FCC Test Report

Report No.: AGC00653170603FE03

FCC ID	:	2AFD9210
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	GSM MOBILE PHONE
BRAND NAME	:	ZOOM
MODEL NAME	:	210
CLIENT	:	MOVEON TECHNOLOGY LIMITED
DATE OF ISSUE	:	July 05, 2017
STANDARD(S) TEST PROCEDURE(S)	:	FCC Part 15 Rules ANSI C63.10 (2013)
REPORT VERSION	:	V1.0

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	July 05, 2017	Valid	Original Report

TABLE OF CONTENTS

1.	VERIFICATION OF CONFORMITY	5
2.	GENERAL INFORMATION	6
	2.1. PRODUCT DESCRIPTION	6
	2.2. TABLE OF CARRIER FREQUENCYS	6
	2.3. RECEIVER INPUT BANDWIDTH	7
	2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	7
	2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	7
	2.6. RELATED SUBMITTAL(S) / GRANT (S)	8
	2.7. TEST METHODOLOGY	8
	2.8. SPECIAL ACCESSORIES	8
	2.9. EQUIPMENT MODIFICATIONS	8
3.	MEASUREMENT UNCERTAINTY	9
4.	DESCRIPTION OF TEST MODES	9
5.	SYSTEM TEST CONFIGURATION	. 10
	5.1. CONFIGURATION OF EUT SYSTEM	10
	5.2. EQUIPMENT USED IN EUT SYSTEM	10
	5.3. SUMMARY OF TEST RESULTS	10
6.	TEST FACILITY	. 11
7.	PEAK OUTPUT POWER	. 13
	7.1. MEASUREMENT PROCEDURE	13
	7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	13
	7.3. LIMITS AND MEASUREMENT RESULT	13
8.	20DB BANDWIDTH	. 17
	8.1. MEASUREMENT PROCEDURE	17
	8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	17
	8.3. LIMITS AND MEASUREMENT RESULTS	17
9.	CONDUCTED SPURIOUS EMISSION	. 20
	9.1. MEASUREMENT PROCEDURE	20
	9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
	9.3. MEASUREMENT EQUIPMENT USED	20
	9.4. LIMITS AND MEASUREMENT RESULT	20
10). RADIATED EMISSION	. 26
	10.1. MEASUREMENT PROCEDURE	26
	10.2. TEST SETUP	27
	10.3. LIMITS AND MEASUREMENT RESULT	28

Report No.: AGC00653170603FE03 Page 4 of 47

10.4. TEST RESULT	29
11. BAND EDGE EMISSION	32
11.1. MEASUREMENT PROCEDURE	32
11.2. TEST SET-UP	32
11.3. Radiated TEST RESULT	33
11.4 Conducted TEST RESULT	33
12. NUMBER OF HOPPING FREQUENCY	38
12.1. MEASUREMENT PROCEDURE	38
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	38
12.3. MEASUREMENT EQUIPMENT USED	38
12.4. LIMITS AND MEASUREMENT RESULT	38
13.1. MEASUREMENT PROCEDURE	39
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	39
13.3. MEASUREMENT EQUIPMENT USED	39
13.4. LIMITS AND MEASUREMENT RESULT	39
Test Graph	40
14. FREQUENCY SEPARATION	41
14.1. MEASUREMENT PROCEDURE	41
14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	41
14.3. MEASUREMENT EQUIPMENT USED	41
14.4. LIMITS AND MEASUREMENT RESULT	41
15. FCC LINE CONDUCTED EMISSION TEST	42
15.1. LIMITS OF LINE CONDUCTED EMISSION TEST	42
15.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	42
15.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	43
15.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	43
15.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	44
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	46

Applicant	MOVEON TECHNOLOGY LIMITED
Address	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian, Shenzhen, China
Manufacturer	MOVEON TECHNOLOGY LIMITED
Address	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian, Shenzhen, China
Product Designation	GSM MOBILE PHONE
Brand Name	ZOOM
Test Model	210
Date of test	June 15, 2017~July 03, 2017
Deviation	None
Condition of Test Sample	Normal
Report Template	AGCRT-US-BR/RF

1. VERIFICATION OF CONFORMITY

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Tested By	donjon strang	
	Donjon Huang(Huang Dongyang)	July 03, 2017
Reviewed By	Bon? xie	
	Bart Xie(Xie Xiaobin)	July 05, 2017
Approved By	Solya shary	
	Solger Zhang(Zhang Hongyi) Authorized Officer	July 05, 2017

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is "GSM MOBILE PHONE" designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

Operation Frequency	2.402 GHz to 2.480GHz
Bluetooth Version	V 2.1+EDR
Modulation	GFSK, π /4-DQPSK, 8DPSK
Number of channels	79(For BR/EDR)
Hardware Version	S690_MB_V1.00_PCB_20170118
Software Version	S690_OQ_T6_E2_ZX_V3.pac
Antenna Designation	Integrated Antenna
Antenna Gain	0.6dBi
Power Supply	DC3.7V by Battery

A major technical description of EUT is described as following

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402MHZ
	1	2403MHZ
		:
	38	2440 MHZ
2400~2483.5MHZ	39	2441 MHZ
	40	2442 MHZ
	•••	:
	77	2479 MHZ
	78	2480 MHZ

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values: 1. LAP/UAP of the master of the connection.

2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us.The clock has a cycle of about one day(23h30).In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations)are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AFD9210** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

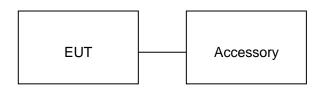
Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

Conducted measurement: +/- 2.75dB Radiated measurement: +/- 3.2dB

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION	
1	Low channel GFSK	
2	Middle channel GFSK	
3	High channel GFSK	
4	Low channel π /4-DQPSK	
5	Middle channel π /4-DQPSK	
6	High channel π /4-DQPSK	
7	Low channel 8DPSK	
8	Middle channel 8DPSK	
9	High channel 8DPSK	
10	Normal Hopping	
Mater		


Note:

1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM Configuration:

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	GSM MOBILE PHONE	210	2AFD9210	EUT
2	Adapter	210	DC 5.0V/500mA	Accessory
3	Battery	210	DC3.7V/ 500mAh	Accessory
4	Earphone	N/A	N/A	Accessory

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Peak Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Spurious Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Conduction Emission	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant
§15.247	Frequency Separation	Compliant

6. TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.	
Location	Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,	
FCC Registration No.	371540	
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.10:2013.	

ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

	Radiat	ed Emission Tes	st Site		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 2, 2017	July 1, 2018
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 2, 2017	July 1, 2018
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 2, 2017	July 1, 2018
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 2, 2017	July 1, 2018
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 2, 2017	June 1, 2018
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 2, 2017	June 1, 2018
Spectrum analyzer	Agilent	E4407B	MY46185649	June 2, 2017	June 1, 2018
Power Probe	R&S	NRP-Z23	100323	July 24,2016	July 23,2017
RF attenuator	N/A	RFA20db	68	N/A	N/A

FOR RADIATED EMISSION TEST (1GHZ ABOVE)

Radiated Emission Test Site							
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration		
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017		
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 2, 2017	July 1, 2018		
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 10, 2016	July 9, 2017		
Spectrum Analyzer	Agilent	E4411B	MY4511453	July 3, 2016	July 2, 2017		

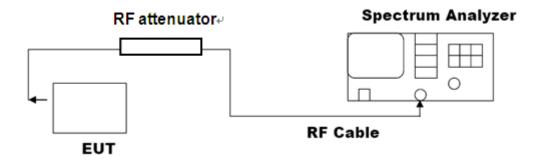
Spectrum Analyze	r	Agilent		E4411B		MY45114	53	July 2, 20	017	July 1, 2018
Signal Amplifier		SCHWARZBE	ECK	BBV 9718		9718-269		July 6, 20	016	July 5, 2017
RF Cable		SCHWARZBE	ECK	AK9515H		96220		July 7, 20	016	July 6, 2017
3m Anechoic Chamb	ber	CHENGYL	J	966		PTS-001		June 2, 2	017	June 1, 2018
MULTI-DEVICE Positioning Controll	er	Max-Full		MF-7802		MF780208	339	N/A		N/A
Horn Ant (18G-40GH	Hz)	Schwarzbe	ck	BBHA 9170)	9170-18 ⁻	1	June 2, 2	017	June 1, 2018
Power Probe		R&S	NRP-Z2		100323			July 24,2016		July 23,2017
RF attenuator	N/A			RFA20db		68		N/A		N/A
		C	ondu	cted Emissior	ו Te	est Site				
Name of Equipment	Ν	lanufacturer	Мос	del Number		Serial Number	Ca	Last alibration	Du	e Calibration
EMI Test Receiver	Ro	hde & Schwarz		ESCI		101417	July 3, 2016		J	uly 2, 2017
EMI Test Receiver	Ro	hde & Schwarz		ESCI		101417 July 2, 2017		J	July 1, 2018	
Artificial Mains Network		Narda		L2-16B	00	0WX31025	Jul	ly 7, 2016	J	uly 6, 2017
Artificial Mains Network (AUX)		Narda	L2-16B		00	0WX31026	Jul	ly 7, 2016	J	uly 6, 2017
RF Cable	SC	HWARZBECK	AK9515E			96222	July 3, 2016		J	uly 2, 2017
RF Cable	SC	HWARZBECK	ŀ	AK9515E		96222	Jul	ly 2, 2017	J	uly 1, 2018
Shielded Room		CHENGYU		843		PTS-002	Jur	ne 2, 2017	J	une 1, 2018

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. RBW > the 20 dB bandwidth of the emission being measured, VBW \ge RBW.
- 4. Record the maximum power from the Spectrum Analyzer.


For average power test:

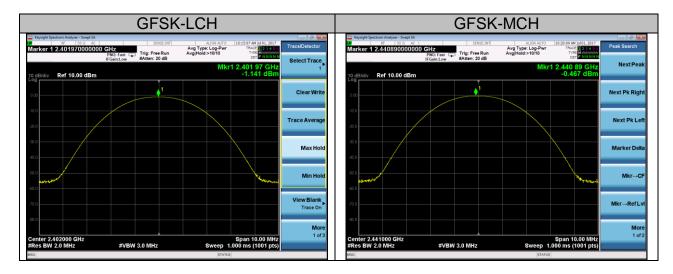
- 1. Connect EUT RF output port to power probe through an RF attenuator.
- 2. Connect the power probe to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

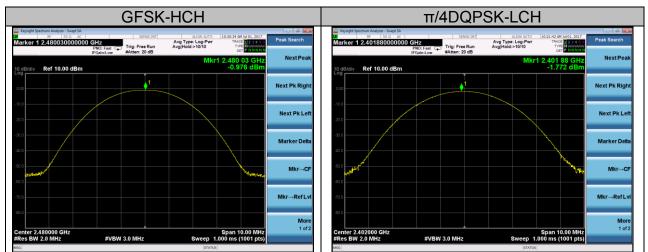
Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements.

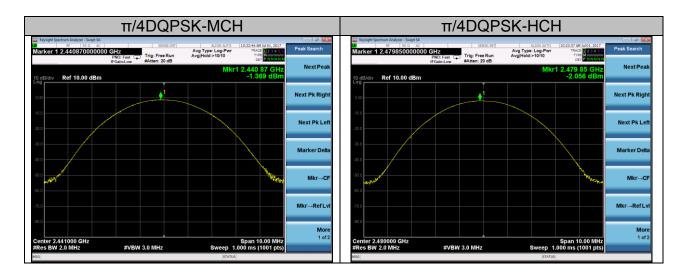
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

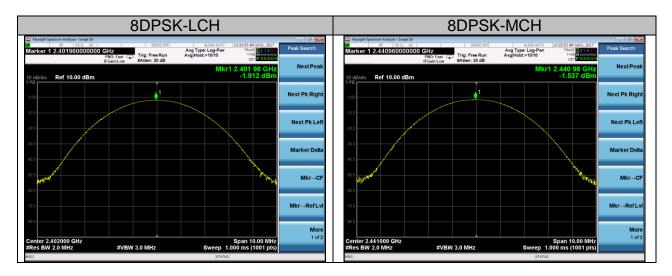
7.3. LIMITS AND MEASUREMENT RESULT

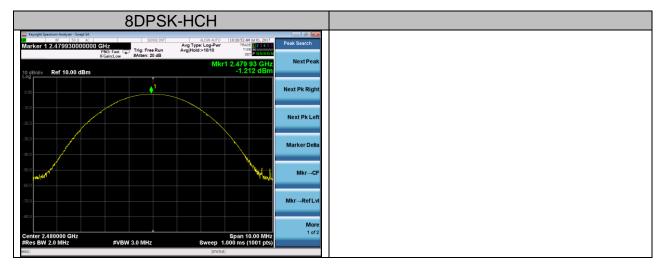

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	-1.141	30	Pass
GFSK	2.441	-0.467	30	Pass
	2.480	-0.976	30	Pass


