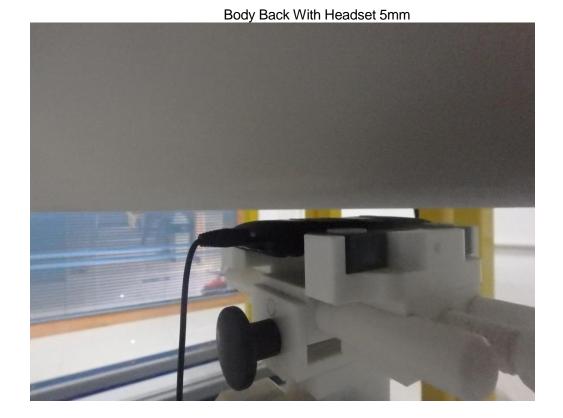
APPENDIX C. TEST SETUP PHOTOGRAPHS

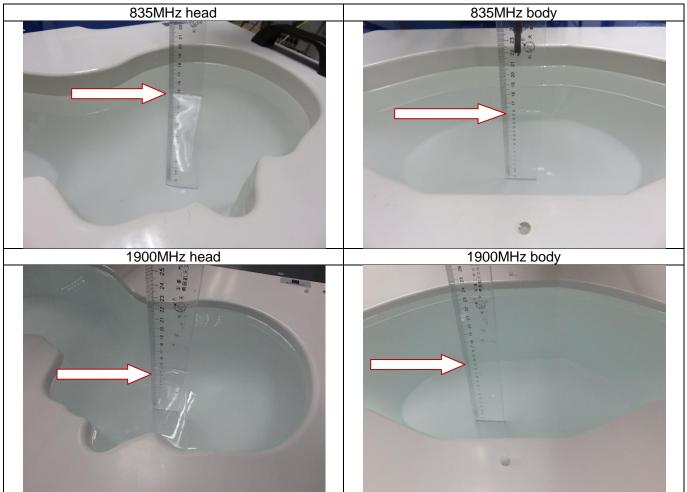
LEFT- CHEEK TOUCH



Report No.: AGC00653170603FH01 Page 91 of 80

Report No.: AGC00653170603FH01 Page 92 of 80


Body Back 5mm


Report No.: AGC00653170603FH01 Page 93 of 80

Report No.: AGC00653170603FH01 Page 94 of 80

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note : The position used in the measurement were according to IEEE 1528-2013

Page 95 of 80

APPENDIX D. CALIBRATION DATA

Refer to Attached files.