Report No: CCISE170502405

FCC REPORT

Applicant: MOVEON TECHNOLOGY LIMITED

Address of Applicant: World Trade Plaza-A block#3201-3202 Fuhong Road, Futian

Equipment Under Test (EUT)

Product Name: Smart phone

Model No.: K4 EDGE

Trade mark: KRONO

FCC ID: 2AFD9-K4EDGE

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 05 May, 2017

Date of Test: 05 May, to 19 May, 2017

Date of report issued: 19 May, 2017

Test Result: Pass *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	19 May, 2017	Original

Reviewed by: Date: 19 May, 2017

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

3 Contents

			Page
1	С	COVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
4	T	EST SUMMARY	4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	T	EST RESULTS AND MEASUREMENT DATA	
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	11
7	T	EST SETUP PHOTO	17
8	F	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part 15.107	Pass	
Radiated Emission	Part 15.109	Pass	

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	MOVEON TECHNOLOGY LIMITED		
Address of Applicant:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian		
Manufacturer:	MOVEON TECHNOLOGY LIMITED		
Address of Manufacturer:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian		

5.2 General Description of E.U.T.

Product Name:	Smart phone
Model No.:	K4 EDGE
Power supply:	Rechargeable Li-ion Battery DC3.7V-2000mAh
AC adapter :	Input: AC100-240V 50/60Hz 0.13A Output: DC 5.0V, 750mA

5.3 Test Mode

Operating mode	Detail description	
PC mode	Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode	
Charging+Playing mode	Keep the EUT in Charging+Playing mode	
FM mode	Keep the EUT in FM receiver mode	
GPS mode	Keep the EUT in GPS receiver mode	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC
MERCURY	MERCURY Wireless router		MW150R 12922104015	
NAKAMICHI	Bluetooth earphone	T8	N/A	FCC ID

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

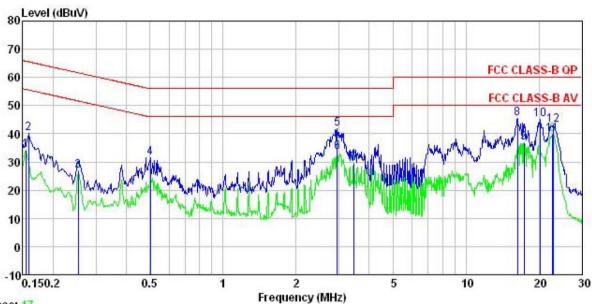
Tel: +86-755-23118282 Fax: +86-755-23116366

5.8 Test Instruments list

Radia	Radiated Emission:								
Item	m Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018			
5	Pre-amplifier Compliance (1GHz-18GHz) System		PAP-1G18	CCIS0011	02-25-2017	02-24-2018			
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018			
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018			
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
9	Coaxial Cable N/A		N/A	CCIS0018	02-25-2017	02-24-2018			
10	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018			

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018				
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018				
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107					
Test Method:	ANSI C63.4:2014	ANSI C63.4:2014				
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)	Lir	mit (dBμV)			
	, , , ,	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	0.5-30	60	50			
Tool oak va	* Decreases with the logarith		•			
Test setup:	LISN A	LISN				
	Remark: E.U.T Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4: 	on network(L.I.S.N.) bedance for the mea e also connected to ohm/50uH coupling s to the block diagra e checked for maximate the maximum en d all of the interface	. The provide a asuring equipment. the main power through impedance with 50ohm am of the test setup and mum conducted hission, the relative cables must be changed			
Test environment:	Temp.: 23 °C Hun	nid.: 56%	Press.: 101kPa			
Test Instruments:	Refer to section 5.7 for detail	ils	<u>i</u>			
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement data:

Line:

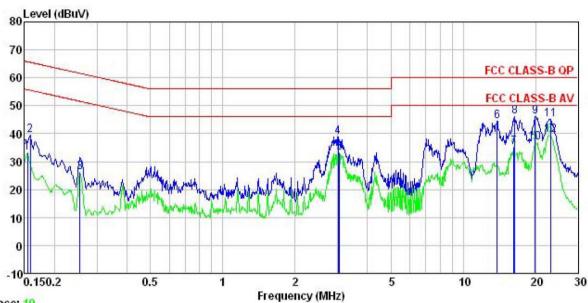
Trace: 17

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

: Smart Phone : K4 EDGE EUT Model

Test Mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike


emark	: Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>d</u> B		dBu₹	dBu∜	<u>d</u> B	
1	0.154	23.35	0.14	10.78	34.27	55.78	-21.51	Average
2	0.158	29.35	0.14	10.78	40.27	65.56	-25.29	QP
3	0.253	15.81	0.16	10.75	26.72	51.64	-24.92	Average
4	0.502	20.63	0.24	10.76	31.63	56.00	-24.37	QP
2 3 4 5 6 7 8 9	2.946	30.60	0.33	10.92	41.85	56.00	-14.15	QP
6	2.946	22.30	0.33	10.92	33.55	46.00	-12.45	Average
7	3.454	18.19	0.34	10.91	29.44	46.00	-16.56	Average
8	16.312	34.18	0.28	10.91	45.37	60.00	-14.63	QP
9	17.383	25.46	0.30	10.91	36.67	50.00	-13.33	Average
10	20.162	33.88	0.34	10.93	45.15	60.00	-14.85	QP
11	22.775	28.65	0.35	10.89	39.89	50.00	-10.11	Average
12	22.896	31.83	0.35	10.89	43.07	60.00	-16.93	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 19