Report No.: AGC00653170603FE03 Page 14 of 47

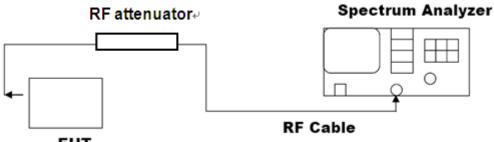

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	-1.772	30	Pass
π/4-DQPSK	2.441	-1.369	30	Pass
	2.480	-2.056	30	Pass

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	-1.912	30	Pass
8DPSK	2.441	-1.537	30	Pass
	2.480	-1.212	30	Pass


Test Graph



Report No.: AGC00653170603FE03 Page 16 of 47



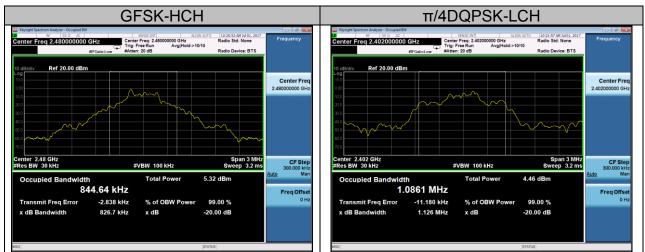
8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

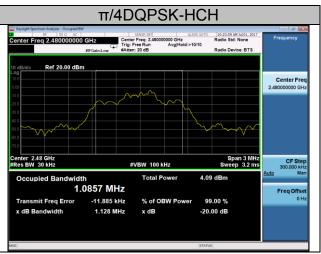
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel $RBW \ge 1\%$ of the 20 dB bandwidth, VBW $\ge RBW$; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

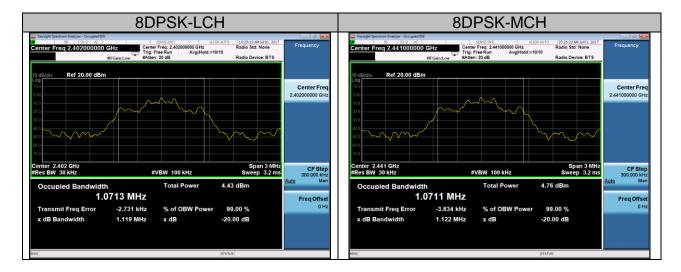
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)




EUT

8.3. LIMITS AND MEASUREMENT RESULTS


Mode	Channel.	20dB Bandwidth [KHz]	Verdict
GFSK	LCH	831.2	PASS
GFSK	MCH	827.3	PASS
GFSK	НСН	826.7	PASS
π/4DQPSK	LCH	1126	PASS
π/4DQPSK	MCH	1127	PASS
π/4DQPSK	HCH	1128	PASS
8DPSK	LCH	1119	PASS
8DPSK	MCH	1122	PASS
8DPSK	HCH	1143	PASS


Test Graph



9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

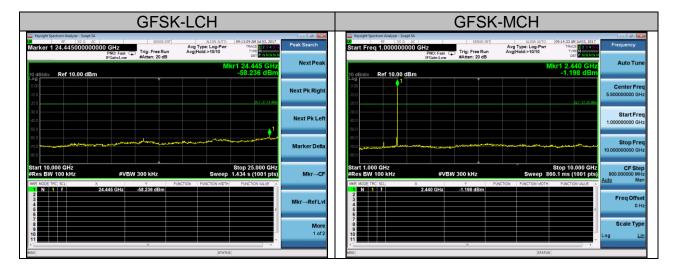
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW > RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW > RBW) are conform to the requirement.

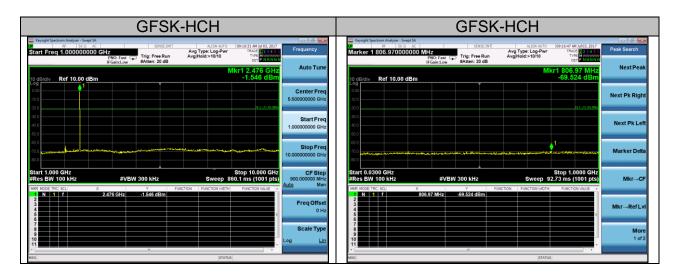
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

9.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6

9.4. LIMITS AND MEASUREMENT RESULT

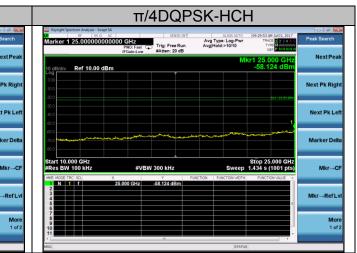

LIMITS AND MEASUREMENT RESULT				
Annlinghla Limita	Measurement Result			
Applicable Limits	Test Data	Criteria		
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit			
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS		
intentional radiator is operating, the radio frequency	Channel			
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS		

Test Graph

GFSK-LCH		GFSK-LCH
Topisfy Spectrum Analyzer - Sweet SA StrikE-INT ALIGN AUTO 041214 44/3400, 2817 StrikE-INT StrikE-INT ALIGN AUTO 041214 44/3400, 2817 StrikE-INT And MUTO 041214 44/3400, 2817 Trike:	Frequency	Conjuit Spectrum Analyzer - Sweet SA Construction Analyzer - Sweet SA Co
Mkr1 2.404 GHz 10 dB/div Ref 10.00 dBm -1.144 dBm	Auto Tune	Mkr1 916.58 MHz 10 dB/div Ref 10.00 dBm -69.399 dBm
	Center Freq 5.50000000 GHz	000 Next Pk Right
300 400 400	Start Freq 1.000000000 GHz	000
	Stop Freq 0.000000000 GHz	
Aut	CF Step 900.000000 MHz to Man	Start 0.0300 GHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.73 ms (1001 pts) Mkr→CF
MMR NODE Trip X Y Function Function water Functi	Freq Offset 0 Hz	Met Note: Tricles X Y Function Punction
	Scale Type	More 10 11
MSG STATUS		MSG STATUS



GFSK	-MCH	GFSK-MCH
Keylight Spectrum Analyzer - Swept SA Keylight Spectrum Analyzer - Swept SA Markor 1 824:430000000 MHz Fream.row Fream.row Fream.row	Aug Hold:=10/10 09:14:48.445.445.445.403,2017 Avg Type: Log-Pwr TRACE 12:14 5 Avg[Hold:=10/10 0rt 14:145.445.45	Marker 1 24.4450000000000 GHz Stretching Augustation Units 24 Multi 2017 Park Startch Marker 1 24.4450000000000 GHz Trig: Free Run ArgHolds-1010 trig: Park Startch FGainCow Ratten: 20 How Run Composition Compos
10 dB/div Ref 10.00 dBm	Mkr1 824.43 MHz -70.065 dBm	10 dB/div. Ref 10.00 dBm 58.668 dBm
-100 -200 -300	Rext P	100
40.0	Next	
700	Stop 1.0000 GHz	Start 10.000 GHz Stop 25.000 GHz
#Res BW 100 kHz #VBW 300 kHz MRT_MODE_TRC_SCLI X Y F 1 N 1 f 824.43 MHz -70.065 dBm	Sweep 92.73 ms (1001 pts) NCTION FUNCTION WIDTH FUNCTION VALUE	INFIT HOOE THC: SCI. X Y FUNCTION PUNCTION HOTH FUNCTION HALE N 1 f 24.445 GHz -58.658 GHzm -
3 4 5 6 7	Mkr	A 3 Mkr-RefLvi
9 10 11 41 *		e s more for a second s



GFSK-HCH		π/4DQPSK-LCH
Register Spectrum Andror - New SA SS05 Sml ALION HITO 09:17:20 AM MOD. 2017 Markor 1 24,430000000000 CH2: FROMALow Trig: Free Run FROMALow Aug Type: Log-Pwr Avg/Hold>1010 Trig: Free Run FROMALow	Peak Search	Trige free and the set of the set
Mkr1 24.430 GHz 10 dB/div Ref 10.00 dBm -58.733 dBm 000	Next Pk Right	10 dibidiv Ref 10.00 dBm -3.391 dBm -3.391 dBm Center Freq
100 200 300 400	Next Pk Left	100 550000000 GHz 5500000000 GHz 5500000000 GHz 5500000000 GHz 55000000000 GHz 5500000000 GHz 550000000000 GHz 55000000000000000000 GHz 5500000000000000000000000000000000000
00 1 00 1 10 1	Marker Delta	400 400 700 400 10.00000000 GHz
Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1001 pts) IMM MORE THE SELI X Y Fanction High Pancton Value	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz CF Step 500 00000 GHz #Res BW 100 KHz #VBW 300 KHz Sweep 850.1 ms (1001 pts) 500 000000 MHz MMR Mode Inc Sci. x Y Fanction Fanction Fanction value Auto Man
N 1 7 24430 GHz -68,733 dBm	Mkr→RefLvl	N 1 f 2.404 GHz -3.391 dBm 2 - - - - - Freq Offset 4 - <
	More 1 of 2	Scale Type
MSG		MSG STATUS

π/4DQP	SK-LCH	π/4DQPSK-LCH	
Keytight Spectrum Anizer - Swegt SA RF - 1 50 2 AC RF - 1 50 2 AC SENSE.INT Marker 1 858.0800000000 MHz PN0: Fast C Trig: Free Run HFGsind.ow #Atten: 20 dB	ALIGN AUTO 09:22:40 AM Jul 03, 2017 Avg Type: Log-Pwr TRACE 2.2.4 S to AvgHold:>10/10 Tree Participant	Knynight Spectrum Analyser - Swegt SA. SENSE: 2017 ALION AUTO 69: Marker 1 24:95500000000000 GHz Fries Run Avg1Hold:>1010 Avg1Hold:>1010 Floating Fries Run Avg1Hold:>1010 Avg1Hold:>1010	23:11 AM Jul 03, 2017 TRACE 23:41 Sto Type Det PANNINA
10 dB/div Ref 10.00 dBm	Mkr1 868.08 MHz -68.586 dBm	Mkr1 10 dB/div Ref 10.00 dBm	24.955 GHz NextPeak 58.902 dBm
10.0	Next Pk Right	0.00	Next Pk Right
-40.0	Next Pk Left	400	Next Pk Left
600 600 700 800	Marker Delta		-1 Marker Delta
Start 0.0300 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 1.0000 GHz Sweep 92.73 ms (1001 pts) Mkr⊸CF	#Res BW 100 kHz #VBW 300 kHz Sweep 1.43	op 25.000 GHz 84 s (1001 pts) Mkr→CF
IMPR MODELTING YCL Y PE N 1 f 869.08 MHz -65.686 dBm 3 - - - - 6 - - - -		IMM MODE TRC SCL X Y FUNCTION F	
7 8 9 10 11	More 1 of 2		More 1 of 2
MSG	STATUS	MSG STATUS	

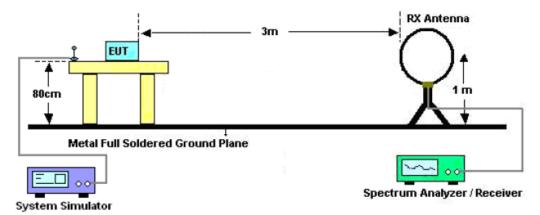
π/4DQPSK-MCH		π/4DQPSK-HCH
Implying Spectrum Andream - Specific Allow Mino. 69:00 and Characteria 50:00 and Characteria 10:00 and Characteria 10:00 and Characteria 10:00 and Characteria 50:00 and Characteria 10:00 and Characteria 50:00 and Characteria 10:00 and Characteria 50:00 and Characteria 10:00 and Characteria 10:00 and Characteria 10:00 and Characteria 50:00 and Characteria 10:00 a	Peak Search Next Peak	Compared Sectore Adaptive Swell Sectore Adaptive Swell Sectore Adaptive Swell Sectore Adaptive Swell Sectore Sect
	Next Pk Right	Center Freq 200 530250 Center Freq 5.000000000000000000000000000000000000
	Next Pk Left	000 000 000 000 000 000 000 000 000 00
800 700 700 100 100 100 100 100 100 100 100 100 	Marker Delta	Stop Freq 100 1
Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1001 pts) IMM NODE TRC SCL X Y N 10 L 24.430 GHz S40.500 dBm	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz CF Step #Res BW 100 kHz Stop 10.000 GHz Stop 00.0000 GHz Stop 00.000 GHz Stop 00.0000
2	Mkr→RefLvl	2 Freq Offset 4 0 Hz 5 0 Hz 7 0 Hz
	More 1 of 2	Scale Type