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : Smart Phone : K4 EDGE Condition

EUT Test Mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Mike
Remark Model

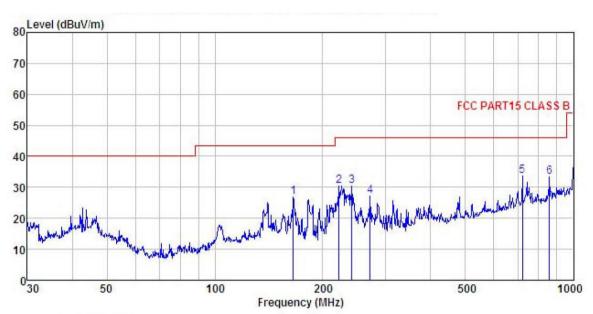
Kemark									
		Read	LISN	Cable		Limit	Over		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
	MHz	dBu∜	<u>dB</u>	dB	dBu∀	dBu√	<u>dB</u>		
1	0.154	22.24	0.12	10.78	33.14	55.78	-22.64	Average	
2	0.158	28.44	0.13	10.78	39.35	55.56	-16.21	QP	
3	0.255	15.27	0.17	10.75	26.19	51.60	-25.41	Average	
4	3.025	27.59	0.31	10.92	38.82	46.00	-7.18	QP	
1 2 3 4 5 6 7 8 9	3.058	21.95	0.31	10.92	33.18	46.00	-12.82	Average	
6	13.841	33.23	0.26	10.91	44.40	50.00	-5.60	QP	
7	16.226	23.98	0.27	10.91	35.16	50.00	-14.84	Average	
8	16.398	35.07	0.27	10.91	46.25	50.00	-3.75	QP	
9	19.950	34.88	0.28	10.93	46.09	50.00	-3.91	QP	
10	19.950	25.51	0.28	10.93	36.72	50.00	-13.28	Average	
11	23.018	33.93	0.25	10.89	45.07	50.00	-4.93	QP	
12	23.018	28.32	0.25	10.89	39.46	50.00	-10.54	Average	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

FCC Part 15 B S	FCC Part 15 B Section 15.109							
ANSI C63.4:201	14							
30MHz to 26000	OMHz							
Measurement D	istance:	3m (Se	mi-Anechoi	c Chan	nber)			
Frequency			RBW			Remark		
30MHz-1GHz						Quasi-peak Value		
Above 1GHz						Peak Value		
Frequenc					12	Average Value Remark		
				20111)	(Quasi-peak Value		
						Quasi-peak Value		
						Quasi-peak Value		
	960MHz-1GHz Above 1GHz		54.0			Quasi-peak Value		
Above 1Cl			54.0			Average Value		
Above IGI	72		74.0			Peak Value		
Tum 0.8 Table 0.8 Ground Plane — Above 1GHz	4m		3m	RF Test Receiver	h na	untenna Tower		
	ANSI C63.4:201 30MHz to 26000 Measurement D Frequency 30MHz-1GHz Above 1GHz Frequenc 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Above 1GHz Below 1GHz Frequenc 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Above 1GHz	ANSI C63.4:2014 30MHz to 26000MHz Measurement Distance: Frequency Dete 30MHz-1GHz Quasi- Above 1GHz Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz Below 1GHz Above 1GHz	Measurement Distance: 3m (Se Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz RMS Frequency Limit 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz Below 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 26000MHz Measurement Distance: 3m (Semi-Anechoi Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz RMS 1MHz Frequency Limit (dBuV/m @ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 54.0 Below 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 26000MHz Measurement Distance: 3m (Semi-Anechoic Chan Frequency Detector RBW VBI 30MHz-1GHz Quasi-peak 120kHz 300k Above 1GHz RMS 1MHz 3MH Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Antenna Antenna Searc Antenna Ground Plane Above 1GHz Above 1GHz Antenna Antenna Searc Ante	ANSI C63.4:2014 30MHz to 26000MHz Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz RMS 1MHz 3MHz RMS 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 (0.000		


Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.								
		2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.							
	ground	rs above the gth. Both t to make the							
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.								
	5. The tes Bandwi	and Specified							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test environment:	Temp.:	25 °C	Humid.:	55%	Press.:	1 01kPa			
Test Instruments:	Refer to se	ection 5.7 for	details						
Test mode:	Refer to se	ection 5.3 for	details						
Test results:	Passed								
Remark:	All of the o	All of the observed value above 6GHz ware the niose floor , which were no recorded							

Measurement Data:

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

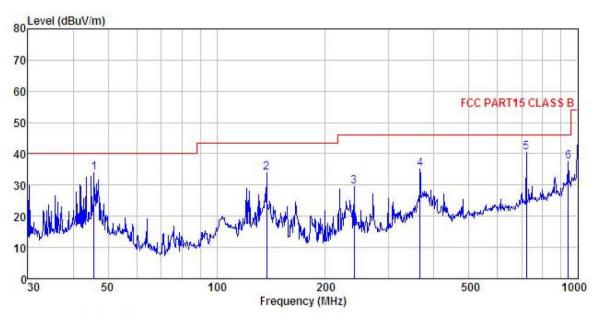
EUT : Smart phone

Model : K4 EDGE

Test mode : PC mode

Power Rating : AC 120V / 60Hz

Environment : Temp: 25.5°C Huni: 55%


Test Engineer: Mike

REMARK

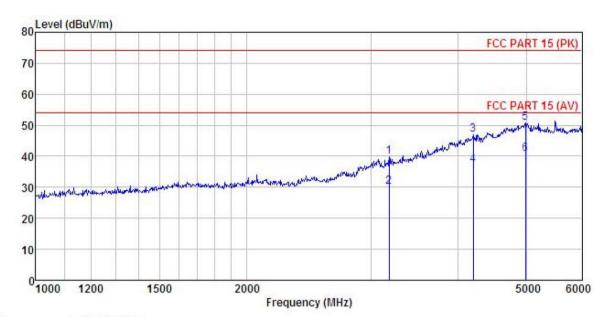
		Read	eadAntenna (Cable Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
=	MHz	dBu∀			<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>		
1	165.487	43.36	9.84	2.62	29.09	26.73	43.50	-16.77	QP	
2	222.170	44.68	11.52	2.84	28.69	30.35	46.00	-15.65	QP	
3	240.830	44.25	11.80	2.82	28.59	30.28	46.00	-15.72	QP	
4	271.325	40.58	12.11	2.86	28.50	27.05	46.00	-18.95	QP	
4 5	721.726	38.36	19.76	4.26	28.58	33.80	46.00	-12.20	QP	
6	857.025	36.06	21.09	4.12	27.99	33.28	46.00	-12.72	QP	

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: Smart phone : K4 EDGE EUT Model

Test mode : PC mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%


Test Engineer: Mike REMARK :

PHETITIE									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /π		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	45.695	45.33	17.28	1.29	29.85	34.05	40.00	-5.95	QP
2	137.420	48.92	11.88	2.37	29.29	33.88	43.50	-9.62	QP
3	239.987	43.61	11.80	2.82	28.59	29.64	46.00	-16.36	QP
4	365.539	45.89	14.72	3.09	28.63	35.07	46.00	-10.93	QP
2 3 4 5	721.726	44.99	19.76	4.26	28.58	40.43	46.00	-5.57	QP
6	942.131	39.26	21.93	4.13	27.75	37.57	46.00	-8.43	QP

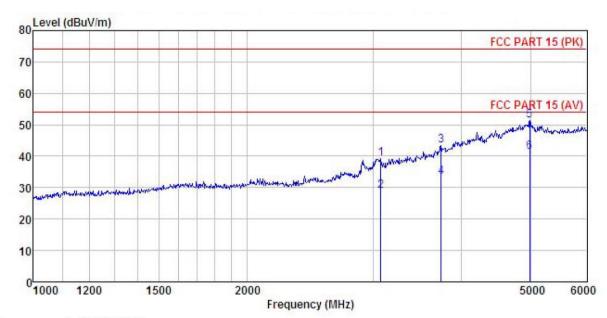
Above 1GHz

Horizontal:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smart phone


Model : K4 EDGE
Test mode : PC mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	3189.176	49.28	26.47	5.42	41.41	39.76	74.00	-34.24	Peak
2	3189.176	39.60	26.47	5.42	41.41	30.08	54.00	-23.92	Average
2	4204.190	49.14	33.24	6.41	41.81	46.98	74.00	-27.02	Peak
4	4204.190	39.33	33.24	6.41	41.81	37.17	54.00	-16.83	Average
5	4989.431	48.77	36.84	6.93	41.88	50.66	74.00	-23.34	Peak
6	4989.431	38.72	36.84	6.93	41.88	40.61	54.00	-13.39	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

Model : K4 EDGE

Test mode : PC mode

Power Rating : AC 120V / 60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike REMARK :

123456

MKI	. :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹	dB/m		<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>d</u> B		-
	3079.404	49.45	25.97	5.38	41.47	39.33	74.00	-34.67	Peak	
g.	3079.404	39.13	25.97	5.38	41.47	29.01	54.00	-24.99	Average	
	3740.903	48.95	30.00	6.02	41.71	43.26	74.00	-30.74	Peak	
2	3740.903	39.02	30.00	6.02	41.71	33.33	54.00	-20.67	Average	
	4989.431	49.40	36.84	6.93	41.88	51.29	74.00	-22.71	Peak	
	4989.431	39.46	36.84	6.93	41.88	41.35	54.00	-12.65	Average	