Report No.: AGC00653170603FE03 Page 24 of 47

8DPSK-LCH		8DPSK-MCH
Trypiel Spectra Andron - Sang 5A SEVE2.Int1	Peak Search	Start Freq 1.00000000 GHz Figure 200 GHz Start Freq 1.000000000 GHz Figure 200 GHZ Figure
Mkr1 25,000 GHz 10 dEMiv Ref 10.00 dBm -58.340 dBm -58	NextPeak	MKT 2.440 GHz 10 dB/div Ref 10.00 dBm -2.200 dBm
200	Next Pk Right	000 Center Freq 000 State of the state of t
	Next Pk Left	3.00 Start Freq 4.5 D 1.00000000 GHz 4.0 D
	Marker Delta	800 000 000 000 000 000 000 000
Start 10.000 GHz Stop 25.000 GHz #Res BW 100 HHz #VBW 300 kHz Sweep 1.334 s (1001 pts) Win Most Fic Skill x y Pactors Pactors Pactors	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz CF Step #Kes BW 100 HHz #VBW 300 KHz Sweep 880.1 ms (1001 pts) Socionocom/Hz Mer Hooft Fic Sci.u x reaction Parction Parction Auto Man
1 N 1 f 25 000 GHz -58.340 dBm 2	Mkr→RefLvl	N 1 f 2.440 GHz -2.200 dBm 2 3 3 3 3 3 4 3 3 3 3 3 3 5 3 4 3 3 3 3 3 6 3
7	More 1 of 2	Scale Type
MSG STATUS		

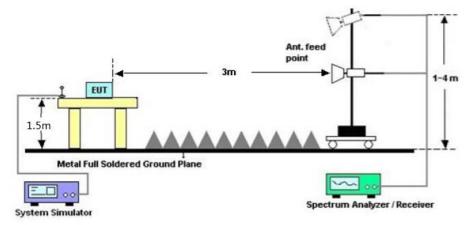
8DPSK-HCH		
Tryingth Spectrum Analyzer - Swept SA SE 1560 - MT ALION AUTO 694-102 4M (Jio), ALION AUTO, ALIONA	4 3 6 Peak Search	
10 dB/div Ref 10.00 dBm -58.009 db	HZ NextPeak Bm	
200	Next Pk Right	
	Next Pk Left	
	Marker Delta	
start 10.000 GHz Stop 25.000 C Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1001) RM MOR THE SQL Y Factorski	pts) Mkr→CF	
N 1 f 24.415 GHz -58.009 dBm 3 - - - - - 4 - - - - - 5 - - - - -	Mkr→RefLvl	
	More 1 of 2	
G STATUS	•	


10. RADIATED EMISSION

10.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

10.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

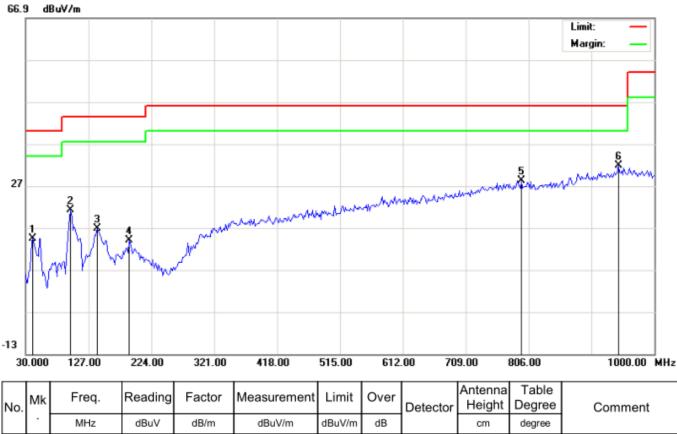
RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

10.3. LIMITS AND MEASUREMENT RESULT

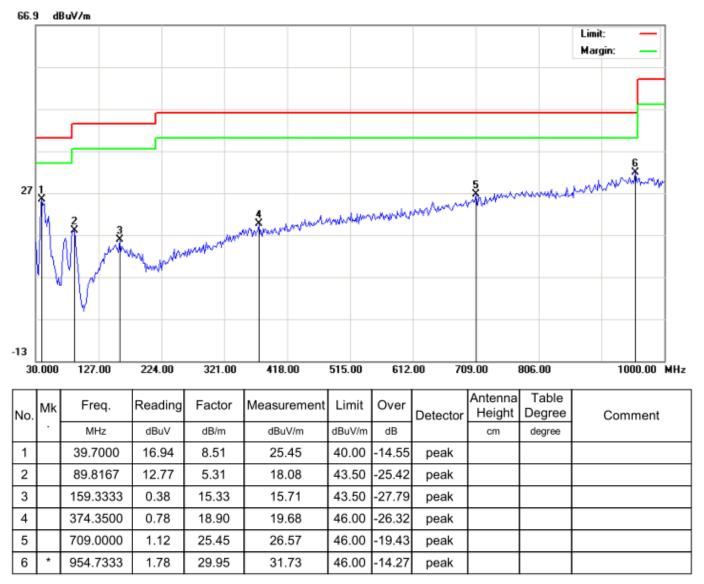
15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3


10.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.


RADIATED EMISSION BELOW 1GHZ

RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	·	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		41.3167	2.69	11.81	14.50	40.00	-25.50	peak			
2		99.5167	11.28	10.00	21.28	43.50	-22.22	peak			
3		139.9333	1.63	15.17	16.80	43.50	-26.70	peak			
4		190.0500	2.43	11.54	13.97	43.50	-29.53	peak			
5		794.6833	1.02	27.25	28.27	46.00	-17.73	peak			
6	*	945.0333	1.85	29.86	31.71	46.00	-14.29	peak			

RESULT: PASS

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. All test modes for different EUT are pre-tested. The worst mode (GFSK Low channel) for the worst EUT recorded in the report.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Common		
	Low Channel (2402 MHz)								
4804	63.55	-3.62	59.93	74	-14.07	Pk	Vertical		
4804	42.31	-3.62	38.69	54	-15.31	AV	Vertical		
4804	62.59	-3.64	58.95	74	-15.05	Pk	Horizontal		
4804	45.47	-3.64	41.83	54	-12.17	AV	Horizontal		
	Mid Channel (2441 MHz)								
4882	63.14	-3.65	59.49	74	-14.51	Pk	Vertical		
4882	43.67	-3.65	40.02	54	-13.98	AV	Vertical		
4882	62.49	-3.68	58.81	74	-15.19	Pk	Horizontal		
4882	42.91	-3.68	39.23	54	-14.77	AV	Horizontal		
		ł	High Channel (248	0 MHz)					
4960	60.72	-3.59	57.13	74	-16.87	pk	Vertical		
4960	43.48	-3.59	39.89	54	-14.11	AV	Vertical		
4960	59.29	-3.59	55.70	74	-18.30	pk	Horizontal		
4960	41.02	-3.59	37.43	54	-16.57	AV	Horizontal		

RADIATED EMISSION TEST- (ABOVE 1GHZ)

Note:

1) 30MHz~25GHz:(Scan with GFSK, π/4-DQPSK,8DPSK, the worst casw is GFSK Mode)

2) Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission Level = Meter Reading + Factor

Margin = Emission Leve - Limit

RESULT: PASS

11. BAND EDGE EMISSION

11.1. MEASUREMENT PROCEDURE

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100kHz. The video bandwidth is set to 300kHz.
- 2. Transmitter set to the normal hopping mode at 2.4 and 2.4835 GHz.

11.2. TEST SET-UP

Radiated same as 10.2

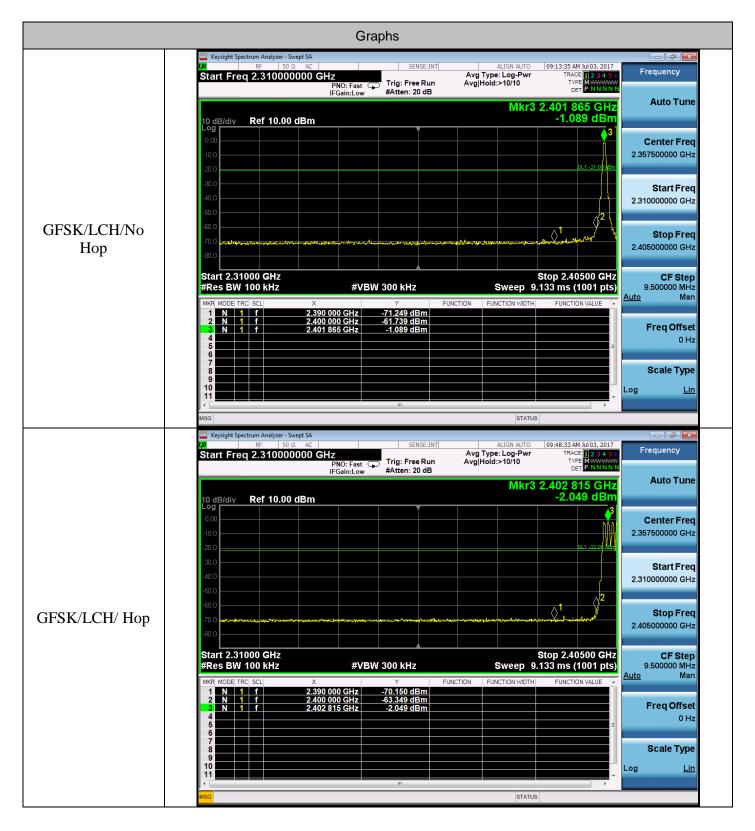
Conducted set up

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
			GF	SK			
2399.9	61.48	-12.99	48.49	74	-25.51	peak	Vertical
2399.9	53.50	-12.99	40.51	54	-13.49	AVG	Vertical
2399.9	66.06	-12.99	53.07	74	-20.93	peak	Horizontal
2399.9	47.04	-12.99	34.05	54	-19.95	AVG	Horizontal
2483.6	61.22	-12.78	48.44	74	-25.56	peak	Vertical
2483.6	51.83	-12.78	39.05	54	-14.95	AVG	Vertical
2483.6	63.06	-12.78	50.28	74	-23.72	peak	Horizontal
2483.6	53.39	-12.78	40.61	54	-13.39	AVG	Horizontal
			π/4-D	QPSK			
2399.9	60.31	-12.99	47.32	74	-26.68	peak	Vertical
2399.9	53.38	-12.99	40.39	54	-13.61	AVG	Vertical
2399.9	63.57	-12.99	50.58	74	-23.42	peak	Horizontal
2399.9	53.57	-12.99	40.58	54	-13.42	AVG	Horizontal
2483.6	62.29	-12.78	49.51	74	-24.49	peak	Vertical
2483.6	50.90	-12.78	38.12	54	-15.88	AVG	Vertical
2483.6	60.58	-12.78	47.80	74	-26.20	peak	Horizontal
2483.6	49.68	-12.78	36.90	54	-17.10	AVG	Horizontal
			8DF	PSK			
2399.9	62.13	-12.99	49.14	74	-24.86	peak	Vertical
2399.9	55.01	-12.99	42.02	54	-11.98	AVG	Vertical
2399.9	63.74	-12.99	50.75	74	-23.25	peak	Horizontal
2399.9	50.03	-12.99	37.04	54	-16.96	AVG	Horizontal
2483.6	60.38	-12.78	47.60	74	-26.40	peak	Vertical
2483.6	52.68	-12.78	39.90	54	-14.10	AVG	Vertical
2483.6	61.46	-12.78	48.68	74	-25.32	peak	Horizontal
2483.6	55.41	-12.78	42.63	54	-11.37	AVG	Horizontal

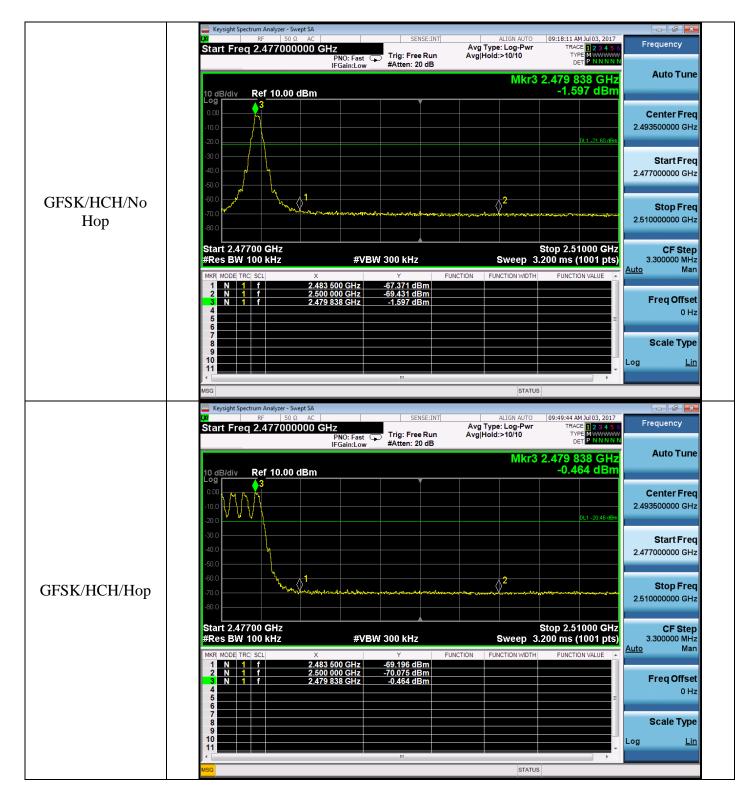
11.3. Radiated TEST RESULT

RESULT: PASS

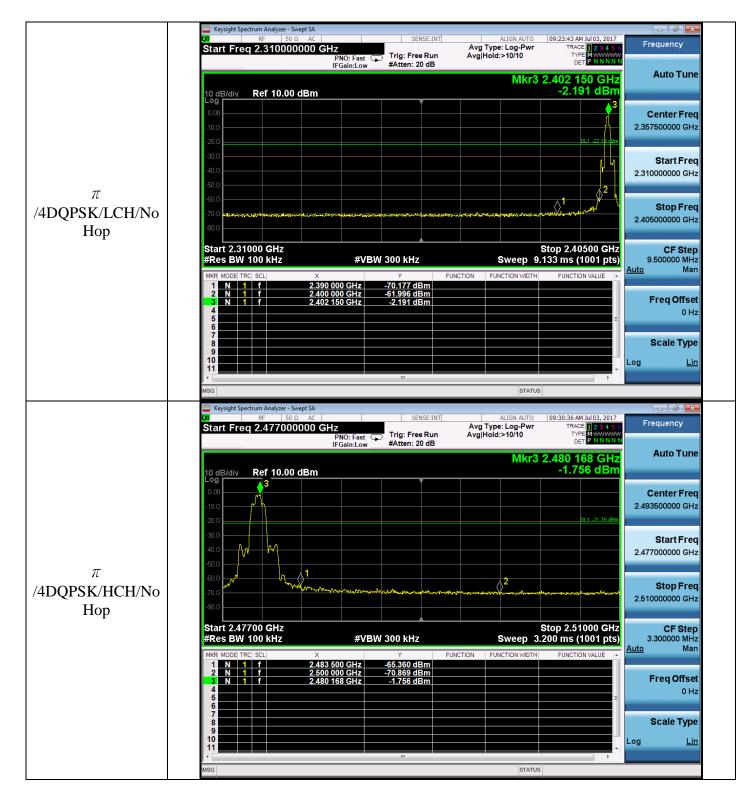
Note: The other modes radiation emission have enough 20dB margin.

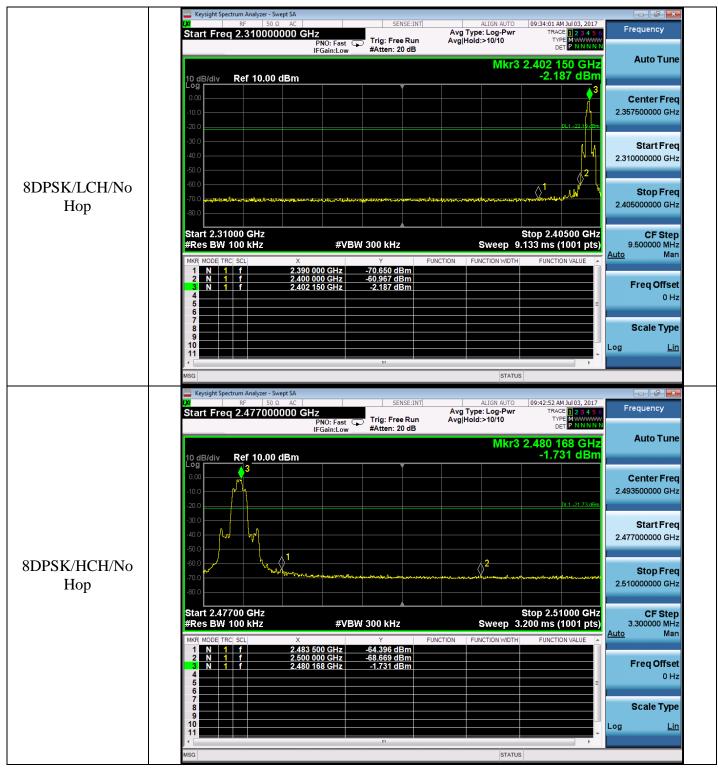

Factor=Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.


11.4 Conducted TEST RESULT

Test Graph


Report No.: AGC00653170603FE03 Page 34 of 47


Report No.: AGC00653170603FE03 Page 35 of 47

Report No.: AGC00653170603FE03 Page 36 of 47

Report No.: AGC00653170603FE03 Page 37 of 47

Note: All modes were tested, only the worst case record in the report.

12. NUMBER OF HOPPING FREQUENCY

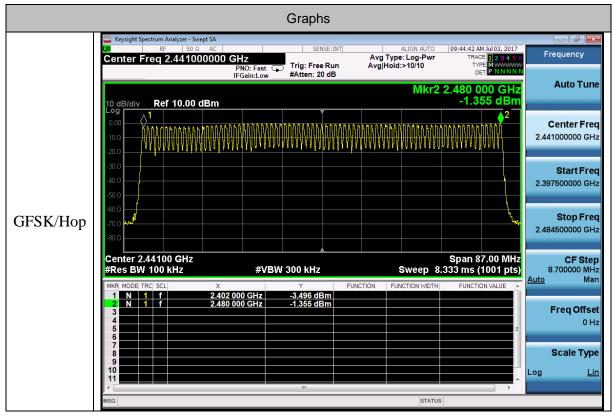
12.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz
- 4. Set the Spectrum Analyzer as RBW>=1%span, VBW>=RBW.

12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6

12.4. LIMITS AND MEASUREMENT RESULT

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS

Note: All modes were tested, only the worst case record in the report.

Test Graph

13. TIME OF OCCUPANCY (DWELL TIME)

13.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Zero span, centered on a hopping channel.

2. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

4. Detector function: Peak. Trace: Max hold.

5. Use the marker-delta function to determine the transmit time per hop.

6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

13.4. LIMITS AND MEASUREMENT RESULT

Channel.	Burst Width [ms/hop/ch]	Dwell Time[ms]	Verdict	Limit (ms)
LCH	3.085	329.067078	PASS	400
MCH	3.085	329.067078	PASS	400
HCH	3.085	329.067078	PASS	400

Note: The DH5 for GFSK modulation is the worst case and recorded in the report.

The dwell time is calculated with the following formula:

Dwell time = t_{pulse} x n_{hops} / number of channels x 31.6 s

Where:

 t_{pulse} is the measured pulse time (pls. refer the plots of the spectrum analyser above) [s], n_{hops} is the number of hops per second in the actual operating mode of the transmitter [1/s].

The hopping rate of the system is 1600 hops per second and the system uses 79 channels. For this reason one time slot has a length of 625 μ s.

With the used hopping mode (DH5) a packet need 5 timeslots for transmitting and the next timeslot for receiving. So the system makes in worst case 266,67 hops per second in transmit mode (n_{hops} = 266.667 1/s)

GFSK-LCH GFSK-MCH ALIGN AUT ter Freg 2.402000000 GH ter Freg 2.441000000 GHz Avg Type Trig: Free Ru Trig: Free Run #Atten: 20 dB Auto Tu Ref 10.00 dBm f 10.00 dB Center Fre Xz Start Fr Lin Stop Fr CF Step External 2 Freq Off RF Burs Scale Typ Mor 1 of Span 0 H: p 5.000 ms (1001 pts #VBW 3.0 MH #VBW 3.0 MHz eep 5.000 m

Test Graph

	GFSK-HCH				
()0	Spectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.480000000 G	HZ PNO: Fast Trig: Free Run FGain:Low #Atten: 20 dB	Avg Type: Log-Pwr	9:54:35 AM Jul 03, 2017 TRACE 2 3 4 5 0 TYPE DET PINNINI	Frequency
10 dB/div Log	Ref 10.00 dBm		ΔM	kr1 3.085 ms -0.30 dB	Auto Tune
0.00	Xz		12	.2 *	Center Freq 2.480000000 GHz
-10.0					Start Freq 2.48000000 GHz
-30.0					Stop Freq 2.48000000 GHz
-50.0					CF Step 1.000000 MHz <u>Auto</u> Man
	如相叫叫			hilli felhen konstrum	Freq Offset 0 Hz
-80.0					Scale Type
Center 2 Res BW	2.480000000 GHz 1.0 MHz	#VBW 3.0 MHz	Sweep 5.00	Span 0 Hz 0 ms (1001 pts)	Log <u>Lin</u>

14. FREQUENCY SEPARATION

14.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- Set Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold

14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

14.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

14.4. LIMITS AND MEASUREMENT RESULT

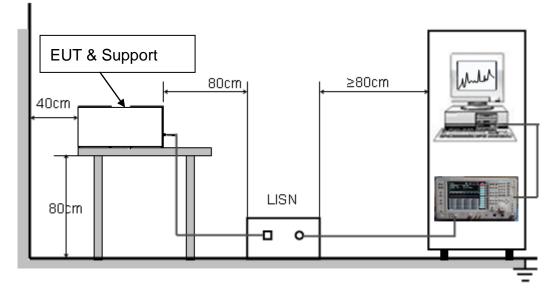
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	Нор	1.002	PASS

Note: All modes were tested, only the worst case record in the report.

Test Graph

15. FCC LINE CONDUCTED EMISSION TEST

15.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

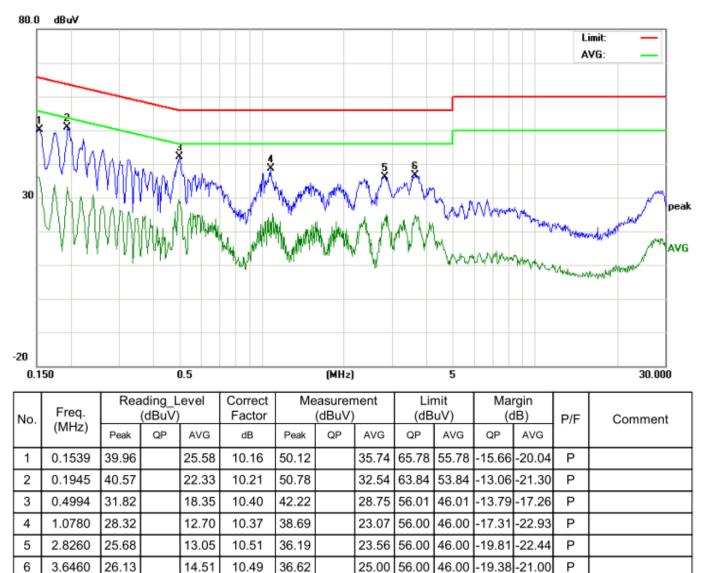
Note:

1. The lower limit shall apply at the transition frequency.

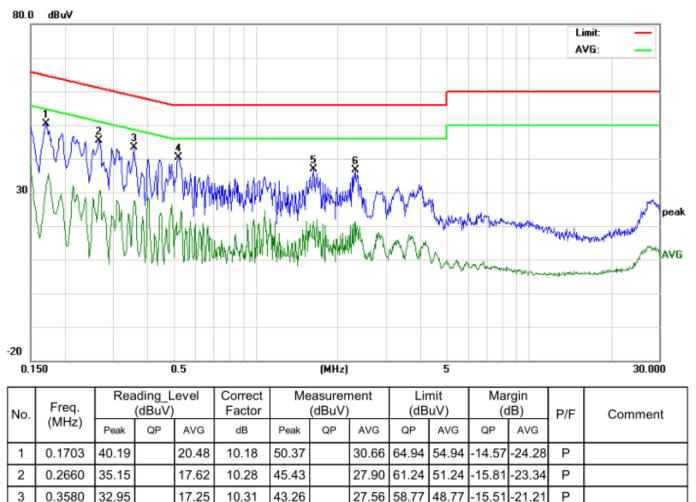
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

15.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

15.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received 120V/60Hzpower by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


15.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

15.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

18.32

21.29

21.48

56.00

56.00

56.00

46.00

46.00

46.00

-15.66

-19.20

-19.28 -24.52

-27.68

-24.71

Ρ

Ρ

Ρ

7.94

10.95

11.13

4

5

6

0.5220

1.6340

2.3100

29.96

26.46

26.37

10.38

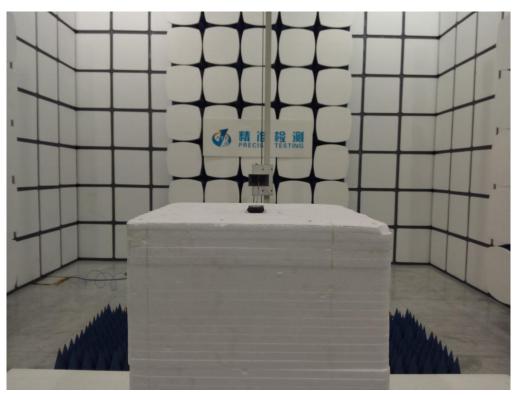
10.34

10.35

40.34

36.80

36.72


Line Conducted Emission Test Line 2-N

APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP

----END OF REPORT----